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This paper presents an evaluation method for loading dependence of the site natural period using a 
nonlinear Kelvin-Voigt model and a combination of site-laboratory available information. Then, some 
consequences of this dependence on site-structure resonance are briefly presented. 
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1. INTRODUCTION 

The significant dynamic strength degradation of the site materials (between 20–80%, in terms of 
loading magnitude) [2, 4, 8] lead to a substantial grows (in the same percent) of the natural period values of 
the site materials. Therefore the site natural period becomes strain, stress or loading function [5, 6] and from 
this reason all site-structure oscillating systems are nonlinear systems and the response of nonlinear system 
in resonant conditions can not be described by a linear model.  

The site natural period variability is proved by seismic recordings during earthquakes with different 
magnitudes. The recorded dominant periods and maximum accelerations show a doubtless dependence of the 
natural site period on earthquake magnitude [12, 13].  

In order to assess the natural period dependence on earthquake magnitude one must have all 
information about site natural periods from in situ seismic measurements. Unfortunately only for a few sites 
there are multiple seismic measurement values for different magnitudes beginning with low intensity events 
until the strong earthquakes. For most sites only seismic measurements for low and moderate events are 
available. For this reason, the usual method for site natural period determination is based on the "quarter 
length formula" 4 /g sT H v= , where H is the site depth and sv is the shear wave velocity. This formula treats 
the site as semi-infinite linear elastic space in contradiction with mechanical reality and gives a unique 
natural period value in contradiction with earthquake recordings [6, 12, 13]. 

In default of complete and reliable site information, this paper proposes a method for the nonlinear 
variability evaluation of the site natural period by a combination of available in situ and laboratory data. 
Such combination allows us to estimate a nonlinear dependence of the natural site period in terms of loading 
as ( )g gT T PGA=  or ( )g g GRT T M= , where PGA (peak ground acceleration) and GRM (magnitude 
Guttenberg-Richter) are usual seismic input characteristics. 

Finally, we briefly present some effects on resonant avoidance strategy induced by the nonlinear form 
of the site natural period. 

2. NATURAL SITE PERIODS FROM SEISMIC RECORDINGS 

The seismic data recording during Vrancea earthquakes with different magnitudes shows a doubtless 
dependence of the natural periods and maximum accelerations on earthquake magnitude as is illustrated by 
the examples from Figs. 2.1, 2.2 and 2.3, where the data recorded at some Bucharest seismic station is 
presented and where the estimation of the maximum predicted event was added [12]. 
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Fig. 2.1 – Nonlinear tendency of site natural periods. Fig. 2.2 – Nonlinear tendency of maximum accelerations. 

One can see from these examples the obvious nonlinear increase of the site natural period gT  and of 
maximum acceleration PGA versus the increasing earthquake magnitude. Certainly, the different local 
conditions from the seismic station sites lead to a large dispersion of the recorded natural period values. But, 
using only data recorded at the same seismic station this dispersion become acceptable (Fig. 2.3). 

The direct evaluation of the nonlinear natural 
period functions in the form ( )g g GRT T M=  or 

( )PGAg gT T=  is an adequate method but is not 
always possible. The seismic station network is not 
so expanded and only in a few stations the recorded 
events are appropriate for determination of natural 
period functions with a reasonable precision. Only 
for INCERC station there are multiple seismic 
recorded values with different magnitudes beginning 
with low events until the strong March 4, 1977 
earthquake. 

For this reason, the usual method for site 
natural period determination is based on the "quarter 
length formula" 4 /g sT H v= , where H is the site 
depth and sv is the shear wave velocity. This formula 
treats the site as semi-infinite linear elastic space in contradiction with mechanical reality and gives a unique 
natural period value in contradiction with earthquake recordings (Figs. 2.1 and 2.3). Furthermore, as can see 
from Figs. 2.1 and 2.3 the natural period values obtained by using shear wave velocity for low excitation 
input are located in the strong earthquake range. This paradox was point out [6, 13] but until now remains 
without a reasonable explanation. 

3. NONLINEAR BEHAVIOR OF SITE MATERIALS  

As known, the site materials, soils or rocks, are nonlinear materials with a dynamic behavior strongly 
dependent of loading level and this behavior affects the whole dynamic response including the system 
natural period values [2, 4, 6, 8].  

Assuming that the geological site materials are nonlinear viscoelastic materials in the previous author's 
papers [2, 3, 4] this nonlinear behavior was modeled by using a nonlinear Kelvin-Voigt model which 
describes the variation of material mechanical parameters (shear modulus G and damping ratio ζ) in terms of 
shear strain invariant γ: ( )G G= γ , ( )ζ = ζ γ . Both these material function can be complete quantify by 

 
Fig. 2.3 – Seismic records at INCERC site. 
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resonant column tests data [2, 3, 14]. As it can be seen from Figs. 3.1 and 3.2 the rigidity of the site materials 
may display during the strong events an important dynamic strength degradation associated with a 
substantial increase of the damping capacity. 

  
Fig. 3.1 – Strength degradation. Fig. 3.2 – Damping magnification. 

Due to these nonlinear characteristics of the site materials, every site oscillating system become a 
nonlinear system and for every site instead of a unique linear natural period value gT  a function ( )g gT T= •  
in terms of strain, stress or loading input must be evaluated [5, 6]. For full quantification of such function we 
will prove in the next that the resonant column data can have an important contribution.  

4. NATURAL PERIOD OF RESONANT COLUMN SPECIMEN 

From resonant column test under harmonic torsional inputs with different amplitudes 0 sini iM M t= ω  

we can obtain the corresponding strain level iγ , the modulus-function value iG  and damping value iζ  [4], 

[14]. The shear-modulus value iG  is obtained using the relationship: 

( )
2

2 2 30 1 4    with     =
3 45

i
i i
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 ω
= ρ = ρ Ψ − + Ψ 

,  (4.1)

where ρ is the mass density of specimen, i
sv  and 0

iω  are the shear wave velocity and the specimen natural 
pulsation at level i, h is the specimen height and Ψ  is the root of torsional frequency equation with 
analytical form in terms of the ratio R between torsional inertia of the specimen and the torsional inertia of 
the top cap system: / topR J J= . 

After several tests with different strain level ( )1, 2i i nγ = …  the shear-modulus function ( )G G= γ  

and the damping function ( )ζ = ζ γ  can be obtained in the normalized forms: 

( ) ( ) ( ) ( ) ( )0 0 0 0,    with :  and / ,n nG G G G G G G Gγ=γ = ⋅ γ = γ γ = γ   (4.2)

( ) ( ) ( ) ( ) ( )0 0 0 0= ,   with :  and / ,n nγ=ζ ζ γ = ζ ⋅ ζ γ ζ = ζ γ ζ γ = ζ γ ζ   (4.3)

where 0G  is the initial value of the shear modulus-function, ( )nG γ  is the normalized shear-modulus 

function 0ζ  is the initial damping value and ( )nζ γ is the normalized damping function.  
 The specimen natural period for a level iγ  is: 
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and using eq.(4.2), the nonlinear natural period function of the soil specimen results: 

( ) ( ) ( ) ( ) ( )
( )0 0 0

00

2 1 1   with:     and  g
g n g n

n

Th
T T T T T T

TG G
γ=

γπ ρ
γ = ⋅ γ = γ = ⋅ γ = =

Ψ γ
.  (4.5)

We mention that the natural periods obtained by resonant column test in the form (4.5) is the natural 
periods of the single degree of freedom oscillating system composed by a single mass (the vibration device) 
supported by a spring and a damper represented by the specimen.  This system is much different in 
comparison with site-structure system. But, as can see from eq. (4.5) the physical and geometrical sample 
properties (h, ρ, J, Jtop) are included only in the initial value 0T . Thus, the resonant column test can offer 

accurate data for obtaining only the nonlinear dependence of the normalized natural period ( )n nT T= γ .  

5. NORMALIZED NATURAL PERIODS IN TERMS OF LOADING 

For practical applications it is necessary to determine the normalized natural period in terms of loading 
amplitude usually described by peak ground acceleration (PGA). For this conversion – ( )n nT T= γ  into 

( )n nT T PGA= – one can use the numerical simulation of the resonant column specimen behavior, modeled as 

nonlinear Kelvin-Voigt model subjected to abutment motion ( ) 0 sing gx t x t= ω�� ��  with different acceleration 

amplitude 0
gx��  . In this loading case, the motion equation reads as [4]: 

( ) ( )2 0
0 02 sinn gx x x G x x x t+ ω ζ ⋅ + ω ⋅ = − ω�� � �� . (5.1)

 Using the change of variable t0ω=τ  and introducing the new time function ( )0( ) ( ) /x t xϕ τ = = τ ω  
yields we can obtain the dimensionless form eq. (5.1) [3]: 

( ) ( ) sinC K′′ ′ϕ + ϕ ⋅ϕ + ϕ ⋅ϕ = µ υτ , (5.2)

where the superscript accent denotes the time derivative with respect to τ, and: 

( ) ( ) ( ) ( ) ( ) ( )
0

2 2
0 0 0 0

2    ;       ;      ;   g
n static

xc x k x
C x K G x x

m m
ω

ϕ = = ζ ϕ = = µ = = υ =
ω ω ω ω

��
. (5.3)

The steady-state solution of the equation (5.2) can be numerically obtained using a computer program 
based on Newmark algorithm [3, 7, 9]. The solution can be written in the form: 
( ) ( ), , , sin( )ϕ τ υ µ = µΦ υ µ υτ −ψ , where ( ),Φ υ µ  is the nonlinear magnification function:  

( )
( )max , ,

, dynamic

static

x
x

τ
 ϕ τ υ µ Φ υ µ = =
µ

 (5.4)

a ratio of maximum dynamic amplitude max dynamicxϕ ≡  to static displacement staticxµ = .  
By numerical simulations with different values of normalized loading amplitudes µ we can obtain a set 

of nonlinear magnification functions ( ) ( ) .; ctµ=Φ υ = Φ υ µ . Figure 5.1 presents some magnification functions 

obtained by using the material functions ( )nG x and ( )xζ  of a clay specimen tested in the resonant column 
[2]. 
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Because 0 0/ / 1/ nT T Tυ = ω ω = =  one can obtain the magnification functions Φ  in terms of normalized 
period Tn (Fig. 5.2) and because ( )0 2 2

0 0/ PGA /gx gµ = ω = ⋅ ω��  a relationship ( )PGAn nT T= results (Fig. 5.3). 

For instance, in Fig. 5.4 some functions ( )PGAn nT T=  for different site materials are given. 

  
Fig. 5.1 – Nonlinear magnification functions in terms  

of normalized frequency (for a clay specimen). 
Fig. 5.2 – Nonlinear magnification functions in terms  

of normalized periods (for a clay specimen). 

  
Fig. 5.3 – Relationship ( )PGAn nT T= . Fig. 5.4 – Some functions ( )PGAn nT T= . 

6. SITE NORMALIZED NATURAL PERIOD 

For the evaluation of the entire site normalized natural periods first one must determine from resonant 
column tests the nonlinear variation i

nT  for each site stratum, and then one can obtain the average natural 
period variation for the entire site layers av

nT  as the average of the strata normalized natural period i
nT  

weighted with its thickness ih  [6, 13]:  

( ) /av i
n n i iT T h h= ×∑ ∑ .  (6.1)

This method was validated using the site emplacement of the seismic station INCERC with known 
stratification [1]. First, for each constituent layer the material functions ( )G G= γ and ( )ζ = ζ γ  were 

estimated and by numerical simulation, some functions ( )i i
n nT T PGA=  one for each stratum i was obtained. 
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Then, for some PGA values (0.05, 0.10, 
0.15, 0.20, 0.25 and 0.30 g) using eq. (6.1) the site 
natural period values PGA .

av
n ctT =  was obtained and 

by statistical fit from these period values a 
normalized averaged natural period function 

( )PGAav av
n nT T= results.  

This method was validated using the 
necessary data (material functions and seismic 
records) from seismic station INCERC site.  

In Fig. 6.1 the validation result is given, by 
comparison between nonlinear function 

( )PGAav av
n nT T=  obtained with the aid of resonant 

column data and the same function directly 
obtained from seismic measurements 

( )PGArec rec
n nT T=  [22]. As can see from Fig. 6.1 

the differences between seismic records and 
resonant column simulations are acceptable.  

7.  0T  ESTIMATION FROM SEISMIC RECORDS 

We remember that only resonant column data is not enough for complete determination of the natural 
period function ( ) ( )0PGA PGAg nT T T= ⋅  and besides of the normalized function ( )PGAav av

n nT T=  given by 

the resonant column data, the initial value 0T  obtained from seismic measurements it is necessary. 
When 0T  value is not available or is to difficult to obtain from processing of seismic records one can 

use any known site pair of values ( ), PGAkn kn
gT . In this case, the 0T  may be obtained by translation the 

normalized resonant column curve ( )PGAav av
n nT T=  in any known "point" ( ), PGAkn kn

gT of the ( ), PGAgT  

space: 

PGA PGA
0

PGA PGA

.
kn

kn

av
g

n

T
T

T
=

=

=   (7.1)

Finally, the calculated form of the site natural period function becomes: 

( ) ( )0PGA PGA .calc av
g nT T T= ⋅   (7.2)

The validation of this method can be done by comparison between calc
gT  and  rec

gT  curves both obtained 
from the same site. Thus, in Fig. 7.1 such comparison is given using the laboratory and in situ data for 
INCERC site. The calculated curve ( )PGAcalc calc

g gT T=  was obtained by translation of the normalized curve 

( )PGAav av
n nT T=  into the 1977 earthquake “point” ( )PGA 0.21g  ;  1.56sgT= = and the recorded curve 

( )rec rec
g gT T PGA=  was obtained directly from seismic measurements processing. 

Also, the translation can be done and in another measurement points. Thus, in Fig. 7.2 the normalized 
curve ( )PGAav av

n nT T= was translated in three known points of the strong events: 1977 

point ( )PGA 0.21g  ;  1.56sgT= = , 1986 point ( )PGA 0.11g  ;  1.22sgT= =  and in the point 

( )0.306g  ;  1.65sgPGA T= =  corresponding to maximum predicted event. In all these cases the differences 

between calculated and measured curves was reasonable: 0.1 srec calc
g g gT T T∆ = − ≤  . 

Fig. 6.1 – Dependence Tn – PGA provided both resonant column 
data and seismic records. 
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Fig. 7.1 – Translation in the 1977 point. Fig. 7.2 – Translation in some strong seismic points. 

8.  RESONANCE IN NONLINEAR CONDITIONS 

8.1. Overestimation trap  

Treating the site as linear oscillator means a unique natural period as provided the low loading methods 
(the wave velocity, H/V method, or else [12]). Even if this value is overestimated the site-structure resonance 
avoidance can not be assured. In the usual strength design an overvaluation of the external loadings assures a 
safe structural response to inferior loadings. But, in the resonance case, the overestimations of the natural site 
period values do not assure the resonance avoidance.  

Thus, for example, if for INCERC site it is considered only a unique site natural period with the 
maximum predicted values 1.56 sgT = , it seems that for this site the resonance danger arises only for 
buildings with the same natural period. Therefore, for a building designed with an inferior natural period 

1.4 ssT = , placed on this site the occurrence of resonance is unlikely. But, if we take into account the 
loading dependence, the natural site period of 1.4 sgT =  can be reach under inferior earthquake loading as 

7.1GRM =  and the resonant magnification becomes quite possible (Fig. 8.1). 

  
Fig. 8.1 – Overestimation trap (site INCERC). Fig. 8.2 – Dangerous resonant zone (site INCERC). 

8.2. Dangerous periods range 

The post-earthquake observations show that seismic loading level (magnitude, PGA) play an important 
role in the resonance consequences because only strong events (over 7GRM ≥ ) may lead to an important 
structural damages which can growth until structural collapse [12]. Thus, for safe avoidance of resonance is 
necessary to define foe each site a natural period value range corresponding to strong earthquakes. 
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As example, for seismic site INCERC the seismic recordings show that for magnitudes between 
7GRM =  and maximum expected magnitude 7.5GRM =  correspond an acceleration range  

PGA 0.1 0.3 g� → and a dangerous natural period range 1.22 1.65 sgT � →  (Fig. 8.2). So, it is not 
recommended to use this site for buildings with natural period sT  in the same range 1.22 1.65 ssT � → . 

9. CONCLUDING REMARKS 

● The seismic data recording during Vrancea earthquakes with different magnitudes shows a doubtless 
dependence of the site natural periods and maximum accelerations on earthquake magnitude. 

● The "quarter length formula" ( 4 /g sT H v= ) treats the site as linear elastic space in contradiction with 
mechanical reality and gives a unique natural period value in contradiction with earthquake 
recordings. 

● The nonlinear natural site period – ( ) ( )0 PGAg nT PGA T T= ⋅  – can be obtained from recorded 
seismic data if these data cover the entire expected PGA value range. 

● In default of complete and reliable site information, the site nonlinear natural period can be done by a 
combination of available in situ – 0T  – and resonant column data - ( )PGAnT . 

● Using only a linear natural period value linear
gT  by neglecting nonlinear variability, the resonance 

avoidance strategy may be compromise because the resonance may come for different building 
natural periods even if linear

s gT T≠ . 
● Due to nonlinear variability of the site natural periods it is advisable to avoid a building emplacement 

if the structural natural period sT  is situated in the same range as site natural period gT  given by 
strong earthquakes (usual with 7GRM ≥ ). 

REFERENCES 

1. BĂLAN Stefan, CRISTESCU Valeriu, CORNEA Ion (Editors), Romanian earthquakes from March 4, 1977(in Romanian), 
Publishing House of the Romanian Academy, 1982. 

2. BRATOSIN Dinu, A dynamic constitutive law for soils, Proceedings of the Romanian Academy – Series A: Mathematics, Physics, 
Technical Sciences, Information Science, 1-2, pp. 37–44, 2002. 

3. BRATOSIN Dinu, SIRETEANU Tudor, Hysteretic damping modelling by nonlinear Kelvin-Voigt model, Proceedings of the 
Romanian Academy – Series A: Mathematics, Physics, Technical Sciences, Information Science, 3, pp. 99–104, 2002. 

4. BRATOSIN Dinu, Soil dynamics elements (in Romanian), Publishing House of the Romanian Academy, 2002. 
5. BRATOSIN Dinu, Florin-Stefan BĂLAN, Carmen-Ortanza CIOFLAN, Soils nonlinearity effects on dominant site period 

evaluation, Proceedings of the Romanian Academy, Series A: Mathematics, Physics, Technical Sciences, Information 
Science, 10, 3, pp. 261–268, 2009.  

6. BRATOSIN Dinu, Loading dependence of the site natural period, Proceedings of the Romanian Academy– Series A: 
Mathematics, Physics, Technical Sciences, Information Science, 12, 4, pp. 339–346, 2011.  

7. CARNAHAN, B., LUTHER, H.A., WILKES, J.O., Applied numerical methods, J.Willey, New York, 1969. 
8. ISHIHARA K., Soil Behavior in Earthquake Geotechnics, Clarendon Press, Oxford, 1996. 
9. LEVY S., WILKINSON J.P.D., The Component Element Method in Dynamics, McGraw-Hill Book Company, 1976. 
10. MALVERN, L.E., Introduction to the mechanics of a continuous medium, Prentince Hall, New Jersey, 1969. 
11. MĂRMUREANU Gh., MĂRMUREANU Al., CIOFLAN C.O., BĂLAN S.F., Assessment of Vrancea earthquake risk in a 

real/nonlinear seismology, Proc.of the 3rd Conf. on Structural Control, Vienna, 12–15 July, 2004, pp. 29–32. 
12. MĂRMUREANU Gheorghe, CIOFLAN Carmen-Ortanza, MĂRMUREANU Alex., Research on local seismic hazard (zoning) 

of the Bucharest metropolitan area. Seismic zoning map, (in Romanian), Ed. Tehnopress, 2010. 
13. MÂNDRESCU Nicolae, RADULIAN Mircea, MĂRMUREANU Gheorghe, Geological, geophysical and seismological criteria 

for local response evaluation in Bucharest area, Soil Dynamics and Earthquake Engineering, 27, pp. 367–393, 2007. 
14. * * * * *    Drnevich Long-Tor Resonant Column Apparatus, Operating Manual, Soil Dynamics Instruments Inc., 1979. 

Received September 9, 2012 


