*N***-HOMOMORPHISM AMENABILITY**

Abasalt BODAGHI

Islamic Azad University, Department of Mathematics, Garmsar Branch, Garmsar, Iran E-mail: abasalt.bodaghi@gmail.com

In this paper, the notion of *n*-homomorphism amenability of Banach algebras is introduced. It is shown that *n*-homomorphism amenability for the group algebra $L^1(G)$ and the generalized Fourier algebra $A_n(G)$ ($p \in (1, +\infty)$) is equivalent to the amenability of the underlying group G.

Key words: amenability, Banach algebra, n-homomorphism.

1. INTRODUCTION

The concept of amenability for Banach algebras was introduced and studied for the first time by Johnson in [4]. He proved that $L^1(G)$ is an amenable Banach algebra if and only if G is an amenable locally compact group. Since then several variants of this concept by using homomorphisms have appeared in the literature, each as a kind of cohomological triviality (for instance, see [1] and [8]).

Kaniuth, Lau and Pym [5] investigated the concept of φ -amenability of a Banach algebra A, where φ is a character on A (see also [6]). At that time and along with them, Monfared introduced the notion of character amenability for Banach algebras in [7]. By using results in [5], he characterized the structure of left (right) character amenable Banach algebras in several ways, and showed that for any locally compact group G, left (right) character amenability of the group algebra $L^1(G)$, is equivalent to the amenability of G.

Let A be a (Banach) algebra and let *n* be an arbitrary and fixed natural number. A linear map ϕ from A to the set of complex numbers C is called *n*-homomorphism if $\phi(a_1a_2...a_n) = \phi(a_1)\phi(a_2)...\phi(a_n)$ for all $a_1, a_2, ..., a_n \in A$. Obviously, every homomorphism is a *n*-homomorphism, but converse is false, in general.

For any Banach space X and Banach algebra A, each *n*-homomorphism ϕ on A induces a (innumerable) module structure(s) on X. In this paper, we employ this structure(s) and introduce the concept of $n \cdot \phi$ -amenability for A and characterize it in terms of first Hochschild cohomology group of A with coefficients in X^{*}. We also define the notion *n*-homomorphism amenability for Banach algebras and show that for a locally compact group G, the group algebra $L^1(G)$ and the generalized Fourier algebra $A_p(G)$ ($p \in (1, +\infty)$) are *n*-homomorphism amenable if and only if G is amenable. Also, the measure algebra M(G) is *n*-homomorphism amenable if and only if G is a discrete amenable group.

2. MAIN RESULTS

Let A be a Banach algebra, and let X be a Banach A -bimodule. A bounded linear map $D: A \to X$ is called a *derivation* if

$$D(ab) = D(a) \cdot b + a \cdot D(b) \qquad (a, b \in \mathsf{A}).$$

For each $x \in X$, we define a map $D_x : A \to X$ by

$$D_{\mathbf{x}}(a) = a \cdot \mathbf{x} - \mathbf{x} \cdot a \qquad (a \in \mathsf{A}).$$

It is easily seen that D_x is a derivation. Derivations of this form are called *inner derivations*. We use the notations $Z^1(A, X)$ for the space of all continuous derivations from A into X and N¹(A, X) for the space of all inner derivations from A into X. The first Hochschild cohomology group of A with coefficients in X is the quotient space

$$\mathsf{H}^{1}(\mathsf{A},\mathsf{X}) = \mathsf{Z}^{1}(\mathsf{A},\mathsf{X})/\mathsf{N}^{1}(\mathsf{A},\mathsf{X}).$$

Let X be a A-bimodule. Then the dual space X^* of X is also a Banach A-bimodule by the following module actions:

$$\langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle, \ \langle f \cdot a, x \rangle = \langle f, a \cdot x \rangle, \ (a \in \mathsf{A}, x \in \mathsf{X}, f \in \mathsf{X}^*).$$

With the above notations, a Banach algebra A is called *amenable* if $H^1(A, X^*) = \{0\}$ for every Banach A-bimodule X.

Throughout this paper, *n* is a fixed natural number, A is a Banach algebra and $\sigma^{(n)}(A)$ is the set of all non-zero bounded linear *n*-homomorphisms from A to C. We denote $\sigma^{(2)}(A)$ by $\sigma(A)$.

Let $\phi \in \sigma^{(n)}(A)$ and choose $u \in A$ such that $\phi(u) = 1$. If X is a Banach space, then X can be viewed as a Banach left A -module by the following action:

$$a \cdot x = \phi(u^n \ a)x, \ (a \in \mathcal{A}, \ x \in \mathsf{X}).$$
(2.1)

As it will be shown in Theorem 2.3, $a \cdot (b \cdot x) = ab \cdot x = \phi(a)\phi(b)x$ for all $a, b \in A$ and $x \in X$, and so this equality is independent from the choice of u. Similarly, we can define a right action A on X by $x \cdot a = \phi(au^n)x$ for all $a \in A$ and $x \in X$.

Suppose that the left action of A on X is given by (2.1). Then it is easy to check that $a \cdot (x \cdot b) = (a \cdot x) \cdot b$ for all $a, b \in A$ and $x \in X$. Therefore, the Banach space X admits a A -bimodule structure dependent on an element $u \in A$ with $\phi(u) = 1$. One can also verify that in this case the right action of A on the dual A -bimodule X^{*} will be $f \cdot a = \phi(u^n a) f$ for all $a \in A$ and $f \in X^*$. Let A be a Banach algebra, A^{**} be its second dual and $m \in A^{**}$. Consider $\phi \in \sigma^{(n)}(A)$ such that $\phi(u) = 1$ for some $u \in A$. Then *m* is said to be $n \cdot \phi$ -*mean* on A^{*} (at *u*) if $m(\phi) = 1$ and $m(f \cdot a) = \phi(u^n a)m(f)$ for all $f \in A^*$ and $a \in A$. Also, A is called $n \cdot \phi$ -*amenable* if there exists a $n \cdot \phi$ -mean *m* on A^{*}. We say A is $n \cdot 0$ -amenable if H¹(A, X^{*}) = {0}, for any Banach A-bimodule X for which the left action A on X is zero.

Note that if ϕ is a non-zero multiplicative linear functional on A, then the left module structure (2.1) and the definition of $n - \phi$ -mean ($n - \phi$ -amenability) will absolutely overlap with ϕ -amenability (character amenability) of A which has been introduced in [5] ([7]).

In the next theorem which is our main result in this paper, we characterize $n - \phi$ -amenability of a Banach algebra in terms of Hochschild cohomology groups.

THEOREM 2.1. Let A be a Banach algebra and $\phi \in \sigma^{(n)}(A)$ such that $\phi(u) = 1$. Then the following are equivalent:

(i) A is $n - \phi$ -amenable (at u);

(ii) If X is a Banach A -bimodule in which the left action is given by $a \cdot x = \phi(u^n a)x$ for all $a \in A$ and $x \in X$, then $H^1(A, X^*) = \{0\}$.

Proof. (i) \Rightarrow (ii): Assume that *m* is a *n*- ϕ -mean in A^{**} and *D*: A \rightarrow X^{*} is a module (*n*- ϕ -) derivation. Let $f = (D')^*(m) \in X^*$, where *D'* is the restriction of *D*^{*} to X. For each $x \in X, a, b \in A$, we have

 $\langle D'(a \cdot x), b \rangle = \langle D(b), a \cdot x \rangle = \phi(u^n a) \langle D(b), x \rangle = \phi(u^n a) \langle D'(x), b \rangle,$

and so $D'(a \cdot x) = \phi(u^n a) D'(x)$. Hence,

$$\langle f \cdot a, x \rangle = \langle f, a \cdot x \rangle = \langle m, D'(a \cdot x) \rangle = \phi(u^n a) \langle m, D'(x) \rangle = \phi(u^n a) \langle f, x \rangle,$$

and thus

$$f \cdot a = \phi(u^n a) f \tag{2.2}$$

On the other hand, for each
$$x \in X, a, b \in A$$
 we get

$$\langle D'(x \cdot a), b \rangle = \langle D(b), x \cdot a \rangle = \langle a \cdot D(b), x \rangle = \langle D(ab), x \rangle - \langle D(a) \cdot b, x \rangle = = \langle D'(x), ab \rangle - \langle D(a), b \cdot x \rangle = \langle D'(x) \cdot a, b \rangle - \phi(u^n b) \langle D(a), x \rangle = = \langle D'(x) \cdot a, b \rangle - \phi(u)^{(n-2)} \phi(u^2) \phi(b) \langle D(a), x \rangle.$$

Therefore

$$D'(x \cdot a) = D'(x) \cdot a - \phi(u^2) \langle D(a), x \rangle \phi.$$
(2.3)

for all $x \in X, a \in A$. Note that $\phi(u^2)$ could not be zero. In other words, if $\phi(u^2) = 0$, then $\phi(u^n a) = \phi(u)^{(n-2)}\phi(u^2)\phi(a) = 0$ for all $a \in A$. This contradicts our assumption that left action A on X is non-zero. Now, it follows from the definition of D' and (2.3) that $\langle a \cdot f, x \rangle = \langle f, x \cdot a \rangle = \langle m D'(x \cdot a) \rangle$

$$= \langle m, D'(x) \cdot a \rangle - \langle D(a), x \rangle m(\phi)\phi(u^{2}) =$$

$$= \langle m, D'(x) \rangle \phi(u^{n}a) - \langle D(a), x \rangle \phi(u^{2}) =$$

$$= \langle f, x \rangle \phi(u^{n}a) - \langle D(a), x \rangle \phi(u^{2}).$$

Then

$$D(a)\phi(u^2) = \phi(u^n a)f - a \cdot f.$$
(2.4)

Using (2.2) and (2.4), we obtain $D(a) = a \cdot g - g \cdot a$, where $g = -\frac{1}{\phi(u^2)} f$. Therefore D is an inner

derivation.

(ii) \Rightarrow (i): First we show that $\phi(u^n a) = \phi(au^n)$ for all $a \in A$. Indeed, $\phi(u^n a) = \phi(u)^{n-1}\phi(ua) = \phi(u)^{n-2}\phi(ua)\phi(u)$ $= \phi(u^{n-2}uau) = \phi(u)^{n-1}\phi(au)$ $= \phi(au)\phi(u)^{n-1} = \phi(au^n).$ Since $\phi(u^2) \neq 0$, $\phi(ab) = \phi(ba)$ for all $a, b \in A$. Thus

$$a \cdot \phi = \phi \cdot a = \phi(u^n a) \phi \quad (a \in \mathsf{A}).$$

Therefore the set $\Omega = \{c\phi : c \in C\}$ is a closed A-submodule of A^* . Put $X = A^*/\Omega$ and let $P : A^* \to X$ be the projection map. Take $\Psi \in A^{**}$ such that $\Psi(\phi) = 1$. Consider D_{Ψ} as the inner derivation from A into A^{**} . We have

$$\langle D_{\Psi}(a), \phi \rangle = \langle a \cdot \Psi - \Psi \cdot a, \phi \rangle = \langle \Psi, \phi \cdot a - a \cdot \phi \rangle = 0 \quad (a \in \mathsf{A}).$$

Thus $D_{\Psi}(a)$ belongs to the range of P^* . Since P^* is monomorphism, there exists a unique element $D(a) \in X^*$ such that $P^*(D(a)) = D_{\Psi}(a)$. The map which is defined as above is a derivation on A. By hypotheses, there exists $\varphi \in X^*$ such that

$$D(a) = a \cdot \varphi - \varphi \cdot a \quad (a \in A).$$

Now, for each $a \in A$

$$a \cdot P^*(\varphi) - P^*(\varphi) \cdot a = P^*(a \cdot \varphi - \varphi \cdot a) = P^*(D(a)) = D_{\Psi}(a) = a \cdot \Psi - \Psi \cdot a$$

Put $m = \Psi - P^*(\varphi)$. Then it is easy to see that *m* is a $n - \varphi$ -mean on A^* .

The proving process of the above theorem shows that if we replace u by another element v in A such that $\phi(v)=1$, even although the left module structure on X will be different, all assertions are still equivalent. Hence, $n - \phi$ -amenability of A is independent from choice of u and it is enough that Theorem 2.1 holds for some $u \in A$ with $\phi(u)=1$ and thus, we remove the word u if there is no risk of confusion. Now, this Theorem leads us to the following definition:

Definition 3.3. A Banach algebra A is said to be *n*-homomorphism amenable if Theorem 2.1 holds for all $\phi \in \sigma^{(n)}(A) \cup \{0\}$.

Recall that a Banach algebra A is right (left) character amenable if for all $\phi \in \sigma(A) \cup \{0\}$ and all Banach A -bimodule X for which the left (right) module action is given by $a \cdot x = \phi(a)x$ ($x \cdot a = \phi(a)x$); $a \in A, x \in X$, every continuous derivation $D : A \to X^*$ is inner.

THEOREM 2.3. Let $n \in \mathbb{N}$ and A be a Banach algebra. Then A is a right character amenable if and only if it is n-homomorphism amenable.

Proof. Obviously, the zero map on A is *n*-homomorphism for all $n \in \mathbb{N}$. Now, let A be *n*-homomorphism amenable and ϕ be a character on A. Then ϕ is a *n*-homomorphism on A. Assume that A is $n - \phi$ -amenable (at *u*). We consider A -bimodule structure on a Banach space X by taking the left action to be $a \cdot x = \phi(a)x$; $a \in A$, $x \in X$ and the right action to be the natural one. Define a left action A on X as $a \bullet x = u^n a \cdot x$. Since ϕ is a character, $a \bullet x = \phi(u^n a)x = \phi(u)^n \phi(a)x = \phi(a)x$. These equalities show that both left actions A over X are equal. Thus A is ϕ -amenable, and so it is right character amenable. Conversly, suppose that A is a right character amenable and ϕ belongs to $\sigma^{(n)}(A) \cup \{0\}$. Define $\tilde{\phi}(a) := \phi(u^n a); a \in A$ with $\phi(u) = 1$. Then

$$\begin{split} \tilde{\phi}(ab) &= \phi(u^{n}ab) = \phi(u^{3})\phi(u)^{n-3}\phi(a)\phi(b) = \\ &= \phi(u)^{n-1}\phi(u^{3})\phi(u)^{n-2}\phi(a)\phi(b) = \phi(u^{n+2})\phi(u^{n-2}ab) = \\ &= \phi(u^{2})\phi(u)^{n-2}\phi(u^{2})\phi(u)^{n-2}\phi(a)\phi(b) = \\ &= \phi(u^{2})\phi(u)^{n-2}\phi(a)\phi(u^{2})\phi(u)^{n-2}\phi(b) = \\ &= \phi(u^{n}a)\phi(u^{n}b) = \tilde{\phi}(a)\tilde{\phi}(b). \end{split}$$

The above equalities show that $\tilde{\phi}$ is a character on A. Since A is $\tilde{\phi}$ -amenable, every derivation $D: A \to X^*$ in which $a \cdot x = \tilde{\phi}(a)x$, is inner. Therefore A is $n - \phi$ -amenable.

Let G be a locally compact group. Then, the Fourier algebra A(G) and the generalized Fourier algebra $A_p(G)$, $p \in (1, +\infty)$, which were introduced in [2] and [3] are commutative Banach algebras with pointwise operations of addition and multiplication. It is proved in [7, Corollary 2.4] that $A_p(G)$ is character amenable if and only if G is amenable locally compact group and by Theorem 2.3 we have the following corollary.

COROLLARY 2.4. Let $1 \le p \le \infty$, G be a locally compact group, and A be either Banach algebras $L^1(G)$ or $A_p(G)$. Then the following are equivalent:

- (i) A *is right character amenable;*
- (ii) A is n-homomorphism amenable;
- (iii) G is amenable.

N-homomorhism amenability

For a locally compact group G, *n*-homomorphism amenability of the measure algebra M(G) is characterized in the next result.

COROLLARY 2.5. The measure algebra M(G) is n-homomorphism amenable if and only if G is a discrete amenable group.

Proof. The result follows immediately from Theorem 2.3 and [7, Corollary 2.5].

REFERENCES

- 1. BODAGHI, A., Eshaghi GORDJI, M., MEDGHALCHI, A. R., *A generalization of the weak amenability of Banach algebras*, B. J. Math. Anal., **3**, *1*, pp. 131–142.
- 2. EYMARD, P., L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France., 92, pp. 181–236, 1964.
- 3. FIGA-TALAMANCA, A., Translation invariant operators in L^p, Duke Math. J., 32, pp. 459–501, 1965.

4. JOHNSON, B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127, Providence, 1972.

- 5. KANIUTH, E., LAU, A. T., PYM, J., On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc., 144, pp. 85–96, 2008.
- 6. KANIUTH, E., LAU, A. T., PYM, J., On character amenability of Banach algebras, J. Math. Anal. Appl., 344, pp. 942–955, 2008.

7. MONFARED, M. S., *Character amenability of Banach algebras*, Math. Proc. Camb. Phil. Soc., **144**, pp. 697–706,2008.

 MOSLEHIAN, M. S., MOTLAGH, A. N., Some notes on (σ,τ)-amenability of Banach algebras, Stud. Univ. "Babes-Bolyai" Math., 53, 3, pp. 57–68, 2008.

Received February 3, 2012