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In this paper we investigate diffusion equations on Cantor space-time and we obtain approximate 
solutions by using the local fractional Adomian decomposition method derived from the local 
fractional operators. Analytical solutions are given in terms of the Mittag-Leffler functions defined on 
Cantor sets. 
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1. INTRODUCTION 

The Cantor space-time physics is still an important issue to be developed. The diffusion process in this 
kind of space-time is irreversible due to the non-existence of a straight shortest path connecting them [1–3]. 
We recall that the fractal path in fractal Cantor space-time is always 2d = , while in the smooth classical 
space it is always 1d = [1]. The Weinberg’s result for testing the influence of non-linearity on quantum 
theory is negligible [1] because of the case at a non-critical point. However, the influence of non-linear terms 
is crucial at a point of bifurcation.  

The Cantor space-time proposal maintains that the quantum mechanics is a very special kind of 
diffusion process [1]. However, the formal similarity between Schrödinger equation and that of classical 
diffusion was reported. Recently, the element of fractal arc length squared in fractal space-time was written 
in the form [4],  

( ) ( ) ( )2

ij i jd s g dx dx
ααα α=   ,     (1)

where the fractal metrics ( )1 2 3, , , ,ij Ng x x x x=α are local fractional continuous functions of the fractal 
space-time coordinates and they are different from constants. In fractal time-space, the local fractional 
Schrödinger equation was reported as [5]   
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where 2α∇  is the local fractional Laplace operator given by [4–8]  
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and the local fractional partial derivative of high order read as [4, 6–7]   
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As a result, we can write a local fractional Schrodinger equation in one-dimension fractal space-time as 
follows 
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where 2 / 2aa h miαα= . We notice that (5) is similar to the diffusion equation on Cantor sets, namely [9] 
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where *c  is the fractal thermal capacity of the material per unit volume. We can obtain the diffusion 
equation on Cantor time-space given as [10] 
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where α is fractal dimension of a Cantor set, and ( ),u x t  satisfies the local fractional continuous condition 
[4–7] 

( ) ( ),f x C a bα∈        (8)

or  

( ) ( )0f x f x α− < ε , (9)

with 0x x− < δ , for , 0ε δ > and , Rε δ∈ . We notice that the result for diffusion equations on Cantor sets 
differs from the ones derived within the classical [11, 12] and the fractional calculus [13–29], respectively. 
We stress on the fact that the methods reported in [32–55] can’t be applied to handle the differential 
equations on Cantor sets. The alternative methods for dealing with these equations were reported in [30, 31, 
56–58].  

The present work deals with a compact solution to diffusion equation on Cantor space-time by using 
the local fractional Adomian decomposition method based on local fractional operators.  

The paper is organized as follows. In Section 2, a short introduction to local fractional calculus theory 
is given. The analysis method is presented in Section 3. The approximate solution to diffusion equation in 
Cantor space-time is given in Section 4. Finally in Section 5, the conclusions are given.   

2. PRELIMINARIES  

In this section, we give a brief introduction to the local fractional calculus theory.  
The corresponding operator is defined as [4–7, 30, 31, 57, 58] 
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The local fractional integral operator, as inverse of local fractional differential operator, has the form  
[–7, 31] 
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where the partition of the interval [ ],a b obeys  [4–7, 10, 30, 31, 57, 58]:  

      1j j jt t t+∆ = − , { }1 2max , , ,...jt t t t∆ = ∆ ∆ ∆ , 0,..., 1j N= − , 0t a=  and Nt b= . 

The local fractional multiple integrals of ( )f x  are defined as [4] 

( ) ( ) ( ) ( ) ( )
0 0 0

...
k times

k
x x x x x xI f x I I f xα α α= . (12)

The local fractional integration by parts reads as follows [4, 6, 7] 

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x
a x a a xI f x g x f x g x I f x g xα α α α=   −  . (13)

We recall that the Fubini’s formula in local fractional integral has the form [4]  
( ) ( ) ( ) ( ) ( ) ( ), ,a b c d c d a bI I x y I I x yα α α αψ = ψ . (14)

Similarly, the replacement theorem in local fractional integral can be expressed as given below 
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Local fractional Leibniz product law has the following expression [4, 6, 7] 
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In this work we will use the sub-functions, namely [6, 7] 
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3. THE DESCRIPTION OF THE METHOD 

In this section we outline a local fractional Adomian decomposition method [31] for handling the 
solutions of differential equations on Cantor space-time derived from local fractional operators.     

Equation (7) can be written in a local fractional operator form as  

   ( ) ( ) ( ) ( )22 , , 0xx ta L u x t L u x tα αα − =  ,   (18)

where ( )2
xxL α  is a th2α  local fractional differential operator, which reads  
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and a thα  local fractional differential operator is given by  
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subjected to the fractal initial conditions 

( ) ( ), 0 , 0u x r x x l= ≤ ≤ .    (21)

By defining the one-fold local fractional integral operator 
( ) ( ) ( ) ( )0t tL m t I m s−α α=        

we obtain 
( ) ( ) ( ) ( ) ( ) ( )22, ,t t t xxL L u x t a L L u x t−α α −α αα=        

therefore 

 ( ) ( ) ( ) ( ) ( )22, ,t xxu x t r x a L L u x t−α αα= + , (22)

where the term ( )r x  is to be determined from the fractal initial conditions.  
Therefore, we can rewrite  

      ( ) ( ) ( ) ( ) ( )22
0, , ,t xxu x t u x t a L L u x t−α αα= + , (23)

with ( ) ( )0 ,u x t r x= .  
Hence, for 0n ≥  we have the following recurrence relationship 
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Finally, the approximation expression can be constructed as 
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4. THE APPROXIMATE SOLUTION 

Let us consider (19), subject to the fractal initial boundary conditions  

( ) ( ) ( ), 0 0u x E x x lα
α= ≤ ≤ . (26)

From (24) we obtain the recurrence relationship as given below 

 ( ) ( ) ( ) ( )22
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together with the fractal conditions 
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Assuming the initial approximation (27), we obtain   
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and so for the remaining components.  

Finally, we can present the solution in local fractional series form as  
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Hence, we get the compact solution   
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According to the theory of local fractional continuity, we can arrive at  

    ( ) ( )0 0, ,u x t u x t α− ≤ ε . (31)

Namely, we have  
( ) ( )0E x E xα α α

α α− ≤ ε        (32)

as well as 

      ( ) ( ) ( )0 0 0cosh cosh sinha t a x a a x t t αα α α α α α α α
α α α− ≤ − < ε , (33)

where α  is the fractal dimension of Cantor space-time. These results are not derived from fractional calculus 
[26–29].  

The diffusion equation on a Cantor set is written in the form 

     ( ) ( ) ( ) ( ) ( ) ( )22, , ,t xx xL u x t a L u x t L u x tα α αα= −   (34)

An initial condition is described by 
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Therefore, we structure the recurrence formula as follows 
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The approximations have the form    
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We recall that the other terms are zero. Hence, an analytical solution has the form 
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From the local fractional set theory [4, 6], we can find that the solution (28) is a fractal one.  
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4. CONCLUSIONS  

Local fractional calculus started to be a useful tool to model fractal complex systems because it reveals 
hidden aspects which cannot be observed by using other classical formalisms. Also, it gives the alternative 
description of quantum and high energy physics of Cantor space-time, namely, quantum and high energy 
physics of fractal space-time. This is a new research direction for physics of fractal space-time, which is 
devoted primarily to the integration of nonlinear dynamics and deterministic fractals into the foundation of 
quantum and high energy physics.  

In this manuscript we analyzed the diffusion equation on Cantor space-time. We notice that the 
obtained results depend on the fractal dimension order of the differential equation on Cantor space-time. By 
using the local fractional Adomian decomposition method we obtained the approximation solutions of 
different types of partial differential equations on Cantor space-time. The results for handling the diffusion 
equation via the local fractional operators demonstrate reliability and efficiency of the new proposed method. 
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