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In this work, we use the algebra of coupled scalars to develop two kinds of nonlinear integrable 
couplings of the modified Korteweg-de Vries (mKdV) equation. One of the integrable couplings of 
the mKdV equation gives multiple soliton solutions of distinct amplitudes, whereas the second kind 
gives multiple singular soliton solutions of distinct amplitudes as well. The Bäcklund transformation 
and the simplified Hirota’s method will be used for this study. We show that these couplings possess 
multiple soliton solutions the same as the multiple soliton solutions of the mKdV equation, but differ 
only in the coefficients of the Bäcklund transformation. This difference exhibits soliton solutions with 
distinct amplitudes.  
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1. INTRODUCTION  

The ubiquitous Korteweg-de Vries (KdV) equation [1–12] in dimensionless variables reads  

0.=6 xxxxt uuuu +±  (1) 

This equation models a variety of nonlinear wave phenomena such as shallow water waves, acoustic waves 
in a harmonic crystal, and ion-acoustic waves in plasmas. The KdV equation is completely integrable and 
gives rise to multiple-soliton solutions. This equation has been studied by a variety of methods such as the 
inverse scattering method and the Bäcklund transformation method. The KdV equation admits multiple-
soliton solutions and exhibits an infinite number of conservation laws of energy. 
The modified KdV (mKdV) equation  

26 = 0t x xxxu u u u+ +  (2) 

is important in many areas of nonlinear science. The mKdV equation appears in acoustic waves in certain 
anharmonic lattices, models of traffic congestion, transmission lines in Schottky barrier, Alfvén waves in a 
collision less plasma, ion acoustic solitons, elastic media, and in other applications. It possesses many 
remarkable properties such as conservation laws, inverse scattering transformation, bilinear transformation, 
multiple soliton solutions, breather solutions, Painlevé integrability, and Darboux transformation . 

The theory of nonlinear integrable couplings of ordinary soliton systems was presented in [2,3] and 
further studied in [1] and others. In [2, 3], Ma et al. proposed the perturbation method for establishing 
integrable couplings. Zhang et al. [4] presented the enlarged Lie algebra method to obtain integrable 
couplings. Particularly noteworthy are the constructions of integrable couplings based on the non-semi 
simple Lie algebras [1]. In fact, there are several methods adopted to construct integrable couplings, such as 
perturbations, enlarging the spectral problem, creating new loop algebras, and semi direct sums of Lie 
algebra. Lot of work has been done in this field and many integrable couplings were constructed [5,6]. It is 
now known that for an integrable system, we can construct a new integrable differential equation system, 
called integrable couplings, which includes the given integrable equation as a sub-system. 
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In [1], a very natural triangular nonlinear couplings of integrable systems were developed. The construction 
in [1] was made on the level of evolution equations by a modification of the algebra of dynamical fields. The 
algebra of coupled scalars was used to develop n-coupled KdV (nc-KdV), given in the form 
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The algebra of coupled scalars was introduced in [1] and was shown to be unital, commutative and 
associative. Moreover, the integrability of the couplings (3) was examined in [1]. 

Many reliable methods are used in the solitary waves theory to investigate solitons, and in particular 
multiple soliton solutions of completely integrable equations. The algebraic-geometric method, the inverse 
scattering method, the Bäcklund transformation method, the Darboux transformation method, the Hirota 
bilinear method, and other methods are used to make progress and new developments in this filed. In this 
work we aim to apply the Bäcklund transformations and the simplified Hirota’s method [13–20] for a 
reliable study. 

Our aim from this work is two fold. The first goal is to employ the developed algebra of coupled 
scalars [1] to derive two forms of nonlinear integrable couplings of the modified KdV equation. We aim 
second to study these couplings and show that it possess multiple soliton solutions and multiple singular 
soliton solutions the same as the mKdV equation, but differ only in the coefficients of the Bäcklund 
transformations that result in distinct amplitudes for each equation of the system. 

2. FIRST COUPLINGS OF THE MKDV EQUATION: MULTIPLE SOLITON SOLUTIONS  

In a like manner to the approach presented in [1], where the algebra of coupled scalars was developed, 
we set a one field soliton system 

],,,,,[][= xxxxxxt uuuuKuKu ≡   (4) 

that can be extended to the system of coupled PDEs of the form [1] 

= [ ] [ , , , , ],t x xx xxxu K u K u u u u≡   (5) 

where  
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Accordingly, the system (5) takes the form [1]  
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Using (2), we can set  
2= 6 .t x xxxu u u u− −   (8) 

Inserting (8) into (7), we develop the n-coupled modified KdV (nc-mKdV), given in the form 
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2.1. Multiple soliton solutions  

Substituting  

,,1=),( nietxu tixik
i ≤≤−ω

  (10) 

into the linear terms of each equation in (9) gives the dispersion relation by  

,= 3
ii kω   (11) 

and as a result we obtain the following phase variables  

.= 3 tkxk iii −θ   (12) 

The multiple soliton solutions of the couplings (9) are assumed to be  
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where the auxiliary functions ),( txF  and ),( txG  for the single soliton solution are given by  
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Substituting (13) into (9) and solving for iR  we obtain two distinct sets given by  
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Combining the obtained results gives two sets of single soliton solutions  
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and  
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In other words we obtain two sets of single soliton solutions with distinct amplitudes between the two sets 
for 2, ≥rur . 

For the two soliton solutions we set the auxiliary functions by  
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Using (19) in (13) and substituting the result in (9), we obtain the following phase shift coefficient  
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Using (15) and (16), and the previous results we also obtain two distinct sets of two soliton solutions. 
It is well known that a two soliton solution [11] can degenerate into a resonant triad under the 

conditions  
1

12 12 1 2= 0, ( ) = 0, for | | | | .a or a k k− ≠   (22) 

Accordingly, the resonance phenomenon does not exist for this coupling because 012 ≠a  and 0)( 1
12 ≠−a  

for |||| 21 kk ≠ . 
For the three soliton solutions, we set  
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Proceeding as before, we find  

.= 132312123 aaab   (24) 

Two sets of three soliton solutions, with distinct amplitudes are obtained by substituting (23) into (13) as 
presented earlier. This shows that each equation of the coupling (9) possess the same properties as the mKdV 
equation: the same phase variable, the same phase shift, and the non resonance phenomena. However, the 
only difference is that the amplitudes are distinct for distinct i . 

3. SECOND COUPLINGS OF THE MKDV EQUATION:  
MULTIPLE SINGULAR SOLITON SOLUTIONS  

Using the second form of the mKdV equation  
2= 6 ,t x xxxu u u u−   (25) 
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and using the analysis presented before for the derivation of the couplings of the mKdV equation, we obtain 
a second couplings of the mKdV equation given by In this section, we will examine multiple singular soliton 
solutions of the second kind of the couplings of the mKdV equation  
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3.1 Multiple singular soliton solutions  

Substituting  
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into the linear terms of each equation in (26) gives the dispersion relation by  

,= 3
ii kω   (28) 

and as a result we obtain the following phase variables  

.= 3 tkxk iii −θ   (29) 

The singular soliton solutions of the couplings (26) are assumed to be  
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where the auxiliary functions ),( txf  and ),( txg  for the single singular soliton solution are given by  
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Substituting (30) into (26) and solving for iR  we obtain two sets of solutions  
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Substituting (31) into (30) gives two sets of single singular soliton solutions given by  
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In other words we obtain two sets of single singular soliton solutions with distinct amplitudes for 2, ≥rur . 
For the two soliton solutions we set the auxiliary functions by  
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Using (36) in (30) and substituting the result in (26), we obtain the following phase shift coefficient  
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Combining the obtained results gives two sets of two singular soliton solutions. 
For the three soliton solutions, we set  
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Proceeding as before, we find  

.= 132312123 aaab   (40) 

This in turn gives two sets of three singular soliton and the three singular anti-soliton solutions are obtained 
by substituting (39) into (30). 

4. DISCUSSION  

In this work, two kinds of couplings of the mKdV equation were developed by using the algebra of 
coupled scalars. Multiple soliton and multiple singular solutions are derived for the both couplings of the 
mKdV equation. In fact two sets of soliton solutions were derived for each coupling. We showed that each 
equation of the two couplings possesses the same properties as the mKdV equation: the same phase variable, 
the same phase shift, and the non resonance phenomena. However, the only difference is that the amplitudes 
are distinct for each equation of the couplings. 
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