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The notions of asymptotic eigenvectors and asymptotic eigenvalues are defined. Based on these 
notions a special probability rule for pattern selection in a Hopfield type dynamics is introduced. The 
underlying network is considered to be a d -regular graph, where d  is an integer denoting the 
number of nodes connected to each neuron. It is shown that as far as the degree d is less than a 
critical value cd  , the number of stored patterns with (1)m Oµ =  can be much larger than that in a 
standard recurrent network with Bernouill random patterns. As observed in [4] the probability rule we 
study here turns out to be related to the spontaneous activity of the network. So our result might be an 
evidence for the idea that some spontaneous activities intend to reorganize information for improving 
the capacity . 
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1. INTRODUCTION 

Let [ ]ij N NA a ×=  be the adjacency matrix of a simple graph representing the architecture of a neural 
network consisting of N neurons. This means that for 1 , , 1iji j N a≤ ≤ = , if the neurons i  and j  are 
interconnected and 0ija =  if they are not so. Assume that the microscopic state of the network is defined by 

the N -neuron state vector 1( ,..., ) { 1}N
Nσ = σ σ ∈ ±  where 1iσ =  if neuron i  fires and 1iσ = −  if it is at rest. 

Let the network evolves according to a standard Glauber-type dynamics. The local field at neuron i  is given 
by i ij j

j

h J= σ∑ , and the interactions matrix [ ]ij N NJ ×  is determined through the well-known Hebb rule 

1

p
ij

ij i j

a
J

N
µ µ

µ=

= ξ ξ∑ , where 1( ,..., ) { 1} , 1,...,N
N pµ µµξ = ξ ξ ∈ ± µ = , denote the p  patterns to be stored in the 

system. In a deterministic parallel dynamics, the evolution of the system is described as usual by the 
following rule, ( 1) sgn( ( ( )))i it h tσ + = σ . One of the most studied probability rules for pattern selection in a 

recurrent network is the following well-known Bernouill probability rule 1Pr( 1) ( 1)
2i aµξ = = + , for 

1,..., pµ = ,  and for, 1,...,i p= , where 0 1a≤ ≤  is a real positive number. The study of dynamics of 
networks in which more complicated probability rules for pattern selection are applied is not in general so 
simple and we do not yet know any systematic work in this direction. 

B.B. Averbeck, P.E.Latham and A. Pouget in [2] have provided qualitative answers to the following 
question: Does adding correlations to a population of neurons without modifying single neuron responses (so 
that the correlated and uncorrelated populations would be indistinguishable on the basis of single neuron 
recordings) increase or decrease the amount of information in the population? What we present in this note is 
part of research carried out in the direction of the above fundamental question. There exist other reasons for 
our interest to this problem. In realistic complex networks the observed patterns seem to be more 
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complicated than the patterns selected according to the above simple Bernouoill probability rule. In fact 
according to experimental data for example in neocortical areas the observed patterns seem to have 
correlations with the topography of the network. (see e.g. [3, 4, 5]) Our aim in this note is to show that for 
certain classes of large graphs representing the connectivity between neurons in a recurrent neural network 
there exits a collection of patterns which are more compatible with the architecture of the network and are 
best suited to be stored in it. More precisely we will introduce a collection of asymptotic eigenvectors 
{ }V µ

µ , with (positive) asymptotic eigenvalues { }µ µλ  associated to the underlying topology, and we suppose 
that patterns are selected among this special collection according to the following probability rule: 

Pr( )V νν

µ
µ

λ
ξ = =

λ∑
,     1,..., Nν = . 

(1) 

This probability rule for pattern selection could be justified for example by the observation in [4], 
stating that in a spontaneous activity of a network, eigenvectors of the connectivity matrix of that network 
appear with a probability proportional to their eigenvalues. We have also provided in [1] a justification on 
how similar probability rules could appear as rules after phase transition in a Gibbs type topological 
probability rule of pattern selection. In order to clarify the idea we start by describing a simple example. 

2. RING MODEL 

Consider a network on a ring with  N  nodes. The connectivity matrix [ ]ijA a=  of such a network is 
given by: 

1 if 1 mod
.

0 otherwiseij

j i N
a

= +
= 


 (2) 

Among all the patterns 1,( ,..., ) { 1}N
Nξ = ξ ξ ∈ ± , we consider the class of -2-block patterns consisting of 

those patterns in which all the +1’s are set next to each other. We claim now that these 2-block patterns being 
more compatible with the geometry of the network, are in some sense more appropriate to be stored in it. To 

show this we manually select the following collection of [ ]
2
N , 2-block patterns: 

1 if 1 2
,

1 otherwise
k
i

i k+ ≤ ≤
ξ = −

 (3) 

where 0 2k N≤ ≤ .  According to Hebb rule, the associated interaction weights ijJ  are given by: 

2 ,2 1
2

2k k
mJ

m+
−

=  ,      for  1,..., 1k m= −  

1,...,k m=     for    2 1,2
1
2k kJ − = 

(4) 

for 2N m= ; and by: 

2 ,2 1
2

2 1k k
mJ
m+
−

=
+

,      for  1,...,k m=  

                                           2 1,2
2

2 1k k
mJ

m− =
+

,      for 1,...,k m=  

2 1,1 2 1m
mJ

m+ = −
+

 

(5)

for 2 1N m= + . 
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Let also 2lR , for 1,...,[ ]
2
Nl = , be an operator acting on the space of patterns as follows: 2 ( )lR ξ  is a 

pattern which is obtained from 1,( ,..., ) { 1}N
Nξ = ξ ξ ∈ ±  by a cyclic permutation of the form: 

2 2 1 1 2( ) ( ,..., , , ..., ).l l N lR +ξ = ξ ξ ξ ξ (6) 

One can easily verify that not only the [ ]
2
N  patterns 2{ }kξ , 1,...,

2
Nk  =   

, introduced by (3) are stored 

in the network but also all the patterns of the form 2
2 ( )k

lR ξ , for , 1,..., ,
2
Nk l  =   

can be retrieved in a 

Hopfield-type dynamics. Consequently at least  2[ 2]N , 2-block patterns can be stored in a Ring model. 
In order to generalize the phenomenon observed in this special example we will introduce the notions of 
asymptotic eigenvectors  and asymptotic eigenvalues in the next section. 

3. ASYMPTOTIC EIGENVECTORS 

Let [ ]ijA a=  be an N N×  matrix with 0N >> . We first introduce a definition: 

Definition 1. A real vector NV ∈\  is called an asymptotic eigenvector if there exists a real number 
λ∈\  such that: 

1( ) ,
| |
NVA I O
V N

 − λ =  
 

 (7) 

where I is the identity matrix of dimension N . We call λ  an asymptotic eigenvalue. 

Definition 2. A graph G  with its connectivity matrix A  is called a literate graph if there exits real 
parameters κ  and ϑ  such that the operator 

I A∆ = κ − ϑ (8) 

is positive definite and there exists a collection { 1} ,NV µ ∈ ±  1,..., Mµ = , of  asymptotic eigenvectors with 
asymptotic eigenvalues 1{ }Mµ

µ=λ   associated to ∆  such that the following spectral relation holds: 

1

1 ,
N

ij i j ij ij
k

k

a V V r a O
N

µ µ µ

µ=

λ  = ∆ +  λ  
∑ ∑

 (9) 

where r∈\  is a real constant. 

Example (Ring model.) Let  be the connectivity matrix of a ring of N  nodes and set : I A∆ = + . 
Let 1 q N< <  and let V µ , for 1,..., Nµ =  be the set of 2-block patterns with exactly q  coefficients equal to 
1. It can be easily verified that 1{ }NV µ

µ=  constitute a set of asymptotic eigenvectors of ∆  with a common 

eigenvalue 3µλ = , for 1,..., Nµ = . The collection 1{ }NV µ
µ=  satisfy (9) with 1r =  . 

4. MAIN THEOREM 

Let A  be the connectivity matrix of a literate graph G  of N  nodes and let the degree of each node be 
equal to a given integer d. Suppose that { 1}NV µ ∈ ± , for 1,..., Nµ = , constitute a collection of asymptotic 
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eigenvectors for A  with positive asymptotic eigenvalues µλ ∈ℜ , 1,..., Nµ =  satisfying (9). Assume that p  

patterns are selected among the eigenvectors 1{ }NV µ
µ= , according to the probability rule (1) and synaptic 

weights have been modified according to the well-known Hebb rule as described in the introduction. 
Consider a Hopfield type network on G  with its standard  Glauber-type dynamics. Then we have the 
following theorem : 

THEOREM 1. If min { }µ µλ = λ , then there exists a constant β  such that if d  satisfies 

( )
2 lnc

p
d d r

N
≤ = λ − κ

β
 , then all the patterns V µ  for which  0 (1)Oµ< λ − κ =  are stored in the network. 

Proof. Let p  patterns , 1,..., ,pµξ µ =  be selected through the probability rule (9). For simplicity of 
notation suppose that 1 1Vξ = . We would like to proceed a signal-noise analysis. The signal part of the local 

field  1
i ij j

j

h J V=∑  is equal to : 

1 2 1 11 ( ( ) ) .i ij j i i
j

dS a V V V
N N

= =∑ (10) 

  The noise term comes from 

1

, 1

1 .i ij i j j
j

R a V
N

µ µ

µ≠

= ξ ξ∑ (11) 

Using (7) for 1, , pµ = … , we can write: 

1 .i j ij i j ij ij
k

k

a V V ra O
N

µµ µ µ µ

µ

λ  < ξ ξ >= = ∆ +  λ  
∑ ∑

 (12) 

Thus we reach to: 

1
2i ij ij j

j

p pR ra V O
N N

 < >= ∆ +  
 

∑ (13) 

by definition: 

,ij ij ija∆ = κδ − ϑ (14) 

so: 
1 1( )ij ij j ij ij ij j

j j

a V a a V∆ = κδ − ϑ∑ ∑ 1.ij j
j

a V= −ϑ∑  (15) 

Using the relation 1 1
1

1V V O
N

 ∆ = λ +  
 

 and (14) we obtain: 

1 1
1

1( ) ,ij j i
j

a V V O
N

 ϑ = κ − λ +  
 

∑ (16) 

so we have: 

1
1 2

( ) .i i
pr pR V O
N N

 < >= λ − κ +  
 

 (17) 
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As can be seen if 1λ ≥ κ  this term has a positive effect on the signal term iS  and serves for stabilizing the 
corresponding pattern 1V . Consequently the total signal term can be redefined as: 

1 1( )
.i i i

d rp
S R V

N
+ λ − κ

+ < >= (18) 

In order to estimate the variance of iR  we write: 

1 ,i i iR R
N

µ µ

µ

= ξ∑ (19) 

where 

1: .i ij j j
j

R a Vµ µ= ξ∑ (20) 

This is in general something of ( )O d  and so: 

2 2

2 2
Var( ) ,i

pd pdR O
N N

 
= = β 

 
 (21) 

for some constant β . The probability for  1(0)i iVσ =  to be stable is equal to the probability that, 

1Pr( ) 0.i iV h > (22) 

On the other hand the signal to noise ratio is equal to : 

1

1
1

Var( )
,

( ) ( ( ))
i i

i i i

V R pd
S R V d rp

β
≤

< + > + λ − κ
 (23) 

for some constant β . Now if  p d>>   the dominant term of the right hand side is given by: 

1 1

.
( ) ( )

pd d
rp r p
β β

=
λ − κ λ − κ

 (24) 

 
This shows that if 1 (1)Oλ − κ = , then there exists a critical value cd  for the degree of each node in the 

network, such that as long as cd d≤  the pattern 1V  remains stable with probability one at almost all the 
nodes. This critical value is easily seen to be equal to: 

1( ) .
2 lnc

p
d r

N
= λ − κ

β
 (25) 

In the case where ( )p O N= , we get  1( ( ) )
2 lnc

Nd O r
N

= λ − κ  and the theorem is established. 
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