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This paper approaches the fixed-point computation involved in magnetic resonance image (MRI) 
reconstruction with most common technique, the Fast Fourier Transform (FFT) on a parallel-
computing machine, Connex Array. We will show that fixed-point computation is a good alternative 
in real-time magnetic resonance imaging  reconstruction as it can seriously improve reconstruction 
time (about 75% better than using floating-point operations) when large amount of data must be 
computed and image quality is not critical (dynamic angiography, cardiac magnetic resonance imaging). 
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1. INTRODUCTION 

In real-time Magnetic Resonance Imaging (MRI) and dynamic Magnetic Resonance Imaging (dMRI), 
reconstruction speed is crucial as it must be achieved multiple images from a single examination [1]. Other 
applications require several images to be acquired and several K-space filling techniques like parallel MRI 
(pMRI) are used to spread the samples in K-space (Fourier Transform space) to perform data analysis easier 
[2].  We will show in this paper an alternative fixed-point parallel image reconstruction to regular floating-
point approach on a powerful parallel computing machine, Connex Array [3] to overcome this issue. MRI 
multicore reconstruction (parallel computing) is required nowadays because clinical scanners have multi-
channel acquisition systems [4]; also, high computational issues reveal cardiac applications where movement 
created by breathing for example requires specific processing techniques trying to speed-up reconstruction 
when resolution and image contrast are satisfactory and images must be processed faster (triggered multislice 
reconstruction [5]). Typical dMRI data amount brought into memory is about 2000 images (128 × 128 
pixels), meaning about 128 MB data to process [6].  

 Most common reconstruction technique in MRI is Fast Fourier Transform (FFT) [7]. Unlike spiral 
methods and gridding algorithm, FFT does not require floating-point operations for reconstruction as 
floating-point computation is slower [8]. In this paper, we make a comparison between fixed-point and 
floating-point reconstruction of a human brain transversal slice using Radix-2 FFT algorithm, showing that 
computational speed can increase by 75% using fixed-point data representation on a general purpose 
parallel-computing machine, Connex Array. 

2. MRI COMPUTATIONAL ENHANCEMENT WITH CONNEX ARRAY 

Connex Array is a parallel computing machine which best fits into Terra Architecture concept [3], a 
high performance architecture including several types of parallelism to optimize chip’s area and power 
consumption (Fig. 2, Table 3). Real performances of this processing machine are 400 GOPS and 117 
GFLOPS [3]; that means about 75% speed-up enhancement when computing fixed-point versus floating-
point operations. Its parallelism is described in [3, 9, 10]. Paper [16] is a tutorial guide for Connex Array 
programming, which is basically done in a C++ language extension introducing a new data type, vector, 
modeling vector data into Connex (K-space samples). As workbench, we used Eclipse IDE for C/C++ 
Developers © [17] to reconstruct a 2D FFT 128 × 128 image from a transversal slice of a normal human 
brain by taking as input data (K-space) the samples provided by [11]. 



 Andrei Ţugui 2 256 

It is known that when computing fixed-point 
operations, quantization and rounding errors may 
occur, but these errors can easily be eliminated by 
maintaining the optimal data precision. We took 
as dataset for our 2D FFT reconstruction some 
data samples [11] from a human brain transversal 
slice (Table 1) on 32 bits single precision. In 1D 
FFT reconstruction, for N = 8 (FFT dimension) 
bottleneck performance is reclaimed by the final 
stage of the Radix-2 algorithm [12], also by 
twiddle factors (sinus and cosines functions) and 
computation requiring operations as addition, 
multiplication, division. Connex uses only 
addition, multiplication and shift operations for 
the reconstruction process. All operations are 
complex, meaning we must compute FFT on both 

real and imaginary parts of K-space samples. If we consider only the multiplication operations ( 22N  for an 
image), computational time cost will decrease when using fixed-point computation about 50% as Connex 
makes one floating-point operation in 16 clock cycles but only 5 cycles for an integer or fixed-point 
operation.  

Our data samples are represented as fixed-point real numbers with 1 digit entire part and 23 digits 
fractional part (Table 2). When representing fixed-point real numbers, the least N significant bits (N = 1) will 
memorize the integer part and the remaining bits the fractional one. One sample like – 0.0000011 in our 
dataset   is represented in binary as – 00000000000000000000000000001011 on 32 bits [13]. 

Table 1 

K-space data of a real image of transversal slice from a normal human brain  
for partial Fourier reconstruction, base 10 precision 

Real K-space brain samples Imaginary K-space brain samples 

–0.00000090000000000000000 –0.00000110000000000000000 
–0.00000230000000000000000 0.00000370000000000000000 
–0.00000760000000000000000 –0.00000150000000000000000 
0.00001140000000000000000 –0.00000180000000000000000 
–0.00000010000000000000000 –0.00000160000000000000000 
–0.00000150000000000000000 0.00000190000000000000000 
–0.00000350000000000000000 –0.00000860000000000000000 
0.00000440000000000000000 –0.00000210000000000000000 

 
Although the exponent is missing, dynamic range for fixed-point samples is still acceptable because 

raw data samples in K-space are stored usually on 16 bits (0 to 65 535 values). Traditionally, FFT 
computation for MRI reconstruction is made with single precision (32 bits floating-point) with up to 7 digits 
fractional part or 64 bits (double precision) with up to 14 digits fractional part. These real samples are called 
floating-point because the point can be shifted allowing a bigger range for data representation. For MRI, 
input data (K-space raw data) is precision limited due to acquisition process; this way, by using a higher 
precision for a variable we can not achieve extra information [13], but only use much memory instead. After 
the FFT reconstruction process, all fixed-point output data remain in the same precision range (32 bits). After 
the IFFT of K-space samples, xr[i] represent the real part of the original image and xi[i] is the imaginary part 
of the image.  Usually, the image is displayed using the magnitude, 2 2[ ] [ ]I xr i xi i= + . 

Floating-point representation is preferred when it must be avoided quantization and rounding errors 
and a high image quality is required. But the higher precision approach means, on the other hand, higher 
computational time (e.g.: one standard MRI image, 64 × 64 × 32 voxels requires about 256 kB if it is stored 
as 16 bit integers, but only 1 024 kB when is stored as 64 bit floating-point [14]. The goal is to store data 

 

 
Fig. 1 – Connex Array. 
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samples in fixed-point representation and to process them, and not as integers to avoid risk of information 
loss. Using a brain FFT image reconstruction we showed that information remains intact when we perform 
the reconstruction algorithm, 1D IFFT horizontally followed by another 1D IFFT vertically. We considered 
one 128 × 128 complex image, where each pixel has real and imaginary parts (Table 1). When we used IEEE 
Standard, Institute of Electrical and Electronic Engineers ANSI/IEEE Standard 754-1985: the IEEE Standard 
for Binary Floating-Point Arithmetic, Piscataway, NJ: IEEE, 1985, a K-space sample is represented on  
52 bits for mantissa and 11 bits for the exponent, 350 frame/s frame rate was achieved for our 128 ×128 pixels 
image. Instead, using fixed-point computation Connex manages to reconstruct about 1390 frame/s, which is 
obviously a great speed-up enhancement. Connex performs both addition and multiplication identical for 
integers and fixed-point real numbers. 

Table 2 

Image data of the proposed transversal slice of a normal human brain  
for partial Fourier reconstruction, base 10 precision 

    
Real and imaginary parts of the image (partial data) 

xr[i] xi[i] 
0.000000000000000000000000 0.000000000000000000000000 
0.000000017677662000892269 –0.000000176776694615909950 

– 0.000000325000030443334250 –0.000000399999976252729540 
0.000000857366956097394000 –0.000001051821300279698300 

– 0.000000075000080812515080 0.000000087500012568852981 
– 0.000000247487349724906380 0.000000159099059260370270 
– 0.000000050000000584304871 0.000000124999999684405340 
–0.000001193242724184528900 –0.000000397747328406694580 

 
Benchmark tests (Table 2) showed that results don’t exceed 32 bits precision imposed for accurate 

reconstruction. If we consider the quantization error (ε ) related to different precision computation (fixed 
versus floating-point), this can be in the range [13]: 

( 1) ( 1)2 2 ,N N− + − +− < ε ≤   (1) 

where N is the number of digits holding the fractional part, but we did not took it into consideration from the 
beginning as this paper approaches only the speed-up enhancement for the real-time imaging where large 
data amount computation is the priority and the image quality is satisfactory for clinical research. 

Table 3 

FFT parallel implementation efficiency on different GPUs 

    Parallel Computing  
           machine Algorithm Gflops       Data size  

        (pixels) 
 Power consumed
           (W) 

Power efficiency 
Gflops/watt 

NVIDIA Quadro FX 
        NV 40 

   
2D FFT 

 
   486 

     128 × 128 
    32-bit, float 

 
          25 

 
         19.44 

 
   TMS320C4x DSP 

    
2D FFT 

        
    147 

      128 × 128 
    32-bit, float 

 
           5 

  
          29.4 

  
      Connex Array 

   
2D FFT 

 
    117 

     128 × 128 
    32-bit, float 

 
          2.5 

 
          46.8 

 
   IBM Cyclops-64 

   
2D FFT 

           
     20 

     128 × 128 
    32-bit, float 

         
         83.22 

 
          0.24 

 
Because of high speed image reconstruction, image quality loss from quantization and rounding errors 

are acceptable in MRI applications as cardiac MRI or dynamic angiography, but in fMRI applications these 
errors can affect seriously the image quality. It is known that 1 bit growth in precision involves 6 dB 
decrease of the quantization error. 
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 The IFFT in a conventional image reconstruction process takes about 67% of the reconstruction’s 
time, but using fixed-point reconstruction only 47%. With Connex, FFT algorithm is computed very fast [15] 
as it is a parallel computing machine. Additional information about Connex and FFT algorithm implementation 
on this machine can be found in [15] and [17]. 

3. RESULTS AND CONCLUSIONS 

Table 4 shows a comparison between fixed-point and floating-point computation of one image on 
Connex, showing the effective speed-up in MRI and real-time MRI reconstruction when fixed-point 
computation is used instead of floating-point computation. 

Table 4  

Comparison between fixed-point and floating-point MRI 2D reconstruction using Connex Array 

Function 
Number 

of 
operations 

Cycles 
used 

Recon struction 
time 
(ms) 

Frame  rate 
(frame/s) 

2D Image reconstruction 
28 ×128 pixels  32 bits 

floating point 
 

 
168668816 
 
 

 
 573440 
 
 

  
           0.67 
     
      

 
              350 
     
        

 
2D Image reconstruction 
128 × 128  pixels 32 bit 

fixed-point 

 
 
168668816 
 

 
 
 143360 
  

 
 
           0.16 
      

 
 
              1395 
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