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The principle of critical energy (PCE) and the concept of specific energy participation introduced by 
this principle, a dimensionless power dependent variable, allows the superposition of effects via 
algebraic summation, in the case of loads of the same nature but of different types, as well as in the 
case of loads of different nature (mechanical, thermal, electrical, magnetic, chemical etc.). There are 
three consequences of the principle: the law of the equivalence of processes and phenomena; the law 
of the coexistence and complementarity of order and disorder; the method of Energonics for strength 
and rigidity calculation. There are presented the numerous applications of this principle: the 
superposition of effects in materials with nonlinear behaviour in the calculation of rigidity (structure 
buckling, mechanical vibrations), of strength in crack free structures and cracked structures, in 
electromechanical loads, electromagnetic loads, in overconductivity etc.  

Key words: principle of critical energy, law of the equivalence of processes and phenomena, fatigue, 
buckling, multiaxial loading, electromechanical loads, overconductivity. 

1. INTRODUCTION 

Science has become, in some of its chapter, a conglomerate of experimental data, details and theories 
out of which it is necessary to extract the fundamentals. One feels increasingly more the need for 
generalization, of stating some principles and universal laws, all of them likely to be applied to the greatest 
number of chapters in to which the contemporary science is divided. 

The principle of critical energy (PCE) that I put forth and stated in 1984 [1–4] is a candidate to being 
such a general principle. It is the principle that allows the superposition or accumulation of the effects of 
various actions upon a material body, by considering its behavior. With the linear behavior of a material, 
under n loads of the same nature, the total effect, X, in general, is equal to the algebraic sum of partial 

effects, iX  and ∑
=

=
n

i
iXX

1
, respectively. If the material behavior is nonlinear, the total effect is different from 

the sum of partial effects [5], ∑
=

≠
n

i
iXX

1
. 

If loads of different nature (mechanical, thermal, chemical, electric, magnetic etc…) are at work upon a 
material with nonlinear behavior, how can effect cummulation occur? Will the same loads applied 
successively or simultaneously yield the same effect? How can one take into consideration, in our 
calculations, the deterioration produced by preloading, creep, vibrations etc.? All these questions get their 
answer by using PEC. 

2. MATTER BEHAVIOUR, SPECIFIC ENERGY AND THE PRINCIPLE OF CRITICAL ENERGY 
(PCE) 

One considers a material body under the loadings iY , where ki …2 ,1= . The loads iY  may be of the 
same nature but of different types (for example mechanical: force, bending moment, torsion moment, 
pressure or of different nature (mechanical, thermal, chemical, electric, magnetic, biophysical etc. As a 
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result, one obtains effects jX , where mj …2 ,1= . Each loading carries a certain amount of active or action 
energy, ( )ii YE , while each effect corresponds to a certain amount of resulting energy, ( )jj XE . 

The correlation between action iY  and the corresponding effect iX  represents the law of matter 
behavior with respect to the nature /type of load. In the general case of nonlinear power law behavior 

ik
iii XCY ⋅= , (1)

where Ci and ki are material constant. If 1=ik  one obtains a linear law behavior, used in many chapters of 
science (Hooke’s law in deformable solid mechanics, Ohm’s law in electrodynamics, Newton’s law in 
viscous fluid mechanics, Fourier’s law in thermodynamics etc…). 

Energy represents the capacity of a physical system of doing work, when passing from a state into 
another state. This allows its correlation with matter behavior (1). The specific energy (J/m3 or J/kg), 

∫ ⋅=
X

s XYE
0

d . (2)

The relations (1) and (2) give, 
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After analyzing the phenomena and the processes, one has found that throughout their evolution there 
exists the possibility of at least one jump or quantitative and/or qualitative discontinuity (bars, plates and 
shells buckling, resonance of mechanical or electromagnetic structures, some thermal phenomena etc.). The 
correspondent of each discontinuity is a certain value of specific energy called critical specific energy, crsE ,  
(as follows from the law of the critical state of matter) [4]. Discontinuity is marked by attaining the critical 
values crX  and crY . Consequently, the critical specific energy is written, 

( ) ( )[ ]kk
cr

k
crcrs CkYkXCE 111

1
, 11 ⋅+=+⋅=

++ . (4)

Starting from the concept of energy, a unifying concept, common to all the chapters of science, it has 
been created Energonics [2]. One of the principles of Energonics is the principle of critical energy (PCE). 
Energonics is the “common” ground of all the chapters of science resorting to the use of the concept of 
energy. 

Starting from the analysis of a great number of different phenomena and processes, the principle of 
critical energy was stated [1 – 4]: “The critical state in a process or phenomenon is reached when the sum of 
the specific energy amounts involved, considering the sense of their action, becomes equal to the value of the 
specific critical energy characterizing that particular process or phenomenon”. The mathematical 
expression of the principle is, 

( ) 1δ, =⋅∑ i
ii

crss EE , (5)

where iδ  = 1; 0 or – 1, if the action of energy isE ,  is in the sense, has no effect upon or opposes the process 
or phenomenon. 

The expression from the left member of relation (5) was named the participation of the specific energy 
isE ,  and was written as [1; 5] 

( ) iicrssi EEP δ, ⋅= . (6)

The total participation of the specific energies, is the sum of the individual participations, Pi, 

∑=
i

iT PP . (7)

For real materials, for deteriorated materials, instead of the relationship (5) one writes 
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( )tPP crT = , (8)

where ( )tPcr  is the critical participation, a dimensionless parameter time dependent, which ranges over an 
interval, ( ) [ ]max,min,  ; crcrcr PPtP ∈ , due to stochastic values of the matter characteristics. 1max, ≤crP  corresponds 
to the maximum probability of attaining the critical state. Generally, if: 

( )tPP crT <  – subcritical state; ( )tPP crT =  – critical state is reached; ( )tPP crT >  – supercritical state. 

The influence of the irreversible effects (like thermal effects, deterioration, prestressing etc.) are 
included in the value of ( )tPcr . One notes with ( )tD  the deterioration of matter as a nondimensional 
parameter with values between zero and unit. ( ) 0=tD  – for unstressed matter (at 0=t ) and ( ) 1=tD  – for 
matter totally degraded [6]. The critical participation depends on time, t, through ( )tD , as follows [5], 

( ) ( ) ( )tDPtP Tcrcr −= 0 , (9)

where ( )0crP  is the value of Pcr at 0=t . If the matter characteristics correspond to 100% probability of 
failure then ( ) 10 =crP , but if the matter characteristics correspondent to a minimum probability of fracture, 
than ( ) min,0 crcr PP = . Generally we accept, 

( ) ( )tDtP Tcr −=1 . (9)

The total deterioration ( ) ( )∑=
i

iT tDtD  is a sum of the partial deteriorations ( )tDi .  

In the case of non-linear behavior of the material (1) out of relation (3) – (8), one obtains, 

( ) ( )tPYY cri
i

icr =⋅∑ + δ1α , (10)

which is the PCE expression with respect to the critical state, where k1α =  and k becomes from the law 
kM εσ σ ⋅=  (σ – natural normal stress; ε – natural strain; σM , k – material constants). The exponent k1α =  

depend on the rate of loading: k1α =  – when the load is applied static; k21α =  – if the load is applied 
rapidly; 0α =  – in the case of shock loading [4; 7]. This principle allows the solution to the problem of 
superposition of effects when loading materials with nonlinear behavior, irrespective of the nature of external 
action, Yi; it contains a sum of dimensionless parameter.  

If α has the same value, then the simultaneous or successive loading under Yi gives the same result as 
PT. If, however, α has various values, as a result of applying loads with various rates, the value of PT  when 
the loads are simultaneously applied, may be different from applying them successively. In this case, the 
order of applying the loads has an influence upon the result, the value of PT [2]. 

If Es,cr is replaced with the allowable specific energy Es,al, then the participation of specific energy with 
respect to the allowable state is obtained. The loading state is allowable if 

( ) ali
i

ial PYY ≤⋅∑ + δ1α , 

where 
iYicrial cYY ,, =  is the allowable value of iY  and 

iYc  is safety coefficient. The allowable participation in 

the case of ( ) 10 =crP  is ( )tDPal
*1−= , where ( )tD*  is the matter deterioration calculated with respect to 

allowable state. 

3. CONSEQUENCES OF THE PRINCIPLE OF CRITICAL ENERGY 

Using the concept of specific energy participation (6) introduced by the PCE, two new laws have been 
stated [3, 4, 8, 9] and a method for strength calculation, named Energonics method [10]. 
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• The law of coexistence and complementary of order and disorder [3, 8]: “In any process or 
phenomenon, the sum of the participation in creating order and the participation in creating disorder is 
equal to the unit”. 

The order and disorder motions coexist and are complementary, such as 1=+ desord PP , where Pord, Pdes 
is the participation to order and disorder, respectively (subunitary variables). 

• The law of the equivalence of processes and phenomena [3, 9]: “Any two phenomena, at a given time, 
are equivalent if the total participation of their involved specific energy, compared to the same critical state, 
are equal”. Generally one should write ( ) ( )tPtP TT 2,1, = , where ( )tPT 1, , ( )tPT 2,  is total specific energy 
participation dependent on time, t, for process 1 and for process 2. Both or only one of this participations 
may be time independent. 

• Energonics method, in order to determine the equivalent stress in nonisotropic structures with 
nonlinear behavior, was developed on the basis of PCE and the law of equivalence of processes and 
phenomena [10]. 

One considers a nonisotrope body, where the main normal directions are x1, x2 and x3. On the three 
main sliding planes the critical shear stresses are crcr k ,111,1 στ ⋅= ; crcr k ,121,2 στ ⋅= ; crcr k ,131,3 στ ⋅= , where 

cr,1σ  is the critical normal stress on the direction of the main stress x1, while k11; k21 and k31 – numerical 
factors. One considers the loading under the main normal stresses 1σ , 2σ  and 3σ . With the method of 
Energonics there has been obtained the uniaxial stress (on direction x1) equivalent to the triaxial loading [5], 
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where 11 1α k= , becomes from the power law 1γτ τ
kM ⋅=  (τ – natural shear stress; γ – natural shear strain; 

τM , 1k  – material constants). For an isotropic material ( )312111 kkk == , out of relation (11), 

( ) ( ) ( )[ ]{ } 1α
1

1α
13

1α
32

1α
21,1 1111 σσσσσσ5.0σ ++++ −+−+−⋅=ech . (12)

For materials with linear-elastic behavior ( 11 =k  and 1α1 = ) relation (12) changes into the relation of 
the equivalent stress corresponding to the theory of distortion energy (Huber, Hencky, von Mises). 

4. APPLICATIONS OF THE PRINCIPLE OF CRITICAL ENERGY 

There have been solved some cases of superposition of effects in engineering science and in 
fundamental sciences. In engineering sciences: in calculation the rigidity structures (structure vibration [2–
4], structures buckling [2, 12]); in strength calculations (fatigue loading [13–16], multiaxial isothermal 
loading [17;18], fracture mechanics [19;20], loading under creep conditions [15, 21], electromechanical and 
thermoelectromagnetic loading [22], mechanical loading under corrosion [5, 23]).  

In some chapters of fundamental science: the superposition of effects in determining glass transition 
temperature [24, 25]; in the phase transformations of substances [25], Dalton’s and Amagat’s law and a 
generalization of these laws [2, 26], as well as superposition of the effects of various actions upon live bodies 
[4]. 

The PCE has allowed finding the fatigue life of technical structures with cracks [27] and was analysed 
from the thermodynamic point of view and was underlined its high degree of generality [28]. 

a. The total participation in releasing the buckling in any kind of shells, under external pressure pe, 
axial force F, bending moment Mb, torsion moment Mt, shearing force Q and magnetic induction B [4, 12], 

( ) ( ) ( ) ( ) ( ) ( ) ,δδττττδσσδσσ β1α1α
,

1α
,

1α
,11

1α
,

11
BcrQcrcrttbcrbbFcrcreeT BBppP ⋅+⋅++⋅+⋅+= +++++ , (13)
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where AF=1σ ; WMbb ±=σ ; ( )RAMtt ⋅=τ ; AQ=τ ; δ2π ⋅= RA ; W – strength module of shell 
section, R – the radius and δ – the thickness of the shell wall. The denominators represent the critical values 
corresponding to the buckling only under the action of that particular load, while Fδ , bδ , Qδ  and Bδ  are 
equal to 1 on the surfaces where those loads produce compression and to 1−  on the surfaces where those 
loads produce extension. Exponent β derives from the behavior law of the shell material under the action of 
magnetic induction. In the case of normal stresses and of loads inducing such stresses, in law (1) one uses 
exponent k1α = , while in the case of shear stresses the exponent α is replaced with α1 11 k= . 

For linear elastic behavior ( )1αα 1 == , by loading only under external pressure pe and meridional 
compression stress σ1, the critical state is obtained out of relation (8) and (13): 

( ) ( ) ( )tPpp crcrcree =+ 2 
,11

2 
, σσ . (14)

This is the equation of a circle with radius crP . Figure 1, a presents, for cylindrical shells, the 
experimental points for different values of ratios RL  and δR  [29], where R, L and δ are the radius, length 
and thickness of the shell wall. The experimental points feature stochastic distribution, most of them being 
included between the circles drawn with relation (16) for 85.0min, =crP  and 0.1max, =crP . 

With the relation (14) there have been justified theoretically 31 empirical relations deduced for 
cylindrical shells, curved plates, plane plates and bars [4;12]; 

b. Shaft fundamental bending vibration under an axial loading [2], 

( ) ( )[ ] 5.0 1α δ1ωω Fcrcrcr FFF ⋅−⋅= + , (15)

                                
Fig. 1 – Dependence of σ1/σ1,cr and pe/pe,cr  deduced experimentally (points),  for  cylindrical  shells  with different ratios  L/R and 
R/δ [29] and the curves drawn with relation (14) for 85.0=crP  and 1.0 (a); dependence of ( ) ( )0ωνω cr  and crvv  drawn with 

relation (20) and the points deduced experimentally (reported in [30]). 

where crω  is the shaft fundamental bending vibration; Fcr – buckling force of the shaft; k1α =  and  1δ =F  
for a compressive force F, while 1δ −=F  if F is an elongational force. For a linear – elastic material ( )1α =  
relation (15) becomes a well known one reported in [31]; 

c. The own pulsation of a tube through which flows a Newtonian fluid with the mean speed v, results 
from the superposition of effects and is written as [4], 

( ) ( ) 1ωω 22
0, =+ crcr vv , (16)

where 0,ωcr  is the own pulsation of the fluidless tube; ( )vcrω  – the own pulsation of the tube fluid inflow with 
speed v, while vcr – critical fluid speed (Fig. 1, b). 

d. In the case of stress corrosion (superposition of stress loading and corrosion) under monotonic 
loading according to the PCE the failure takes place if the following condition is fullfield [4;23], 

- a - - b -
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( ) ( ) ( ) 1ττσσ  1α1α 1 =++ ++ c
cscru tt , (17)

where σ, τ are the applied normal and shear stress; σu, τu – ultimate normal, respective shear stress; t – time 
of general corrosion; tcs – time until complete corrosion through the whole structure wall thickness 
undergoing corrosion; c – material constant [32]. 

e. Under fatigue loading of a sample with the normal stress amplitude aσ  and shear stress amplitude 

aτ  and under the normal mean stress mσ  and shear mean stress mτ  (Fig. 2), for total participation with 
respect to critical state [2, 13; 14], 

( ) ( ) ( ) ( ) ,δττττδσσσσ τ
1α

,
1α

1σ
1α

,
1α

1
11

mm crmmacrmmaTP ++
−

++
− ++⋅+= , (18)

where crm,σ  and crm,τ  are the critical mean stresses; 1σ− , 1τ−  – fatigue limits. 
From relations (8) and (18), in the case of linear - elastic material behavior ( )11 == kk , with ( ) 1=tPcr , 

one obtains all the relations recommended and used in literature at high cycle loading. Under symmetrically 
alternating loading ( )0τσ == mm  results Gough şi Pollard relation [33], 

( ) ( ) 1ττσσ 2 
1-

2 
1 =+− aa . (19)

Under normal stress only ( )0ττ == ma , for ycrm σσ , =  (yield stress) one obtains Buzdugan’s [34] 

relation (20) and Soderberg [12] relations (21). With ucrm σσ , =  (ultimate stress) one obtains Goodman and 
Gerber relations (22) and (23) (Table 1). The values of exponents from relation (18) depends on the loading 
rate [2;7]. Consequently from (8) and (18) results the empirical relations established by Soderberg, 
Goodman, Gerber, Serensen and Morrow (21–25, Table 1). 

Table 1 

Relations for fatigue calculation 

Buzdugan Soderberg Goodman Gerber Morrow Serensen 
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1α = ; 
ycrm σσ , = . 

0α =  (shock); 
ycrm σσ , = . 

0α =  (shock); 
ucrm σσ , = . 

0α =  (shock) for 
aσ  and 1α =  

(statical) for mσ . 
0α =  (shock). 

0α =  (shock); 

ss
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σσ
σ

−
⋅
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−

−

 
yσ  – yield stress; uσ  – ultimate stress; fσ  – fatigue stress coefficient; s,0σ  – structure fatigue limit for pulsating 

cycles. 
 
In the case of fatigue loading with several blocks of normal stresses ( )imia ,, σ;σ , starting from 

relationship (18), the following law for fatigue life has been deduced [35], 

( )( ) ( )( ) ( )tDNn Tfum
i

m
i m

−⋅−= ++∑ σ
1α1α δσσ1 , (26)

where 1δσ =
m

 if 0σ >m  and 1δσ −=
m

 if 0σ <m ; ni, Ni is the number of effective loading cycles and fatigue 

life, respectively, for the its stress range; m – the exponent in Basquin’s law ( )constantσ =⋅Nm
a ; ( ) fum σσ  - 

the value of this ratio in the final (last) block of stresses; the deterioration ( )tDT  is analised in [36]. 
f. For combined stresses, of a bending stress bσ  and a torsion stress tτ , the Energonics method leads to 

the following expression of the equivalent bending stress [4, 18]: 
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( ) 1α
1 1α1α

,
1τσσ +++ ⋅+= tbechb K , (27)

where ( ) ( ) 1α

,
1α

,
1

τσ
++

= crtcrbK . If bσ  is symmetrically alternating and tτ  is monotonic, then 

( ) ( ) 1α1α
,1

1
τσ

++
−= usK . In the case of a linear – elastic behavior 1αα 1 == , under monotonic loading, with 

yyK τσ=  one obtains the relationship reported in [37]. 
g. In the fracture mechanics by superposition corresponding to the three failure modes (I; II; III), the 

following relation has been obtained corresponding to the critical state (fracture) [2], 

( ) ( ) ( ) ( )tPKKKKKK crccc =++⋅ +++ 1α
IIIIII

1α
IIIIσ

1α
II

11δ , (28)

where IK , IIK , IIIK  are the mechanical stress intensity factors and cK I , cK II , cK III  – the corresponding 
toughness of the material. 1δσ =  if 0σ >  (opens the crack) and 1δσ −=  if 0σ <  (clouses the crack). 

In the particular case of linear-elastic behavior ( )1αα 1 ==  with 0σ >  and ( ) 1=tPcr , the relation (28) 
becomes the following relationship obtained empirical [38], 

( ) ( ) ( ) 12
IIIIII

2
IIII

2
II =++ ccc KKKKKK . (29)

For an aluminium alloy sample in the case of superposition of failure mode I and II, ( ) 0.192.0 …=tPcr  [39]. 
By mechanical and electrical loads superposition of piezoelectric ceramics, starting from the principle of 

critical energy the following relationship has been obtained, 

( ) ( ) ( )tPKKKK crEcEc =+ 22
II , (30)

where KE; KEc is the electrical intensity factor and the toughness under purely electrical loading, respectively 
defined by Zhang et al. [40]. Comparing with experimental data [40] one obtains ( ) 1.19.0 …=tPcr . 

h. Under the mechanical stress loading σ of a conductor wherein flows an electric current with electric 
voltage U, the critical state, obtained through the superposition of effects is reached when [4; 22], 

( ) ( ) ( ) 1σσ 1α1α =⋅+ ++
crcrcr ttUU u , (31)

where t is the time of electrical voltage action U, while tcr is the time beyond which the voltage action Ucr alone 
can destroy the conductor. Exponent mu 1α =  derives from the nonlinear law of behavior m

R IMU ⋅= , where 

RM  and m are material constants; I – intensity of electric current. In the case of linear behavior 1=m  and 1α =u . 
If U and Ucr correspond to the same duration, then crtt = . 

i. The overconductivity of a resistor can be canceled either if it is applied only to a magnetic field 
whose intensity H is higher than critical intensity, Hcr, or if its temperature T (measured in K) is raised above 
a certain critical value Tcr. If, however, crHH <  and crTT < , the simultaneous action of the magnetic field 
and of heat can annihilate overconductivity if the sum of their participations ( ) ( ) 1=+ TPHP  or [4], 

( ) ( ) 11α1α =+ ++ t
crcr TTHH , (32)

where α and αt come from the law of material behaviour of the conductor in the magnetic and thermal field 
respectively. With 0α =  and 1α =t  one obtains the relation  proposed in 1914, by Kamerlingh Onnes [41]. 

j. Dependence between the magnetic hyperfine field ratio ( ) ( )0hfhf HTH  and temperature ratio NTT , 
where ( )THhf  is the hyperfine magnetic field at temperature T (in K); hfH  – the hyperfine magnetic filed at 
0K; NT  –antiferromagnetic Néel temperature, on the basis of PCE, 

( ) ( )( ) ( ) 10 1α1α =+ ++ t
Nhfhf TTHTH . (33)
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With 1αα == t  this relation describes the dependence obtained experimentally for FeBO3 [42].  

5. CONCLUSIONS 

The high degree generality of PCE comes from the introduction of the dimensionless concept of 
specific energy participation (which allows the summation of effects independent of the nature of loadings), 
from the introduction of the sense of external action and the correlation of participation of specific energy 
with the behaviour of the matter involved, which allows for the introduction of the loading rate. By 
correlating critical participation with material deterioration, the result obtained may be applied to 
engineering structures after they have undergone a certain process of deterioration (aging, fatigue, creep, 
corroding etc…). PCE is the principle that allows the superposition of effects both in the case of linear and 
nonlinear behavior for the structure under load. The principle of critical energy opens a window towards 
looking at reality and interpreting it in a totally different way. It may represent an important headways in 
unifying and simplification of the different “chapters” into which science is divided. 
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