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A widely reported and accepted measure of financial risk for industry segments and financial markets, 
by nature measuring the probability of worst case portfolio performance, is the Value at Risk (VaR) 
measure. We will consider an additional constraint based on the Expers’ judgments that will help us 
to find a better solution. 
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1. INTRODUCTION 

The optimization models for portfolio selection have evolved from early mean-variance formats based 
on Markowitz's work (1952) to more recent scenario-based stochastic optimization forms (Hiller and 
Eckstein, 1993; Birge and Rosa, 1995; Vladimirou and Zenios, 1997; Cariño and Ziemba, 1998). The 
common idea in all model structures is the minimization of some measure of risk, while simultaneously 
maximizing some measure of performance.  

The risk measure, for the most model frameworks, is a function of the entire range of possible portfolio 
returns. For example, the portfolio variance is used in a mean-variance framework, while concave utility 
functions are applied across the set of all possible outcomes in stochastic programming frameworks. 

 A common technique for measuring downside risk in a portfolio is Value at Risk (VaR). The formal 
VaR is defined as the α -quantile of the portfolio return distribution function, with ( )0, 1α∈ . So, at the end 
of the time horizon and for low α  values (e.g. 0.01, 0.05 or 0.1), it can be identified as the "worst case" 
outcome of portfolio performance. Unfortunately, VaR is a piecewise linear function whose graph can 
display many local minima and maxima. 

Moreover, VaR as a practical measure of risk has been accepted by managers because it represents a 
tool easy to handle by the investor. Many international institutes as The Group of Thirty, the Derivatives 
Product Group, Bank of International Settlements, and European Union and others have recognized VaR at 
some level as the standard for risk assessment. 

The decision makers have employed VaR as a tool for controlling enterprise risk. For example, the 
1998 Basle Capital Accord proposes a bank's required set aside capital for market risk based on internal VaR 
estimates and the National Association of Insurance Commissioners (NAIC) also requires the reporting of 
VaR. 

Uryasev and Rockafellar (1999) propose a scenario-based model for portfolio optimization using 
Conditional Value at Risk (CVaR), which is defined as the expected value of losses exceeding VaR. So, their 
optimization model minimizes CVaR while calculating VaR. In the case of normally distributed portfolio 
returns, the minimum-CVaR portfolio is equivalent to the minimum-VaR portfolio.  

The practitioners are very much concerned about the transaction costs since these have significant 
effects on the investment strategy. 

In order to purchase (invest) and/or sell (disinvest) assets, the investor has to pay certain fees. But, 
unfortunately, the transaction costs are often ignored because the precise treatment of transaction costs leads 
to a nonconvex minimization problem. 
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The selection problem of the rebalancing portfolio, under nonconvex transactional costs, was defined 
in Konno et al. [5, 6], where they considered a branch and bound algorithm for solving a portfolio 
optimization model under concave transaction costs. The [12, 13, 14] papers have a particularly influence on 
this context. 

This paper is organized as follows. In Section 2, we review the theoretical background concerning the 
measure Value-at-Risk and the rebalancing problem. In Section 3, we state the maximum investment return 
with a minimum cost rebalancing under the mean-Value-at-Risk model. In Section 4, we model the 
programming problem under certain conditions about the cdf and we approach the case where we don’t 
know anything about its shape. So, we develop some order estimators and approaches of VaR . 

2. PRELIMINARIES 

Let us consider a random variable R  representing the vector of the rates of return of the n assets and let 
( ).F  be its distribution function. (Pr stands for probability) 

 
Definition 1. Let ( )0,1α∈  and R  a random variable with ( ) ( ).Pr rRrFR ≤=  The Value-at-Risk with 

threshold α  of R  is defined as 
( )VaR Rα = ( ){ } ( ){ }inf Pr inf Pr 1r R r r R r≤ ≥ α = > ≥ − α . 

 
Observation 1. If the cumultive distribution function ( ).RF  is continuous  and strictly increasing, then 
( ) ( )1 .RVaR R F −

α = α . 
The measure Value-at-Risk may evaluate the asymmetric risks, risks that cannot be satisfactory 

modeled with a classic measure as variance.  
The future return of asset ,,...,1, njj =  is given by the random variable .jR  Let ( )00

2
0
1

0 ...,, nxxxx =  

[5, 6] be the portfolio at time point 0 and ( )∈= nxxx ,...,1 R n  is the new portfolio. The transaction cost of the 

entire investment is ( )∑
=

n

j
jj yc

1
, where ( )jj yc  is a nondecreasing nonconvex function up to certain point jy  

[5]. 
Let us introduce the new portfolio at a certain later point 0xyx +=  made up by all the operations 

resulted from the rebalancing, a portfolio that has the following meaning: 
– if njy j ,...,1,0 => , then ( )jji yc  is the associated cost with purchasing jy  units of  the asset  j, 

ki ,...,1= ; 
– if njy j ,...,1,0 =< , then ( )jji yc  is the associated cost with selling jy  units of the asset j, 

ki ,...,1= . 

3. THE MEAN – VaR MODEL 

A general portfolio optimization problem, with VaR  instead of variance as risk measure, is formulated 
as the classic mean-variance approach. To formulate a general problem for a portfolio with n  asset, and 
having as risk measure VaR , it is necessary that the decision maker fixes two parameters, the probability 

pα  and the return .pr   
Moreover, we will impose some restraints regarding the volatility of the temporary assets, and the fact 

that the investor wishes to withdraw at the moment 0=t  some of his investment to spend, an amount that is 
equal with 0b . To do that, the investor has to rebalance the portfolio by selling and buying assets from his 
initial portfolio. 
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In this model the objective function maximize the portfolio expected return at moment 1=t  with the 
risk of the problem given by the constraint ( ) pp

T rxR α≤≤Pr .  

With these preliminaries, the M-Var model is defined as follows:  

( ) ( )

( )

1

0
1 1 1

max , Pr ,

, 0, 1,

, 1,..., , 0 1, 1,..., , 0 1, 1,..., ,

n
T T

j j p p
j

n n n
T

j j j j
j j j

j j j j j

E R x c y R x r

b e y c y y x

x j n j n j n

=

= = =

    − ≤ ≤ α    

= − − = =

′ ′ϕ ≤ ≤ ϕ = ≤ ϕ ≤ = ≤ ϕ ≤ =

∑

∑ ∑ ∑  
 (1) 

 where the fees associated with ( )nxxx ,...,1=  are named transaction cost, ix  represents the amount of 
investment (or disinvestment) of the asset j (j = 1, ..., n).  

The decision maker is willing to accept only portfolios for which the probability of return under any 
threshold fixed is less or equal to pα , where this probability is given by the Expers’ judgments. So, first 

restriction of the risk from the problem )1(  is equivalent to ( )VaR .
p

T
pR x rα ≥  

Replacing the upper relation in problem )1(  we will have the following equivalent problem, where the 
risk is given by VaR: 

( ) ( )

( )

1

0
1 1 1

max , VaR ,

, 0, 1,

, 1,..., ; 0 1, 1,..., ; 0 1, 1,..., .

p

n
T T

j j p
j

n n n
T

j j j j
j j j

j j j j j

E R x c y R x r

b e y c y y x

x j n j n j n

α
=

= = =

    − ≥    

= − − = =

′ ′ϕ ≤ ≤ ϕ = ≤ ϕ ≤ = ≤ ϕ ≤ =

∑

∑ ∑ ∑  
 (2) 

4. ESTIMATORS FOR VaR  AND CVaR  

However, VaR can be calculated if we know the form of the repartition function, or we can estimate it 
using various methods: order estimators [4] or simulation [2]. 

If we don’t make any assumption about the shape of the cdf, then we can find an approximation of the 
distribution function. 

4.1. Case of order estimators for VaR   

Let the set of past observations independent and identically distributed ( )nRRR ,...,, 21  on the random 
variable R , and let the observations be ranked as nnnn RRR ::2:1 ...≤≤≤ . 

Then the estimated ( )VaR Rα  is nn
R :α , where 

1,...,
minn i n

ii
n=

 
α = ≥ α 

 
. So, the α − quantile is 

estimated by the position of the observation nn
R :α  that has the α − percent of the data on the left, for 

( )0,1α∈ . 
See [4] for the properties of this estimator. Therefore, instead of problem (2) we consider the following 

problem: 
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( )

( )

:
1

0
1 1 1

max ,

, 0, 1

, 1,..., ; 0 1, 1,..., ; 0 1, 1,..., .
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n
T

j j n p
j

n n n
T

j j j j
j j j

j j j j j

E R x c y R r

b e y c y y x
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α
=

= = =

    − ≥    

= − − = =

′ ′ϕ ≤ ≤ ϕ = ≤ ϕ ≤ = ≤ ϕ ≤ =

∑

∑ ∑ ∑  
 (3) 

Another method of approximation is the statistics ( ) nrFn R
R :0α . It is an estimator of lower α − quantile 

under threshold 0r  of the random variable R , given by ( ){ }0inf Pr 1r R r R r> ≤ ≤ − α . It follows that 

( )0 :Rn F r nR α  is an estimator even for ( ) ( )
0

VaR
RF r Rα . From [9] we have that ( )0 :Rn F r nR α  is a consistent 

estimator. 

THEOREM. The lower α - quantile under threshold 0r  of the random variable R  is ( ) ( )
0

VaR
RF r Rα . 

Proof. Because for any 0rr ≥  we have ( ) 0Pr 0 =≤> rRrR , it follows that ( )0Pr 1R r R r> ≤ ≤ − α . 

So, we have ( ){ }0 0inf Pr 1r R r R r r> ≤ ≤ − α < .  It follows that we should analyze  the inegality 

( )0Pr 1R r R r> ≤ ≤ − α  only for 0rr < . In this case we have: 

( ) ( )0Pr 1 RR r F r> ≤ − α  

and ( ){ }0inf Pr 1r R r R r> ≤ ≤ − α = ( ) ( ){ }0inf Pr Rr R r F r≤ ≥ α . 

We will denote: ( ){ }α−≤≤> 1Prinf 0rRrRr = ( )0,VaR r Rα . 
Let ( )Rf  be the probability density function for a random variable R  and using [8] we have the 

following result. 

REMARK 1. If the random variable R  has a probability function in a convex combination of the 
number ( )0,VaR r Rα , and ( )( )VaR 0Rf Rα > , then we have the convergence in  distribution: 

( ) ( )( ) ( )
( )( ) ( )00

0

,:
,

1
VaR 0,1 .

VaRR rn F r n n
R r

n R R N
f R

αα →∞
α

α − α
− →   

4.2. The case of Some Estimators for CVaR   

Using the Conditional Value-at-Risk as a measure of the risk gives an advantage to the users 
comparing to using VaR, because CVaR is a convex function. 

Following the approach from [10,11] and using the Lemma 1 for ( )0RF rα = α , it follows that the 
statistics 

( ) ( ) ( ) ( )
0

0

1CVaR inf
1RF r

R
R E R

F r
+

α

   = θ + − θ  − α  
  

 is an estimator of the measure 
0,CVaR .rα  

Using the upper expression, we have 
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     θ + − θ − ≥     − α  

= − − = =
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∑

∑ ∑ ∑  
 (4) 

We denote the repartition empirical function by  

( ) { }∑
=

≤=
n

j
rRn j

I
n

rF
1

1
,  

where { }
1,

0, otherwise.j

j
R r

R r
I

≤

≤= 


 

Observation 2. Let ( )( ) ( ) ( ){ }00
1 inf rFrFrrFF RnRn ≥=−  be a ( )0rFR  – the lower quantile of selection. 

Then  ( )( )0
1 rFF Rn
−  is a consistent estimator of the measure  ( )0,VaR .r Rα  

The relative cumulative frequency for a random variable jR  will be denoted by njR : . 
But when we replace the order statistics with the relative cumulative frequency for a sample from R  

the left side of the repartition tail, we have the following result. 

REMARK 2. Let ( )0,1α∈  be given. The random variable R  is well defined ( ( ) ∞<RE ) and 
( )nRRR ,...,, 21  is a sample from the variable R . Then we have  

( )

( ) ( )

0

:
1

0
0

lim VaR ,

Rn F

j n
j

n R

r
R

C Rrn F r

α

=
α→∞

=
α

∑
. 

5. CONCLUSIONS 

VaR is a widely reported and accepted measure of risk across industry segments and market 
participants. In general, VaR optimal portfolios are more likely to incur large losses when losses occur. The 
more prudent approaches that incorporate the expected value of losses are more likely not to exceed VaR risk 
specifications when examined relative to holdout scenarios. But, using the Conditional Value-at-Risk as a 
measure of the risk, we have an huge advantage in comparing to using VaR, because CVaR is a convex 
function. 

REFERENCES 

1. R. Caballero, E. Cerda, M.M. Munoz, L. Rey and I.M. Stancu-Minasian, Efficient solution concepts and Theit relations in 
stochastic multi-objective programming, JOTA, 1, pp. 53–74,2001. 

2. G.Consigli, Tail estimation and mean-VaR portfolio selection in market subject to financial instability, Journal of Banking and 
Finance, 25, pp. 1355–1382, 2002.  

3. J.K. Dash, G. Panda and S. Nanda, Chance constrained programming problem under different fuzzy distributions, Int. J. Optim. 
Theory Methods Appl., 1, pp. 58–71, 2009. 

4. P. Embrechts, C. Klüppelberg, T. Mikosch, Modeling Extremal Events for Insurance and Finance, Springer-Verlag, 1997. 
5. H. Konno and A. Wijayanayake, Mean-absolute deviation portfolio optimization model under transaction costs, J. Oper. Res. Soc. 

Japan, 42, 4, pp. 422–435, 1999. 



 Ilie Marinescu 6 192 

6. H. Konno and A. Wijayanayake, Portfolio optimization problem under concave transaction costs and minimal transaction unit 
constraints, Math. Program., Ser. B, 89, 2, pp. 233–250, 2001. 

7. Z.F. Li, Z.X. Li, S.Y. Wang and X.T. Deng , Optimal portfolio selection of assets with transaction costs and no short sales, 
Internat. J. Systems Sci., 32, 5, pp. 599–607, 2001. 

8. R.J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, New York, 1980. 
9. F. Stambaugh, Risk and Value-at-Risk, European Management Journal, 14, 6, pp. 612–621, 1996. 
10. M. Tudor,  Modele Discrete de Piaţa Financiară, Editura ASE, Bucureşti, 2005. 
11. V. Preda, Restricted Optimal Retention in Stop-Loss Reinsurance under VaR Risk Measure, Proceedings of the 12th WSEAS 

International Conference, 2010, pp. 143–146. 
12. V. Preda, On Nonlinear-Programming and Matrix Game Equivalence, Journal of the Australian Mathematical Society, series B-

Applied Mathematics, 35, pp. 429–438, 1994. 
13. V. Preda, On Sufficiency and Duality for Generalized Quasi-Convex Programs, Journal of the Mathematical Analysis and 

Applications, 181, 1, pp. 77–88, 1994. 
14. V. Preda, On Efficiency and Duality for Multiobjective Program, Journal of the Mathematical Analysis and Applications, 166, 2, 

pp. 365–377, 1992. 

Received March 16, 2012 


