
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 14, Number 2/2013, pp. 177–183

PERFORMANCE EVALUATION OF AES ALGORITHM
UNDER LINUX OPERATING SYSTEM

Boris DAMJANOVIĆ, Dejan SIMIĆ

University of Belgrade, Faculty of Organizational Sciences, 11000 Belgrade, Serbia,
E-mail: damjanovic@koledzprijedor.org, dsimic@fon.bg.ac.rs

Today, eleven years after being standardized, Advanced Encryption Standard (AES) is de facto a
world standard for data encryption. After being published in the FIPS-197 document for the first time,
continuous efforts have been made towards the algorithm improvement. In this paper we have
compared the software performances of the AES algorithm implementations into cryptographic
packages Oracle/Sun, Bouncy Castle, FlexiProvider and Cryptix, which all use Java Cryptography
Extension (JCE), as well as their adaptability to three different versions of the virtual machines - Java
SE 5.0u22 for Linux x86, Java SE 6u31 for Linux x86 and Java SE 7u2 for Linux x86. As a tool of
the results presentation and interpretation we have used regression analysis. The end results within the
chosen environment indicate that the Oracle/Sun implementation the AES algorithm is superior under
the versions 5 and 6 JDK, but the Bouncy Castle implementation takes over the lead in the case of the
version 7 JDK. Surprisingly, the AES implementation of the aging Cryptix package achieved very
good results in our tests with regards to its speed.

Key words: cryptography, algorithms, AES, performance.

1. INTRODUCTION

Nowadays, eleven years after being standardized, Advanced Encryption Standard (AES) [14, 5, 4, 13]
has become de facto a world standard for data encryption. After its five-year standardization process had
been completed, AES was published in the USA by the US NIST (National Institute of Standards and
Technology) in the FIPS-197 document in November 2001. The evaluation process started in January 1997
by announcing a public competition for the best algorithm. The first convention dedicated to this algorithm
introduced fifteen competitors. After the second and the third conference held in April and August 1999
respectively, only five candidates were still to compete: MARS, RC6, Rijndael, Serpent and Twofish. In
October 2000 the algorithm that eventually won the competition was Rijndael. From that time on, continuous
efforts that were launched in an attempt to improve the algorithm performances have been progressing in two
different directions. Concerning the software related attempts, the algorithm optimization has been based
upon Dr. Gladman's [9] ideas as well as those based upon Bertony's [1] work. On the other side, hardware
acceleration reached its peak at the moment when Intel and AMD processors were introduced supporting
AES New Instructions (AES NI) instruction set. Additionally, VIA x86, AMD Geode, and Marvell
Kirkwood processors use driver based accelerations.

When opting for a certain AES algorithm implementation, it is possible to select different criteria such
as: performance, length of key, legislation, ethical and regulatory compliance requirements. However, in this
paper we particularly focus on the performance criterion in different Java virtual machines environment
under Linux operating system. We will make a comparison between the software performances of the
cryptographic packages as of Oracle/Sun, Bouncy Castle, FlexiProvider and Cryptix that all use Java
Cryptography Extension (JCE) without AES NI set of the instructions, and their adaptability to three
different versions of virtual machines – Java SE 5.0u22 for Linux x86, Java SE 6u31 for Linux 86 and Java
SE 7u2 for Linux x86. Regression analysis [12] will be used for the presentation of the results and their
interpretation.

 Boris Damjanović, Dejan Simić 2 178

2. CRYPTOGRAPHIC PACKAGES INCLUDED IN TESTS

Java cryptography architecture [10, 15] is a framework providing access to cryptographic functions of
the Java platform. It includes APIs for the large number of the cryptographic services, including MD
algorithms, digital signature algorithms, symmetric and asymmetric cryptography, (pseudo-)random number
generators, etc. The very essence of the JCA architecture stems from the idea of the existence of the security
providers. In practice, a provider is a collection of algorithm classes headed up by a java.security.Provider
object [11].

Since the 1.1 version, each JDK comes with the default provider name SUN. But, the former USA
export legislation used to control the cryptographic methods published worldwide.

So, the SUN provider contained only cryptographic mechanisms which could not encrypt data directly.
That is why a separate API was created, providing all applications with ability for data encryption and
decryption. Java Cryptography Extension (JCE) was developed as a special optional package, which was
available in a form of an extension in JDK versions 1.2 and 1.3. During the JDK version 1.4 development the
US regulations allowed the JCE to be bundled as a part of JDK. Nowadays, to use the keys with a longer
length we have to download and install Java Cryptography Extension Unlimited Strength Jurisdiction Policy
Files from the Oracle's site.

JCE provides us with the implementation of encryption algorithms, key generation and key agreement
as well as for Message Authentication Code (MAC) algorithms. We could say that JCE extends JCA in a
way that reveals the number of different algorithm implementations. Although it was just an optional
package at the beginning, JCE becomes fully integrated in the Java 2SDK 1.4 version. Despite the fact that
Oracle acquired SUN in 2010, Java continues to be delivered with pre-installed and registered provider
named SunJCE. Oracle’s SunJCE provider implements AES with a number of modes of operation and
several padding schemes.

The Cryptix cryptographic package was designed in 1995, in the age when the USA banned the export
of cryptography. In those days, Cryptix was the first public cryptographic library. After the appearance of
various cryptographic libraries that became publicly available, there was no need for further development of
this project that eventually ended in 2005. Cryptix has the infrastructure that fits in with JCE framework.

Bouncy Castle is an open source Java and C# cryptographic package which supports over 30
symmetric and asymmetric cryptographic engines. As well as Cryptix, Bouncy Castle package can be
plugged in as a provider to JCE framework. The last stable Java version (1.47) was published on 23.3.2012.

FlexiProvider is another open source product that can be plugged into any application that was built
upon the JCE framework. FlexiProvider was developed by the Technische Universitat Darmstadt, Germany,
and the last stable version (1.7p3) was published in November 2011.

3. TESTING METHODOLOGY

As a testing platform, we used Asus notebook with Intel (R) Core (TM) i5 450M at 2.40GHz, (without
AES-NI instruction set) with 4GB RAM and WD 3200BEV external USB hard disk and with Linux Fedora
16 operating system.

Four above mentioned cryptographic packages were tested with tree versions of JDK:
• Java SE Development Kit 7u2 for Linux × 86,
• Java SE Development Kit 6u31 for Linux × 86,
• Java SE Development Kit 5u22 for Linux × 86 using default VM model.
This was a reason we created 4 applications to be used to test the implementation of AES algorithm of

mentioned cryptographic packages. We will hereinafter refer to these applications as ORA for Oracle/Sun
implementation, BC for Bouncy Castle implementation, Cryptix for the same implementation and Flexi for
FlexiProvider implementation of AES algorithm. Source code was implemented as micro-benchmarks in the
way that ignored the influence of the class initialization and hard disc. As it is in [2, 3, 7, 8] we combined 2
methodologies for Java application performance measuring. At first, in each application we measured the
time of encryption for different file lengths using single VM call for each particular file. In this way, each
file used in the test was processed for 5 times using every single application. After that, we put the same

3 Comprehensive AES algorithm performance analysis under Linux operating system 179

source code in a loop and executed it for six times in one particular VM call. Than we disregarded the first
result, that according to [2, 3] is considered to be the time required for profiling/compiling. At the end, we
combined two methodologies in the way that we calculated arithmetical mean of the results achieved in the
tests series mentioned above.

For the presentation of the results, we used the regression analysis, corresponding tables, and graphs.
The regression analysis is a method used to describe the relationship between two or more variables, i.e.
examines the impact of one or more variables on another variable. In the example given, we observed
influence of the independent variable X (file size) on the dependent variable Y (execution time). Linear
regression was used for modelling data points, with file size as the independent variable and resulting B0 and
B1 parameters, as in:

0 1Y B B x= + . (1)

At the end we used estimated standard errors to create the confidence intervals at a 95% confidence
level.

4. TESTING RESULTS

Given below, we present the most interesting testing results. At first, we compared only 256 bit
encryption results for each manufacturer and examined how they adapted to each tested version of JDK. The
upper section of the table shows the calculated arithmetic means of 256 bit encryption while the regression
analysis with calculated coefficients B0 and B1, standard error B0Err and B1Err and confidence intervals
LowB0, UpB0, LowB1 and UpB1 are indicated at the bottom.

256 bit
AES

encryption

Oracle
JDK5
(ms)

Oracle
JDK6
(ms)

Oracle
JDK7
(ms)

512 KB 35 35 33
4096 KB 123 127 126
8192 KB 221 231 223
16384 KB 425 425 429
32768 KB 802 829 830
65536 KB 1577 1626 1615
131072 KB 3141 3205 3331
Regression analysis
B0 26.301 29.226 12.162
B1 0.0238 0.0243 0.0252
B0Err 2.681 2.669 11.770
B1Err 0.000 0.000 0.000
LowB0 19.408 22.364 -18.095
UpB0 33.194 36.087 42.419
LowB1 0.0236 0.0241 0.025
UpB1 0.0239 0.0244 0.025

Fig. 1 – Oracle/SUN implementation – 256 bit encryption results for JDK-5-6-7.

The Oracle/SUN implementation of AES algorithm shows certain differences within different testing
environments, i.e. gradual deceleration while moving from older to newer testing environment. According to
the results shown in Fig. 1, we can see that in the version 5 JDK implementation of Oracle/SUN produces the
lowest coefficient B1, i.e. the smallest slope. The same source code that calls Oracle implementation of the
AES algorithm which is compiled and executed under the JDK 5 shows slightly better results than the one
that compiles and executes under JDK version 6. Furthermore, it shows better results than the one compiled
and executed under the version 7 JDK. Altogether, Oracle implementation of the AES algorithm shows

 Boris Damjanović, Dejan Simić 4 180

better results using older versions of JDK. In Fig. 2 we show the testing results of the Bouncy Castle
implementation of the AES algorithm within different versions of JDK.

256 bit
AES

encryption

BC
JDK5
(ms)

BC
JDK6
(ms)

BC
JDK7
(ms)

512 KB 45 32 33
4096 KB 135 124 126
8192 KB 240 224 228
16384 KB 433 430 429
32768 KB 837 833 840
65536 KB 1643 1642 1629
131072 KB 3237 3298 3296
Regression analysis
B0 35.687 17.937 19.826
B1 0.0244 0.02497 0.02490
B0Err 1.893 3.438 19.826
B1Err 0.000 0.000 0.000
LowB0 30.821 9.099 4.567
UpB0 40.553 26.776 35.084
LowB1 0.0244 0.0248 0.025
UpB1 0.0245 0.0251 0.025

Fig. 2 – Bouncy Castle implementation – 256 bit encryption results for JDK-5-6-7.

Bouncy Castle implementation of the AES algorithm provides very consistent results when it comes to
256 bit encryption on different virtual machines. Some slightly faster encryption can be noted only when it
comes to version 5 JDK. In Fig. 3 we present the testing results of the Cryptix implementation of the AES
algorithm within different versions of JDK.

256 bit
AES

encryption

CR
JDK5
(ms)

CR
JDK6
(ms)

CR
JDK7
(ms)

512 KB 33 34 28
4096 KB 123 124 120
8192 KB 223 231 219
16384 KB 419 424 420
32768 KB 812 830 825
65536 KB 1595 1626 1613
131072 KB 3171 3234 3345
Regression analysis
B0 24.224 24.826 4.309
B1 0.0240 0.02448 0.02530
B0Err 1.142 1.813 12.960
B1Err 0.000 0.000 0.000
LowB0 21.288 20.164 -29.005
UpB0 27.160 29.487 37.623
LowB1 0.0240 0.0244 0.025
UpB1 0.0241 0.0246 0.026

Fig. 3 – Cryptix implementation – 256 bit encryption results for JDK-5-6-7.

Cryptix implementation of AES algorithm gives results which are very similar to the Oracle/Sun
implementation of this algorithm. The same source code that calls Cryptix implementation of the AES
algorithm which is compiled and executed under the JDK 5, shows slightly better results than the one

5 Comprehensive AES algorithm performance analysis under Linux operating system 181

compiled and executed under the version 6 JDK, and it further shows better results than the one compiled
and executed under the version 7 JDK. In Fig. 4, the testing results of FlexiProvider implementation of AES
algorithm are presented.

256 bit
AES

encryption

FL
JDK5
(ms)

FL
JDK6
(ms)

FL
JDK7
(ms)

512 KB 68 91 64
4096 KB 171 165 155
8192 KB 263 282 255
16384 KB 486 477 460
32768 KB 916 885 876
65536 KB 1731 1709 1665
131072 KB 3415 3353 3394
Regression analysis
B0 62.280 70.011 42.681
B1 0.0256 0.02503 0.02540
B0Err 4.795 3.249 10.918
B1Err 0.000 0.000 0.000
LowB0 49.954 61.660 14.615
UpB0 74.606 78.362 70.747
LowB1 0.0254 0.0249 0.025
UpB1 0.0258 0.0252 0.026

Fig. 4 – FlexiProvider implementation – 256 bit encryption results for JDK-5-6-7.

The FlexiProvider implementation of the AES algorithm shows very close results within all three
testing environments and just a bit higher encryption speed in the case of the updated versions of JDK.

In Fig. 5 we show the 256 bit encryption results of all tested implementations in the JDK version 5.

256 bit AES
encryption

Oracle
 (ms)

BC
(ms)

Cryptix
(ms)

Flexi
(ms)

512 KB 35 45 33 68
4096 KB 123 135 123 171
8192 KB 221 240 223 263

16384 KB 425 433 419 486
32768 KB 802 837 812 916
65536 KB 1577 1643 1595 1731

131072 KB 3141 3237 3171 3415
Regression analysis

B0 26.301 35.687 24.224 62.280
B1 0.0238 0.0244 0.0240 0.0256

B0Err 2.681 1.893 1.142 4.795
B1Err 0.000 0.000 0.000 0.000

LowB0 19.408 30.821 21.288 49.954
UpB0 33.194 40.553 27.160 74.606

LowB1 0.0236 0.0244 0.0240 0.0254
UpB1 0.0239 0.0245 0.0241 0.0258

Fig. 5 – 256 bit encryption results – JDK 5.

Concerning the tests taken under JDK version 5, the figures and tables show the smallest coefficient B1
(the smallest slope) which implies the highest speed of Oracle implementation of the AES algorithm. To our
surprise, almost equally satisfactory results are obtained with the elderly Cryptix implementation of this
algorithm. In Fig. 6 the 256 bit encryption results of all tested implementations are shown for the version 6
JDK.

 Boris Damjanović, Dejan Simić 6 182

256 bit AES
encryption

Oracle
 (ms)

BC
(ms)

Cryptix
(ms)

Flexi
(ms)

512 KB 35 32 34 91
4096 KB 127 124 124 165
8192 KB 231 224 231 282

16384 KB 425 430 424 477
32768 KB 829 833 830 885
65536 KB 1626 1642 1626 1709

131072 KB 3205 3298 3234 3353
Regression analysis

B0 29.226 17.937 24.826 70.011
B1 0.0243 0.0250 0.0245 0.0250

B0Err 2.669 3.438 1.813 3.249
B1Err 0.000 0.000 0.000 0.000

LowB0 22.364 9.099 20.164 61.660
UpB0 36.087 26.776 29.487 78.362

LowB1 0.0241 0.0248 0.0244 0.0249
UpB1 0.0244 0.0251 0.0246 0.0252

Fig. 6 – 256 bit encryption results – JDK 6.

Testing of the different implementations in the JDK version 6 shows that the Oracle and Cryptix
implementations of the AES algorithm have very similar results, as evidenced by close values of their B1
coefficients. A bit lower results are obtained with the Bouncy Castle implementation of the AES algorithm
followed by FlexiProvider implementation of the same algorithm. In Fig. 7 we present the results of the
encryption for all tested implementations in version 7 JDK.

256 bit AES
encryption

Oracle
 (ms)

BC
(ms)

Cryptix
(ms)

Flexi
(ms)

512 KB 33 33 28 64
4096 KB 126 126 120 155
8192 KB 223 228 219 255

16384 KB 429 429 420 460
32768 KB 830 840 825 876
65536 KB 1615 1629 1613 1665

131072 KB 3331 3296 3345 3394
Regression analysis

B0 12.162 19.826 4.309 42.681
B1 0.0252 0.0249 0.0253 0.0254

B0Err 11.770 19.826 12.960 10.918
B1Err 0.000 0.000 0.000 0.000

LowB0 -18.10 4.567 -29.01 14.615
UpB0 42.419 35.084 37.623 70.747

LowB1 0.025 0.025 0.025 0.025
UpB1 0.025 0.025 0.026 0.026

Fig. 7 – 256 bit encryption results – JDK 7.

When it comes to the tests that are performed within the JDK version 7, Bouncy Castle implementation
of AES algorithm produces the smallest slope of the regression curve, i.e. the best results. Less favourable
results are the ones of Oracle/SUN and elderly Cryptix implementation, while FlexiProvider implementation
of the AES algorithm brings about the worst results in our tests.

5. CONCLUSION

In this paper we have presented the test results of different implementations of the AES algorithm
which are compiled and executed under different versions of JDK under Linux Fedora operating system. We
used the simple linear regression for the calculation of the appropriate coefficients, confidence intervals and

7 Comprehensive AES algorithm performance analysis under Linux operating system 183

the standard errors. For the presentation of the results we used tables with calculated arithmetic means, and
the results of the regression analysis as well as the appropriate graphs with shown regression lines.

Test results can be divided into two groups. The first set of the results shows to which extent each
tested implementation of the AES algorithm is adapted to a certain version of the JDK. Each particular
implementation was tested using the aforementioned versions of the java virtual machines. As expected, the
elderly Cryptix implementation shows somewhat better performance under the older versions of JDK.
However, Oracle/Sun implementation of the AES algorithm surprisingly shows better performance under
older versions of java virtual machines, while Bouncy Castle and FlexiProvider implementations of the AES
algorithm show fairly consistent results for different versions of the JDK.

Cross-comparison between different implementations under versions 5 and 6 of the JDK (Java SE
Development Kit 5u22 and Java SE Development Kit 6u31) proves slight, yet expected advantage of the
Oracle/Sun implementation over Bouncy Castle and FlexiProvider implementations of the AES algorithm.
Cryptix implementation shows amazingly favourable results, almost equal to the results of the Oracle/Sun
implementation of the AES algorithm in each conducted test. As for JDK version 7 (Java SE Development
Kit7u2), experiments in our testing environment show that Bouncy Castle implementation of the AES
algorithm is fairly more adaptable to newer versions of JDK then others.

According to the empirical results it is possible to conclude that we will not blunder when opting for a
certain AES algorithm under Linux operating system with regards to its performance. But, if the performance
criterion is critical for our selection, we’d better use the Oracle, Bouncy Castle or Cryptix implementations
with some older version of Java virtual machines, because they could produce slightly better results.

ACKNOWLEDGMENTS

The work presented here was partially supported by the Serbian Ministry of Science and Technological
development (under project of Multimodal Biometry in Identity Management, contract no TR-32013).

REFERENCES
1. BERTONI G., BREVEGLIERI L., FRAGNETO P., MACCHETTI M., MARCHESIN S., Efficient Software Implementation of

AES on 32-Bit Platforms, CHES 2002, 2523, pp. 159–171, 2003.
2. BOYER B., Robust Java benchmarking. Part 1: Issues, Understand the pitfalls of benchmarking Java code, IBM developerWorks,

2008.
3. BOYER B., Robust Java benchmarking. Part 1: Statistics and solutions, Introducing a ready-to-run software benchmarking

framework, IBM DeveloperWorks, 2008.
4. CID, C., MURPHY S., ROBSHAW M. Algebraic Aspects of the Advanced Encryption Standard, Springer Science-Business

Media, LLC, 2006.
5. DAEMEN J., RIJMEN V., The Design of Rijndael, Springer-Verlag, Inc., 2002.
6. DAMJANOVIĆ B., SIMIĆ D., Comparative Implementation Analysis of AES Algorithm, Journal of Information Technology and

Applications. 1, 2, pp. 119–126, 2011.
7. GEORGES A., et al., Java Performance Evaluation through Rigorous Replay Compilation, OOPSLA '07 Proceedings of the 22nd

annual (ACM SIGPLAN) Conference on Object-oriented Programming Systems and Applications, 43, pp. 367–384, 2008.
8. GEORGES A. et al., Statistically Rigorous Java Performance Evaluation, OOPSLA '07 Proceedings of the 22nd annual (ACM

SIGPLAN) Conference on Object-oriented Programming Systems and Applications, 42, pp. 57–76, 2007.
9. GLADMAN B., A Specification for Rijndael, the AES Algorithm, available at: http://gladman.plushost.co.uk/oldsite/

cryptography_technology/rijndael/aes.spec.v316.pdf (Accessed: May 2012).
10. HOOK D., Beginning Cryptography with Java, Wrox Press, 2005.
11. KNUDSEN J.B., Java Cryptography, O'Reilly Media, 1998.
12. LOVRIC M. et al., Statistical Analysis – Methods and Application, Faculty of Economics, Banja Luka, BH, 2008.
13. MINIER M., A Three Rounds Property of the AES, Advanced Encryption Standard AES, 4th International Conference, Bonn,

Germany, 2004, Springer-Verlag, 2005, pp. 16–26.
14. NIST, FIPS 197, Specification for the Advanced Encryption Standard (AES), 2001; available at:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf (Accessed: May 2012).
15. WEISS, J., Java cryptography extensions: practical guide for programmers, Elsevier, Morgan Kaufmann, 2004.

Received June 8, 2013

