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This paper deals with the determination of attractors and attraction zones of continuous non linear 
systems, based on aggregation technics for stability study and the choice of their state representations 
for description. Aggregation technique by the use of vectors norms enable to determine comparison 
systems of a complex non linear and/or non stationary model of a given process. The study of the 
stability of this comparison system enables to easily study the stability of the process and to define 
attraction domains. When the system is locally unstable, the implementation of comparison systems 
permits to determine an attractor of the studied system in a given attraction domain. This work 
presents an approach which enables to check the quality of control law for a process whose evolution 
is described by the equation state, and the control is made from accessible information about the 
process and its desired evolution. 
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1. INTRODUCTION 

The problem of stability analysis of non linear systems has received considerable attention in the field 
of research in automatic control and different approaches have been proposed in the literature related with 
this subject [1, 3, 4].  

The stability theory aims at drawing conclusions about the behaviour of a system without actually 
computing its solution trajectories. Lagrange (1788) concluded that, in the absence of external forces, an 
equilibrium state of a conservative mechanical system is stable provided that it corresponds to a minimum of 
the potential energy. Then, for a long period, stability studies have been limited to conservative mechanical 
systems described by Lagrangian equations of motion. The quantum advance in stability theory that allowed 
one the analysis of arbitrary differential equations is due to A. M. Lyapunov (1892).He introduced the basic 
idea and the definitions of stability that are in use today and proved many of the existing fundamental 
theorems [16]. The concept of Lyapunov stability plays an important role in control and system theory. 
Solutions of stability problems risen from large scale systems, have been approached [7, 8, 15, 17] by 
Bellman’s concept (1962) of vector Lyapunov functions and Bailey and Siljak approaches to find conditions 
and interactions under which stability property of the overall system is inferred from stability properties of 
subsystems, and Robert’s concept (1964) of vector norms, and its various applications by Borne et al (1973), 
Borne and Gentina (1974) and Benrejeb (1982). 

For large scale systems, generally described in state space, stability conditions are obtained, for the 
whole system or for subsystems and interactions [9, 11, 14, 18]. The influence of the state vector description 
and of the matrix characteristic, on the determination of the stability domain, is based on Borne-Gentina 
stability criteria [6, 9, 11, 12, 13], with the use of vector norms and of overvaluing systems of nonlinear large 
scale systems [2, 4, 5]. 
 The aim of this work is to define a procedure enable to determine attraction domains corresponding to 
adequate representations of the non linear studied systems. In section 2, is presented the determination of a 
comparison system and in section 3 the determination of attractors. The determination of nested attractors for 
a second order complex continuous system is proposed in section 4, to illustrate the efficiency of the 
proposed approach. 
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2. DETERMINATION OF COMPARISON SYSTEMS 

For stability study, several criteria based on different Lyapunov’s theorems are developed. If applied to 
the comparison system, enable to determine the attractor and its field of attraction [17]. 

Let us consider the following system (S) described by 

(S): [ ]0 0( , ) ( , ), , .x A x t x B x t t t= + ∀ ∈ = +∞� τ   (1) 

Let p  be a regular Vector Norm (VN) of size k and S a compact set of nℜ  which includes the origin.   
Definition 1. The pair (M, N), 0 0: , :k k kM S N S×

+τ × →ℜ τ × →ℜ  defines a non homogeneous 
pseudo-Overvaluing System (NHOS) of system (S) on the compact set S closed to the (VN) p  
(annex), if and only if we have 

( ) ( ) ( ) ( ) ( ) 0, , , , τx M t x p x N t x t xD p+ ≤ + ∀ ∈ × S.   (2) 

( )D xp+ is the right-hand derivative, taken along the motion of (S) into E, and [ ]0 0 ,tτ = +∞ . 

Definition 2. [11]. The real parts of the eigenvalues of matrix A, with non negative off 
diagonal elements, are less than a real number µ  if and only if all those of matrix M, 

= nM I Aµ − , are positive, with nI the n identity matrix. 
When successive principal minors of matrix (−A) are positive, Kotelyanski lemma permits to 
conclude on stability property of the system characterized by A. 
 

THEOREM 3. [6]. If it is possible to define, in a domain D, a time-invariant linear 
overvaluing system of (1) related to a regular vector norm p  

( ) ( ) ( ) 0, τ ,x Mp x ND p x S+ = + ∀ ∈ ×   (3) 
for which M is the opposite of a (constant) M-matrix, and N is a non negative (constant) vector, 
then, there is an asymptotically stable attractor 0L  and the set 

( ){ }1
0 ;nL x p Nx M −= ∈ ≤ −R   (4) 

includes all the attractors of (1), if the outer frontier of D encloses, also, the outer frontier of 0L . 

3. PROPOSED ATTRACTORS DETERMINATION 

Let us consider the non linear continuous complex systems described in state space by 

( , ),x f x t=�   (5) 

where ( )x t  is the state space vector  at time t , 
nx∈ℜ , and : n nf +ℜ ×ℜ →ℜ  a non linear vector function. 

Consider, as a first step, the domain 1D  of x, for which the system (5) can be described in the form 

( , ) ( , ),x A x t x B x t= +�   (6) 

where  A is an n×n matrix and B an n vector. 
The use of aggregation technique and particularly of the (VN) p(x) (annex 1), in 1D , is supposed to lead 

to a linear comparison system of the form  

,z M z N= +   (7) 

with 

( )p x z≤   (8) 

Then, if the overvaluing matrix M of matrix A is the opposite of an M-matrix [9–11], it comes 
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maxlim ( )
t

p x z
→∞

≤    if    0 0( )p x z≤      (9) 

and maxz is equal to the solution  

1
maxz M N−= −   (10) 

of the following equation 

max 0.M z N+ =   

This constraints on z limit the asymptotic evolution of the state space vector x in a new domain 
2 1D D⊂ , defined by (9) and (10). 

As a second step, it can be useful to look for a new description of the system (1) for 2x D∈ . 
Then, it is sufficient to repeat this approach to obtain a new attractor 3D  of x, and then smallest other 

domains can be determined by iteration of the proposed procedure. 
If the attractor is reduced to the point zero (0) the system is stable in the usual definition and zero is the 

stable equilibrium point [9-11].  
The used comparison systems depend of the choice of the vector norm that can influence the efficiency 

of the proposed attractors determination procedure, as shown in the next section. 

4. APPLICATION TO A NON LINEAR COMPLEX SYSTEM 

To illustrate the proposed approach for attractors determination, let us consider the system 
(S) defined by (1), with  

( )( )
2
1 2

1 2 1

3 0.3 sat
,

sin 1 0.1cos
x x

A x t
x x x

 − − +
=  

− +  
  (11) 

( )( ) 1

1

sat
0.1 0.2sin

x
B x t

x
− 

=  + 
  (12) 

and 

sat if 1,v v v= ≤   (13) 

sat sig if 1.v v v= ;   (14) 

The convergence of the trajectories towards the equilibrium x = 0 will be studied through the 
convergence of the vector norm  

1 2( ) , .
T

p x x x =     

As a first step, the system (S) is supposed to lead, in a domain 1D , to a comparison system in the 
form (7). 

 
Step1: Detrenination of the attractor 2D  
If the comparison system of the process is on the form (7), according to (S), the minimal overvaluing 

matrix relatively to the regular vector norm ( )p x  is the following 

( )( )
2
1 2

1 2 1

3 0.3 sat
( )

sin 1 0.1cos

x x
M A x t

x x x

 − − +
=  

− +  
  (15) 

and  
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( )( ) 1

1

sat
( ) .

0.1 0.2sin

x
N B x t

x

 −
=  

+  
  (16) 

In this case, the comparison system is described by  

3 1.3
1 0.

1
.

0.39
z z

 −  
= +  

 − 


�   (17) 

By applying the Borne and Gentina Stability conditions (annex 2)  

2

( 3) 0
.

( 1) det 0M

− −

−

;
;

  

It comes from (9) and (10)  

1

2

0.9214
.

1.3571
x

z
x∞

  
= ≥   
   

  

Hence, the corresponding attractor zone 2 1D D⊂  is defined by 

{ }12 2  0.921, , 1.3574 1 .x x xD = < <   (18) 

       
 

Step 2: Determination of the attractor 3D  
A new description of the system (S) can be defined, in 2D , by a new description in the form (6).  

Indeed, 1 0.921x ≺  so 1 1sat x x=  
Hence the description 

( )( )
2
1 2

1 2 1

4 0.3 sat
sin 1 0.1cos

x x
A x t

x x x
 − − +

=  
− +  

  (19) 

and          

( )( )
1

0
,

0.1 0.2sin
B x t

x
 

=  + 
  (20) 

then the new attractor characterized by 

( )( )( )
2
1 2

1 2 1

4 0.3 sat
,

sin 1 0.1cos
x x

M A x t
x x x

 − − +
=  

− +  
  (21) 

( )( )
1

( ) ,
0.1 0.2sin

0
N B x t

x
 

=  + 
  (22) 

with 

0.9214
.

1.3571
x

 
≤  
 

  

In this case, one can easily obtain the linear and stable comparison system in the form (7) such 
that  

4 1.3 0
.

0.95 0.9 0.260
z z

−   
= +   −   
�   (23) 
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It comes from (9) and (10)  

( ) 1lim z
t

p z NM∞
−

→∞
≤ = −

   
 

1

2

0.1429
z

0.4397
x
x∞

  
= ≥   
   

  

Hence, the corresponding attractor zone 3 2D D⊂   

{ }13 2  0.1429 , , 0.4397x x xD = < <   (24) 

In this domain 3D , we repeat the overvaluation approach to determine a new attractor taking into account the 
condition  

0.1429
0.4397

x
 

≤  
 

  

 
Step 3: Determination of the attractor 4D  
The domain 3D   is defined such that 

0.1429
0.4397

x
 

≤  
 

  

and 2 2sat x x=  2 0.4397.x ≤  
If the correspondant comparison system, in the form (7)  

4 0.738 0
0.063 0.9 0.130

z z
−   

= +   −   
�   (25) 

is such that M is the opposite of an M-matrix, we obtain (9), then 

1

2

0.027
.

0.146
x

z
x∞

  
= ≥   
   

  

It comes, the attractor zone 4D  

{ }14 2  0.027 , , 0.146 .x x xD = < <   (26) 

Attraction zones and state space variables evolutions of the systems in the nested domains 1 2 3andD D D,  are 
given in Fig. 1.  

            
Fig. 1 – Attraction zones and state space variables evolutions of the systems in the domains 1 2 3 4, andD D D D, . 
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5. CONCLUSION 

The concept of vector norm, associated to the definition of comparison systems defined by Borne and 
Gentina stability approach are used, in this paper, with success, to determine different and nested attractors. 
For stable systems, the attractor domain can be reduced to zero. The studied illustrative examples show the 
efficiency of the proposed procedure. 

This method enables to test the accuracy of a controlled system by providing an overvaluation for the error. 

ANNEX 1: VECTOR NORMS DEFINITION 

Definition 1. Let nE =ℜ and 21, kE E E…  subspaces of the space  1 2, kE E E E E∪= …∪  Let x be an 
n vector defined on E and i ix Px=  the projection of x on iE , where iP  is a projection operator from E into 
Ei, ip a scalar norm (i =1,2,…, k) defined on the subspace Ei  and p  denote a Vector Norm (VN) of 
dimension k and with its component  

( ) ( )i i ip x p x=   ,     ( ): .n kp x +ℜ →ℜ   

Let y be another vector in space E, with  i iy P y= ,  we have 

( )
( )
( ) ( ) ( )
( ) ( )

i

i

0, E 1,2, ,

0 0, 1,2, ,

, , E 1,2, ,

, 1,2, , .

i i i

i i i

i i i i i i i i i

i i i i i

p x x i k

p x x i k

p x y p x p y x y i k

p x p x x i k










≥ ∀ ∈ ∀ = …

= ↔ = ∀ = …

+ ≤ + ∀ ∈ ∀ = …

= ∀ ∀ = …λ λ

 
 

If k–1 of the subspaces iE  are insufficient to define the whole space E , the VN is surjective. If in addition 
the subspaces iE  are in disjoint pairs, i jE E∩ =∅ ,  1, 2, ,i j k∀ ≠ = … , the VN p is said to be regular. 

ANNEX 2: BORNE AND GENTINA PRATICAL STABILITY CRITERION [9-11] 

Let consider the nonlinear continuous process described in state space by: x Ax=� ; A is an n n×  
matrix, { },i jA a= . If the overvaluing matrix ( )M A  has its non constant elements isolated in only one row, 
the verification of the Kotelyanski condition enables to conclude to the stability of the initial system. 

As an example, if the non constant elements are isolated in only one row of A, Kotelyanski lemma 
applied to the overvaluing matrix obtained by the use of the n regular vector norm ( )p x  with 

[ ]1 2, , , T
nx x x x= … , such that 1 2( ) , , ,

T
np x x x x =  … , leads to the following stability conditions of initial 

system 

1,1 1,2 1,

1,1 1,2 2,1 2,2 2,
1,1

2,1 2,2

,1 ,2 ,

0, 0, , ( 1) 0.

n

nn

n n n n

a a a

a a a a a
a

a a

a a a

−

…

…
≺ ; … ;

# # #

…
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