
      THE PUBLISHING HOUSE  PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY  Volume 14, Number 2/2013, pp. 101–105 

N-HOMOMORPHISM AMENABILITY 

Abasalt BODAGHI  

Islamic Azad University, Department of Mathematics, Garmsar Branch, Garmsar, Iran 
E-mail: abasalt.bodaghi@gmail.com 

In this paper, the notion of n -homomorphism amenability of Banach algebras is introduced. It is 
shown that n -homomorphism amenability for the group algebra 1( )L G  and the generalized Fourier 
algebra ( )pA G  ( (1, )p∈ +∞ ) is equivalent to the amenability of the underlying group G . 
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1. INTRODUCTION 

The concept of amenability for Banach algebras was introduced and studied for the first time by 
Johnson in [4]. He proved that 1 ( )L G  is an amenable Banach algebra if and only if G  is an amenable locally 
compact group. Since then several variants of this concept by using homomorphisms have  appeared in the 
literature, each as a kind of cohomological triviality (for instance, see [1] and [8]). 

Kaniuth, Lau and Pym [5] investigated the concept of ϕ -amenability of a Banach algebra A , where ϕ  
is a character on A  (see also [6]). At that time and along with them, Monfared introduced the notion of 
character amenability for Banach algebras in [7]. By using results in [5], he characterized the structure of left 
(right) character amenable Banach algebras in several ways, and showed that for any locally compact group 
G , left (right) character amenability of the group algebra )(1 GL , is equivalent to the amenability of G .  

Let A  be a (Banach) algebra and let n  be an arbitrary and fixed natural number. A linear map φ  from 
A  to the set of complex numbers C  is called n -homomorphism if 1 2 1 2( ... ) = ( ) ( )... ( )n na a a a a aφ φ φ φ for all 

A∈naaa ,...,, 21 . Obviously, every homomorphism is a n -homomorphism, but converse is false, in general.  
For any Banach space X  and Banach algebra A , each n -homomorphism φ  on A  induces a 

(innumerable) module structure(s) on X . In this paper, we employ this structure(s) and introduce the concept 
of n -φ -amenability for A  and characterize it in terms of first Hochschild cohomology group of A  with 
coefficients in *X . We also define the notion n -homomorphism amenability for Banach algebras and show 
that for a locally compact group G , the group algebra )(1 GL  and the generalized Fourier algebra )(GAp  
( (1, ))p∈ +∞  are n -homomorphism amenable if and only if G  is amenable. Also, the measure algebra 

( )M G  is n -homomorphism amenable if and only if G  is a discrete amenable group.    

2. MAIN RESULTS 

Let A  be a Banach algebra, and let X  be a Banach A -bimodule. A bounded linear map XA→:D  is 
called a  derivation if 

).,()()(=)( A∈⋅+⋅ babDabaDabD   

For each X∈x , we define a map XA→:xD  by  
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).(=)( A∈⋅−⋅ aaxxaaDx   

It is easily seen that xD  is a derivation. Derivations of this form are called  inner derivations. We use 
the notations ),(1 XAZ  for the space of all continuous derivations from A  into X  and ),(1 XAN  for the 
space of all inner derivations from A  into X . The first Hochschild cohomology group of A with 
coefficients in X  is the quotient space  

).,()/,(=),( 111 XANXAZXAH   

Let X  be a A -bimodule. Then the dual space *X  of X  is also a Banach A -bimodule by the  
following module actions:  

〉⋅〈〉⋅〈 axfxfa ,=, , ). , ,(,,=, *XXA ∈∈∈〉⋅〈〉⋅〈 fxaxafxaf    

With the above notations, a Banach algebra A  is called amenable if {0}=),( *1 XAH  for every  
Banach A -bimodule X . 

Throughout this paper, n  is a fixed natural number, A  is a Banach algebra and )()( Anσ  is the set of  
all non-zero bounded linear n -homomorphisms from A  to C . We denote )((2) Aσ  by )(Aσ . 

Let ( ) ( )nφ∈σ A  and choose A∈u  such that ( ) = 1uφ . If X  is a Banach space, then X  can be viewed 
as a Banach left A -module by the following action:  

= ( ) , ( A, ).na x u a x a x⋅ φ ∈ ∈X  (2.1) 

As it will be shown in Theorem 2.3, ( ) = = ( ) ( )a b x ab x a b x⋅ ⋅ ⋅ φ φ  for all A∈ba,  and X∈x , and so 
this equality is independent from the choice of u . Similarly, we can define a right action A  on X  by 

= ( )nx a au x⋅ φ  for all A∈a  and X∈x . 
Suppose that the left action of A  on X  is given by (2.1). Then it is easy to check that 

bxabxa ⋅⋅⋅⋅ )(=)(  for all A∈ba,  and X∈x . Therefore, the Banach space X  admits a A -bimodule 
structure dependent on an element A∈u  with ( ) = 1uφ . One can also verify that in this case the right action 
of A  on the dual A -bimodule *X  will be = ( )nf a u a f⋅ φ  for all A∈a  and *X∈f . Let A  be a Banach 
algebra, **A  be its second dual and **A∈m . Consider ( ) ( )nφ∈σ A  such that ( ) = 1uφ  for some A∈u . Then 
m  is said to be n -φ - mean on *A  (at u ) if ( ) = 1m φ  and ( ) = ( ) ( )nm f a u a m f⋅ φ  for all *A∈f  and A∈a . 
Also, A  is called  n -φ -amenable if there exists a n -φ -mean m  on *A . We say A  is n - 0 -amenable if 

{0}=),( *1 XAH , for any Banach A -bimodule X  for which the left action A on X  is zero.   
Note that if φ  is a non-zero multiplicative linear functional on A , then the left module structure (2.1) 

and the definition of n -φ -mean ( n -φ -amenability) will absolutely overlap with φ -amenability (character 
amenability) of A which has been introduced in [5] ([7]). 

 In the next theorem which is our main result in this paper, we characterize n -φ -amenability of a 
Banach algebra in terms of Hochschild cohomology groups.  

                                                                                                                                  
THEOREM 2.1.  Let A  be a Banach algebra and ( ) ( )nφ∈σ A  such that ( ) =1uφ . Then the following 

are equivalent:  
(i) A  is n -φ -amenable (at u );  
(ii) If X  is a Banach A -bimodule in which the left action is given by = ( )na x u a x⋅ φ  for all A∈a  

and X∈x , then {0}=),( *1 XAH . 

Proof. (i)⇒  (ii): Assume that m  is a n -φ -mean in **A  and *: XA→D  is a module ( n -φ -) 
derivation. Let ** )()(= X∈′ mDf , where D′  is the restriction of *D  to X . For each AX ∈∈ bax ,, , we 
have  
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( ), = ( ), = ( ) ( ), = ( ) ( ), ,n nD a x b D b a x u a D b x u a D x b′ ′〈 ⋅ 〉 〈 ⋅ 〉 φ 〈 〉 φ 〈 〉  

and so ( ) = ( ) ( )nD a x u a D x′ ′⋅ φ . Hence,  

, = , = , ( ) = ( ) , ( ) = ( ) , ,n nf a x f a x m D a x u a m D x u a f x′ ′〈 ⋅ 〉 〈 ⋅ 〉 〈 ⋅ 〉 φ 〈 〉 φ 〈 〉  

and thus 

= ( )nf a u a f⋅ φ . (2.2) 

On the other hand, for each AX ∈∈ bax ,,  we get 
 ( ), = ( ), = ( ), = ( ), ( ) ,D x a b D b x a a D b x D ab x D a b x′〈 ⋅ 〉 〈 ⋅ 〉 〈 ⋅ 〉 〈 〉 − 〈 ⋅ 〉 = 
                                            = ( ), ( ), = ( ) , ( ) ( ),nD x ab D a b x D x a b u b D a x′ ′〈 〉 − 〈 ⋅ 〉 〈 ⋅ 〉 − φ 〈 〉 = 
                                            ( 2) 2= ( ) , ( ) ( ) ( ) ( ), .nD x a b u u b D a x−′〈 ⋅ 〉 − φ φ φ 〈 〉  

Therefore 
2( ) = ( ) ( ) ( ), .D x a D x a u D a x′ ′⋅ ⋅ − φ 〈 〉φ  (2.3) 

for all AX ∈∈ ax , . Note that 2( )uφ  could not be zero. In other words, if 2( ) = 0uφ , then 
( 2) 2( ) = ( ) ( ) ( ) = 0n nu a u u a−φ φ φ φ  for all A∈a . This contradicts our assumption that left action A  on X  is 

non-zero. Now, it follows from the definition of D′  and (2.3) that  
                    , = , = , ( )a f x f x a m D x a′〈 ⋅ 〉 〈 ⋅ 〉 〈 ⋅ 〉  
                                  2= , ( ) ( ), ( ) ( )m D x a D a x m u′〈 ⋅ 〉 − 〈 〉 φ φ = 
                                  2= , ( ) ( ) ( ), ( )nm D x u a D a x u′〈 〉φ − 〈 〉φ = 
                                  2= , ( ) ( ), ( ).nf x u a D a x u〈 〉φ − 〈 〉φ  

Then 
2( ) ( ) = ( ) .nD a u u a f a fφ φ − ⋅  (2.4) 

Using (2.2) and (2.4), we obtain aggaaD ⋅−⋅=)( , where 
2

1=
( )

g f
u

−
φ

. Therefore D  is an inner 

derivation.  
(ii)⇒  (i): First we show that ( ) = ( )n nu a auφ φ  for all A∈a . Indeed,  

                          1 2( ) = ( ) ( ) = ( ) ( ) ( )n n nu a u ua u ua u− −φ φ φ φ φ φ  
                                      2 1= ( ) = ( ) ( )n nu uau u au− −φ φ φ  
                                      1= ( ) ( ) = ( ).n nau u au−φ φ φ  

Since 2( ) 0uφ ≠ , ( ) = ( )ab baφ φ  for all A∈ba, . Thus  
= = ( ) ( ).na a u a a⋅ φ φ ⋅ φ φ ∈A  

Therefore the set = { : }c cΩ φ ∈C  is a closed A -submodule of *A . Put Ω/= *AX  and let XA →*:P  
be the projection map. Take **A∈Ψ  such that ( ) =1Ψ φ . Consider ΨD  as the inner derivation from A  into 

**A . We have  
( ), = , = , = 0 ( ).D a a a a a aΨ〈 φ〉 〈 ⋅ Ψ − Ψ ⋅ φ〉 〈Ψ φ ⋅ − ⋅ φ〉 ∈A  

Thus )(aDΨ  belongs to the range of *P . Since *P  is monomorphism, there exists a unique element  
*)( X∈aD  such that )(=))((* aDaDP Ψ . The map which is defined as above is a derivation on A . By 

hypotheses, there exists *ϕ∈X  such that  
( ) = ( ).D a a a a⋅ ϕ − ϕ ⋅ ∈A  

Now, for each A∈a   
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* * * *( ) ( ) = ( ) = ( ( )) = ( ) = .a P P a P a a P D a D a a aΨ⋅ ϕ − ϕ ⋅ ⋅ ϕ − ϕ ⋅ ⋅ Ψ − Ψ ⋅  

Put *= ( )m PΨ − ϕ . Then it is easy to see that m  is a n -φ -mean on *A .  
The proving process of the above theorem shows that if we replace u  by another element v  in A such 

that ( ) =1vφ , even although the left module structure on X  will be different, all assertions are still 
equivalent. Hence, n -φ -amenability of A  is independent from choice of u  and it is enough that Theorem 
2.1 holds for some A∈u  with ( ) =1uφ  and thus, we remove the word u  if there is no risk of confusion. 
Now, this Theorem leads us to the following definition: 

         
Definition 3.3. A Banach algebra A  is said to be n -homomorphism amenable if Theorem 2.1 holds for 

all ( ) ( ) {0}n Aφ∈σ ∪ .  
Recall that a Banach algebra A  is right (left) character amenable if for all ( ) {0}φ∈σ ∪A  and all 

Banach A -bimodule X  for which the left (right) module action is given by = ( )a x a x⋅ φ  ( = ( )x a a x⋅ φ ); 
XA ∈∈ xa , , every continuous derivation *: XA→D  is inner. 

 
THEOREM 2.3. Let N∈n  and A  be a Banach algebra. Then A  is a right character amenable if and 

only if it is n -homomorphism amenable. 

Proof. Obviously, the zero map on A is n -homomorphism for all N.∈n  Now, let A  be  
n - homomorphism amenable and φ  be a character on A . Then φ  is a n -homomorphism on A . Assume 
that A  is n -φ -amenable (at u ). We consider A -bimodule structure on a Banach space X  by taking the left 
action to be = ( ) ; ,a x a x a x⋅ φ ∈ ∈A X  and the right action to be the natural one. Define a left action A  on 
X  as xauxa n ⋅• = . Since φ  is a character, = ( ) = ( ) ( ) = ( )n na x u a x u a x a x• φ φ φ φ . These equalities show 
that both left actions A over X  are equal. Thus A  is φ -amenable, and so it is right character amenable. 
Conversly, suppose that A  is a right character amenable and φ  belongs to {0})()( ∪Anσ . Define 

( ) := ( );na u a aφ φ ∈A  with ( ) =1uφ . Then 

                       3 3( ) = ( ) = ( ) ( ) ( ) ( )n nab u ab u u a b−φ φ φ φ φ φ =  
                                 1 3 2 2 2= ( ) ( ) ( ) ( ) ( ) = ( ) ( )n n n nu u u a b u u ab− − + −φ φ φ φ φ φ φ =  
                                 2 2 2 2= ( ) ( ) ( ) ( ) ( ) ( )n nu u u u a b− −φ φ φ φ φ φ =  
                                 2 2 2 2= ( ) ( ) ( ) ( ) ( ) ( )n nu u a u u b− −φ φ φ φ φ φ =  

                                 = ( ) ( ) = ( ) ( ).n nu a u b a bφ φ φ φ  

The above equalities show that φ  is a character on A . Since A  is φ -amenable, every derivation  
*: XA→D  in which = ( )a x a x⋅ φ , is inner. Therefore A  is n -φ -amenable.  

Let G  be a locally compact group. Then, the Fourier algebra )(GA  and the generalized Fourier 
algebra )(GAp , (1, )p∈ + ∞ , which were introduced in [2] and [3] are commutative Banach algebras with 

pointwise operations of addition and multiplication. It is proved in [7, Corollary 2.4] that )(GAp  is character 
amenable if and only if G  is amenable locally compact group and by Theorem 2.3 we have the following 
corollary. 
 

COROLLARY 2.4. Let ∞<<1 p , G  be a locally compact group, and A  be either Banach 
algebras )(1 GL  or )(GAp . Then the following are equivalent: 

(i)  A  is right character amenable;  
(ii)  A  is n -homomorphism amenable;  
(iii)  G  is amenable. 
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Proof. The equivalence of )(i  and )(ii  follows from Theorem 2.3 and the equivalence of )(i  and )(iii  
has been shown in [7, Corollary 2.4].  

For a locally compact group G , n -homomorphism amenability of the measure algebra )(GM  is 
characterized in the next result. 
      

COROLLARY 2.5. The measure algebra )(GM  is n -homomorphism amenable if and only if G  is a 
discrete amenable group. 

Proof. The result follows immediately from Theorem 2.3 and [7, Corollary 2.5]. 
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