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Let G  be a locally compact group, ω be a weight function on G  and 1 p< < ∞ . In the present note, 

it is proved that pL ﴾ G ,ω﴿ can be considered as a Segal algebra or an abstract Segal algebra with 
respect to ( )1L G , just when G  is compact. 

Key words: abstract segal algebra, segal algebra, weighted pL -space.  

1. INTRODUCTION AND PRELIMINARIES 

Throughout the paper G  is a locally compact group, all integrals are taken with respect to a fixed left 
Haar measure λ and 1 p< < ∞ . We call any positive Borel measurable function ω on G  a weight function. It 
is called locally summable if ω ( )1L A∈ , for each compact subset A  of G  with positive measure. For x G∈ , 
define the function xθ  on G  by  

( ) ( )
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xy

y
y

ω
θ =

ω
    ( )y G∈ .    

By a weight of moderate growth, we mean ω with ( )x L G∞θ ∈ , for all x G∈ ; that is  

=xL || xθ || ∞ =
( )
( )

ess sup y G
xy
y∈

ω

ω
< ∞.  

The space pL ﴾ G , ω﴿ with respect to λ is the set of all complex valued measurable functions f on 
G such that f ω pL∈ ﴾ G ﴿, the usual Lebesgue space as defined in [7]; we denote this space by p ﴾ G , ω﴿, 
where the case G  is discrete. Then pL ﴾ G , ω﴿ is a Banach space with the norm || . || ,p ω , defined by || f  

|| ,p ω= || f ω || p for each f ∈ pL ﴾ ,G  ω﴿. The dual space of pL ﴾ G , ω﴿ is the Banach space ( )1,qL G −ω  of all 

functions g  on G  with g ω 1− ( )qL G∈  under duality  

( ) ( ) ( ), d
G

f g f x g x x〈 〉 = λ∫ ,  

for all f ∈ pL ﴾ ,G  ω﴿ and ( )1,qg L G −∈ ω , where q  is the exponential conjugate of p  defined by 
1p− + 1 1q− = . For measurable functions f  and g  on G , the convolution multiplication  

( ) ( ) ( ) ( )1 d
G

f g x f y g y x y−∗ = λ∫   
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is defined at each point Gx∈  for which this makes sense.  
A linear subspace ( )GS  of the convolution group algebra ( )1L G  is said to be a Segal algebra if it 

satisfies the following conditions: 
(i) ( )GS  is dense in ( )1L G ; 
(ii) ( )GS  is a Banach space under some norm ||.|| ( )GS  and || f || 1 ≤ || f || ( )GS , for each ( )GSf ∈ ; 

(iii) ( )GS  is left translation invariant; i.e. || fx || ( )GS =|| f || ( )GS  for all Gx∈  and ( )GSf ∈ , and the 

map fx x from G into ( )GS  is continuous, where ( ) ( )xyfyfx =  for all Gy∈ . 
Let ﴾A, ||.|| A ﴿ be a Banach algebra. Then ﴾B , ||.|| B ﴿ is an abstract Segal algebra with respect to  ﴾A , 

||.|| A ﴿ if : 
(i) B is a dense left ideal in A  and B  is a Banach algebra with respect to  ||.|| B . 
(ii) There exists M > 0 such that || f || A ≤M || f || B , for each Bf ∈ . 
(iii) There exists C > 0 such that || fg || ≤B  C || f || A || g || B  for each Af ∈  and Bg∈ . 
We take it as known that, ( )GLp  is a Segal algebra and so an abstract Segal algebra with respect to 

( )GL1 , when G is compact. It has been studied a lot of topological and algebraic properties related to 
−pL spaces and weighted −pL spaces, as well; see [1, 10, 2] and [9]. Also, recently in [3], the author in a 

joint work with R. Nasr Isfahani and A. Rejali, have verified the convolution properties on pL ﴾G , ω﴿.  
The main purpose of this work is giving a necessary and sufficient condition for pL ﴾G , ω﴿ to be a 

Segal algebra and also an abstract Segal algebra with respect to ( )GL1 . 

2. MAIN RESULTS 

Before proceeding to the proof of the main theorem, we turn our attention to this fact that when 
( ),pL G ω  is a Banach left ( )GL1 -module. It provides us with a useful tool to be used in our main result. We 

state here the following proposition, for later use. The way of the proof of [9, Theorem 3.1] helps us to prove 
it.  

PROPOSITION 1.1. Let G be a locally compact group, ∞<< p1  and ω be a weight function on G . 
If pL ﴾G ,ω﴿  is a Banach left ( )GL1 -module, then ω is of moderate growth. 

Proof. Since pL ﴾G , ω﴿ is a Banach left ( )GL1 -module, it follows that there exists a constant K > 0 
such that for each ( )GLf 1∈  and ∈g pL ﴾G , ω﴿ we have 

|| gf ∗  || ω,p ≤  K || f  || 1 || g  || ω,p . 

Repeating argument of [9, Lemma 2.1] we conclude that pω  is locally summable. So pL ﴾G , ω﴿ contains 
characteristic functions Uχ , for each open neighborhood of the identity element of G  with compact closure. 
We also have the following inequality, pointwise  

( ) 1xyV xU U yVU −λ χ ≤ χ ∗χ , (1.1)

for such sets U and V and arbitrary Gyx ∈, . Hence inequality (1.1) implies that 

λ ( )U || xyVχ || ,p ω ≤ || 1xU U yV−χ ∗ χ || ,p ω ≤K || xUχ || 1 || 1U yV−χ || ,p ω   

and thus   
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|| xyVχ || ,p ω ≤  K || 1U yV−χ || ,p ω . (1.2)

Let Gx∈  be fixed. Since pω  and p
xω are locally summable, it follows that there exists a family ν of 

sets of positive measures such that every V ∈ν  contains the identity and every neighbourhood of identity 
contains eventually all V ∈ν  and also the following equations hold: 

lim ν∈V ( )
1
Vλ

( )p

yV

rω∫  d λ ( )r =ω ( )yp  

and  

lim ν∈V ( )
1
Vλ

( )p

yV

xrω∫  d λ ( )r =ω ( )xyp , 

for locally almost all Gy∈ ; see [8, VIII, 1-2]. For such y and any ε > 0 for sufficiently small V ∈ν  

|| yVχ || ,
p
p ω= ( )p

yV

rω∫  d λ ( )r  < λ ( )V  ω ( )yp  ( ε +1) (1.3)

and  

|| xyVχ || ,
p
p ω= ( )p

yV

xrω∫  d λ ( )r  > λ ( )V  ω ( )xyp  ( ε +1) 1− . (1.4)

Moreover, there exists an open neighborhood U of the identity with compact closure such that 

|| 1U yV−χ || ,p ω<(1+ ε ) || yVχ || ,p ω . 

Inequality (1.2) implies that  

|| xyVχ || ,p ω ≤  K || 1U yV−χ || ,p ω . 

Inequalities (1.3) and (1.4) with (1.2) yield the following inequality, 

(1+ ε ) p/1− λ ( )1/ pV ω ( )xy < K λ ( ) pV /1 ω ( )y  (1+ ε ) p/11+  

and hence  

ω ( )<xy K ω ( )y (1+ ε ) p/21+ . 

We conclude that  

( )
( )
xy

K
y

ω
≤

ω
, 

for locally almost every y . Therefore ω is of moderate growth. 

Remark 1.2.  

(1) Following, we certainly need to consider only those ω with pL ﴾ G ,ω﴿ ( )GL1⊆ . That is, if f  is a 

measurable function on G  with f ω ( )GLp∈ , then we need that ( )GLf 1∈ . So, if ( )GLg p∈ , then 

gf = ω 1− ∈ pL ﴾G ,ω﴿, so we need that  
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( )
( )

| |

G

g x
xω∫ d λ ( )x  < ∞ . 

It is standard that this is equivalent to ω 1− ( )GLq∈ . So, we shall henceforth assume that ω is a weight 
function on G  with ω 1− ( )GLq∈ . 

(2) Let us to an easier proof for Proposition 1.1, where ω 1− ( )GLq∈ . By part (1) of the present remark, 
pL ﴾G ,ω﴿ can be considered as a subspace of ( )GL1 . It is known that ω is of moderate growth if and only if 
pL ﴾G ,ω﴿ is left translation-invaraint; and to prove the result, take ∈f pL ﴾G ,ω﴿ and a bounded 

approximate unit ( )eα α∈Λ
 of ( )GL1 . Then for any Gx∈ , 1|| || 0x xe f fα ∗ − → ( fx  means left translation 

of  f  by x ). From the other hand, the net x e fα ∗ has a subnet converging weakly to ∈g pL ﴾G ,ω﴿. It 
follows that fg x=  and so ∈fx

pL ﴾G ,ω﴿. Consequently, ω is of moderate growth [4, Theorem 1.13]. 

(3) The preceding part confirms that for the case where ω 1− ( )GLq∈ , if pL ﴾G ,ω﴿ is a left ideal in 
( )GL1 , then ω is of moderate growth. 

 
THEOREM 1.3. Let G be a locally compact group, ∞<< p1  and ω be a weight function on G such 

that ω 1− ( )GLq∈ . Then the following assertions are equivalent: 
(i) pL ﴾G ,ω﴿ is a left ideal in ( )GL1 . 
(ii) G is compact, ω is locally summable and of moderate growth. 
Proof. (i) ⇒ (ii). Let ∈g pL ﴾G ,ω﴿ be fixed. For a bounded net ( )if  in ( )GL1 , ( )ii gf ∗ is a bounded 

net in pL ﴾G ,ω﴿ and since pL ﴾ G ,ω﴿ is reflexive, it follows that there exists a subnet ( )
jif  of ( )if  and 

∈h pL ﴾G ,ω﴿ such that hgf
ji →∗ , in the weak topology of pL ﴾G ,ω﴿. Since ( ) ( )1,qL G L G∞ −⊆ ω , thus 

hgf
ji →∗  in the weak topology of ( )GL1 . So multiplier ( ) ( )GLGLT 11: →  defined by gff ∗→ is 

weakly compact and hence G  is compact by [6, Theorem 3.1]. Thus for each ∈f pL ﴾G ,ω﴿, 

G fχ ∗ ∈ pL ﴾G ,ω﴿. Since  

( ) ( ) ( )dG
G

f x f t tχ ∗ = λ∫       ( )Gx∈ , 

hence ω ( )GLp∈  and so ω and pω are locally summable by compactness of G . Thus Remark 1.2 implies 
that ω is of moderate growth. For (ii) ⇒ (i), recall that every weight function that is locally summable and of 
moderate growth, is equivalent to a continuous function; see [5]. So ω being nonzero is bounded below away 
from zero and bounded above on G . Hence pL ﴾ G ,ω﴿ ( )GLp=  and consequently the result follows. 

By the elementary definitions of abstract Segal algebras, if pL ﴾G ,ω﴿ is an abstract Segal algebra with 
respect to ( )GL1 , then it is a left ideal in ( )GL1  and so G is compact, ω is locally summable and of moderate 
growth, by Theorem 1.3.  

We state here the following equivalences, that is interesting in its own right. 
 

COROLLARY 1.4. Let G be a locally compact group, ∞<< p1  and ω be a weight function on 
G such that ω 1− ( )GLq∈ . Then the following assertions are equivalent: 

(i) pL ﴾G ,ω﴿  is a left ideal in ( )GL1 . 
(ii) G is compact, ω is locally summable and of moderate growth. 
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(iii) G is compact and ω is equivalent to a continuous function. 
(iv) pL ﴾G ,ω﴿ is a Segal algebra. 
(v) pL ﴾G ,ω﴿ is an abstract Segal algebra with respect to ( )GL1 . 
(vi) pL ﴾G ,ω﴿ is the usual algebra ( )GLp . 
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