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A dynamic universal accumulator is an accumulator that allows one to efficiently compute both 
membership and nonmembership witnesses in a dynamic way. It was first defined and instantiated by 
Li et al., based on the Strong RSA problem, building on the dynamic accumulator of Camenisch and 
Lysyanskaya. We revisit their construction and show that it does not provide efficient witness 
computation in certain cases and, thus, is only achieving the status of a partially dynamic universal 
accumulator. In particular, their scheme is not equipped with an efficient mechanism to produce non-
membership witnesses for a new element, whether a newly deleted element or an element which 
occurs for the first time. 
We construct the first fully dynamic universal accumulator based on the Strong RSA assumption, 
building upon the construction of Li et al., by providing a new proof structure for the non-
membership witnesses. In a fully dynamic universal accumulator, we require that not only one can 
always create a membership witness without having to use the accumulated set for a newly added 
element, but also one can always create non-membership witnesses for a new element, whether a 
newly deleted element or an element which occurs for the first time, i.e., a newcomer who is not a 
member, without using the accumulated set. 
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1. INTRODUCTION 

Cryptographic accumulators allow us to encapsulate a large number of elements in a single short 
accumulator along with short witnesses that can be used for proving whether or not an element has been 
accumulated. The notion of cryptographic accumulators was first introduced by Benaloh and de Mare [1] and 
further pursued by many researchers as they come very practical in many scenarios such as anonymous 
credential systems and group signatures, see for example [9, 8, 4], and that they can be instantiated based on 
a variety of techniques and hardness assumptions, for instance, the strong RSA assumption, bilinear maps, 
the Decisional Diffie-Hellman assumption, and one-way hash functions. 

We are now going to focus on a number of schemes which are based on the Strong RSA assumption 
and they were built one after the other in an evolutionary process. Barić and Pfitzmann [2] followed the work 
of Benaloh and de Mare [1] and introduced collision-free accumulators. This scheme provided membership 
proofs. Later, Camenisch and Lysyanskaya [5] augmented the latter work and proposed a dynamic 
accumulator, in which elements can be efficiently added to and removed from the set of accumulated values. 
Finally, Li et al. [7] built their scheme based on the proposal of Camenisch and Lysyanskaya [5] and 
introduced universal accumulators in which there is a witness, whether a member or not, for every elements 
in the input domain. (See [6] for a survey.) Although Li et al. promise to provide efficient non-membership 
proofs, we will see that the structure of the witness fails to offer efficient dynamic proof computation for 
certain elements and, hence, achieves the desired dynamism only partially. In a fully dynamic universal 
accumulator, we require that not only one can always create a membership witness without having to use the 
accumulated set for a newly added element, but also one can always create non-membership witnesses for a 
new element, whether a newly deleted element or an element which occurs for the first time, i.e., a 
newcomer who is not a member, without using the accumulated set. 

Although accumulators are not so new elements in cryptographic schemes, formal security definitions 
and classifications on different requirements have not been adequately dealt with. The literature often fails to 
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provide exact correctness or security definitions for different classes of accumulators and there have been 
several security notion proposed. We focus on the strongest security notion, considering a powerful 
adversary who can invoke the authority with polynomially many accumulator initiations. This notion is 
referred to as the  Chosen Element Attack model, in the literature [11]. Informally, a polynomially bounded 
adversary interacts with the authority who maintains the accumulators. The adversary invokes the authority 
to initiate a polynomial number of accumulators and make changes to them according to the adversary's 
instructions on what element to add or delete. Finally, the adversary chooses an element and an accumulator 
and produces a witness. The adversary wins if the witness proves that the chosen element is not a member 
when in fact it is, or it proves that the chosen element is a member when in fact it is not. 

Accumulators have proven to be a very strong mathematical tool with applications in a variety of 
privacy preserving technologies where there is a desire to represent a set of elements in a compact form, for 
example, certificate revocation schemes, anonymous credential systems, and group signatures. In particular, 
fully dynamic universal accumulators can come handy in a variety of real-life scenarios. For example, 
consider the set of people who have a medical condition that allows them to benefit from some discount 
medication, but denies them the access to certain areas, such as swimming pools. These people should be 
able to efficiently prove their membership at a pharmacy and everyone else should be able to show their 
nonmembership when entering a swimming pool, for example. 

It is known that batch updates cannot be done [3]. This means that updating a (non)membership proof 
without the secret key requires to go through all the accumulator updates. 

 
Our contributions. 
In this paper, we first point out the lack of efficiency in the dynamic updating process of the dynamic 

universal accumulator of Li et al. [7], where the authority has to go through the already accumulated set to 
create non-membership witnesses for certain members, namely newly considered values which are not 
members and newly deleted members, defying the claim that the scheme provides efficient non-membership 
proofs in all cases. 

Moreover, we introduce the notion of weak dynamic accumulators, a special case of dynamic 
accumulators where the only operation is addition and the elements can dynamically be added to the 
accumulator. Hence, a dynamic accumulator is trivially a weak dynamic accumulator. Further, we present a 
generic transformation from a weak dynamic accumulator with a domain having a certain structure, e.g., the 
domain being a set of odd primes, to a weak dynamic accumulator with a domain of arbitrary form, e.g., a 
subset of *{0,1} . 

Furthermore, we formally define what we require from a fully dynamic universal accumulator and 
instantiate the first such scheme based on the Strong RSA assumption and a weak dynamic accumulator with 
an arbitrary domain. This instantiation builds on the previous schemes based on the same hardness 
assumption by keeping the structure of the membership proofs, due to Camenisch and Lysyanskaya [5], but 
providing a new structure for the non-membership proofs. This property, i.e., being fully dynamic, comes at a 
price. Our accumulators are a bit larger. However, as it is more efficient when introducing new elements 
compared to previously introduced partially dynamic accumulators, it achieves the same level of efficiency 
as the set of accumulated values is growing. Moreover, the efficacy of the new structure of non-membership 
proofs allows the authority to perform batch updates, a desired property that had not been achieved 
successfully so far. 

 
Structure of the paper. 
The rest of the paper is organized as follows. Section 2 is dedicated to briefly describing, notations, 

definitions, different classes of already existing accumulators, and the particular variant of the dynamic 
accumulator of Camenisch and Lysyanskaya [5] due to Li et al. [7]. In Section 3, we define the notion of 
Weak Dynamic Accumulators and present a generic transformation to obtain a Weak Dynamic Accumulators 
with arbitrary domain. Finally, Section 4 is devoted to defining Fully Dynamic Universal Accumulators 
followed by an instantiation whose security is based on the strong RSA assumption. Last but not least, we 
wrap up with some concluding remarks in Section 5. 
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2. PRELIMINARIES 

In this section, we list definitions, notations, and the building blocks which will be used to construct 
and analyze our scheme in the following section. 

Throughout this paper, we use the expression )(xAy ←  to mean that y  is the output of algorithm A  
running on input x. An algorithm is said to have polynomial running time, if its running time can be 
expressed as a polynomial in the size of its inputs. If X  denotes a set, || X  denotes its cardinality and 

Xx R∈  expresses that x  is chosen from X  according to the uniform distribution. If X  and Y  are sets, 
then YX \  denotes the set of elements in X, but not in Y. For convenience, we also use }{xX +  and 

}{xX −  when an element x  is being added in or deleted from a set X. We also use the classical notion of a 
negligible function: RNf →:  is said to be negligible in k  if for any positive polynomial function (.)p  
there exists a 0k  such that if k ≥ k0, then )(1/<)( kpkf . 

The strong RSA assumption states that given an RSA modulus n  and a random x  drawn from *
nZ , it 

is infeasible to find 1>e  and *
ny Z∈  such that  ye = x mod n. 

2.1. Evolution of Cryptographic Accumulators 

In this section, we illustrate the evolution of the cryptographic accumulators in the literature. There are 
different notions of security used in the literature and, due to lack of space, we only focus on the strongest 
notion, sometimes referred to as the Chosen Element Attack model. As for the notion of correctness of an 
accumulator, one requires that correctly accumulated values have verifying witnesses, regardless of the type 
of accumulator. The literature has often stopped here and has failed to provide a more precise definition of 
correctness. We will provide the first formal definition of correctness that can be applied to several 
categories of accumulators with different functionalities. 

There is an authority who initiates and maintains the accumulator and interacts with other participants. 
The authority generates the secret and public keys and keeps a state including the keys, the accumulated 
value, the set of elements which are accumulated. The authority delivers the proofs to the participants. In the 
security definition, the adversary asks the authority to provide certain proofs in the form of an oracle. 

The definitions below are mostly gathered by Wang et al. [12], but contain some twists to make them 
consistent with the following sections. 

 
Definition 1 (Accumulators). An accumulator scheme Acc , with a domain P, a set PX ⊆ , and 

values Xx∈ to be accumulated, consists of the following algorithms.   
– A setup probabilistic algorithm ),()(1KeyGen ps

k KK→ , where sK  is only used by the 

authority and pK  is public.  

– An algorithm cXKK ps →),,(AccVal , which computes an accumulator value c , for the set X,  
from the keys.11  
– An algorithm WxXcKs →),,,(WitGen  to generate a proof of membership for Xx∈  in 
accumulator c .  
– A predicate ),,,(Verify WxcK p  to check a proof.  

One problem with this primitive is the lack of any possibility to dynamically update a set X. Ideally, we 
would like to insert or delete members of X  and update the accumulator c  accordingly. To make it efficient 
we want all values to have a length which only depends on k  and not on the cardinality of X. So, we amend 
the definition by introducing the UpdEle  and UpdWit  algorithms. This defines the notion of Dynamic 
Accumulator (see Def. 11 in Appendix). 
                                                           

1For some constructions, sK  is not used by AccVal. 
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The accumulator does not consider proofs of non-membership. This is the next desired functionality to 
have. This is done with the notion of Universal Accumulator (see Def. 12 in Appendix). 

A proof W  for x  is said to be valid with respect to ),( cX  if and only if the predicate 
),,,(Verify WxcK p  holds. Moreover, a proof W  for x  is said to be coherent with respect to ),( cX  if and 

only if it is valid and )(IsMem W  is equivalent to		ݔ ∈ ܺ. One problem with this construction is that the 
authority must figure out whether or not x  is a member of X  to generate a coherent proof. That is, the 
information on X  cannot be compressed. The lack of dynamism is also a problem. 

Finally, we formalize the dynamic universal accumulator notion due to Li et al. [7] as follows. The 
reason why we call it a  partially dynamic universal accumulator is discussed below. Note that our formalism 
is a bit more detailed that theirs to be consistent with the rest of our paper. 

 
Definition 2 (Partially Dynamic Universal (PDU) Accumulators). A partially dynamic universal 

accumulator PDUAcc, with a domain P, a set  ܺ	 ⊆ ܲ, and values Xx∈  to be accumulated, consists of 
the following algorithms.   

– A setup probabilistic algorithm ),()(1KeyGen ps
k KK→ , where sK  is only used by the 

authority and pK  is public.  

– An algorithm cXKK ps →),,(AccVal , which computes an accumulator value c  of the set X, 
from the keys.  
– An algorithm )extra,(),op,,,(UpdEle cxcKK ps ′→ , where +=op  or −=op , which 

computes the accumulator c′  for }{op xX  from the accumulator c  for X. When +=op , we must 
have Xx∈/  and we say that x  is inserted into X. When −=op , we must have Xx∈  and we say 
that x  is deleted from X. The algorithm also returns some extra information extra , which might be 
needed for dynamic witness update.  
– An algorithm WxXcKs →),,,(WitGen  to generate a proof of membership or non-membership 
for the value x  with respect to accumulator c  of X.  
– An algorithm WyWxccK p ′→′ ),,,op,extra,,,(UpdWit  to generate a proof W ′  for y  in 

accumulator c′  from a proof W  for y  in accumulator c , where 
)extra,(),op,,,(UpdEle cxcKK ps ′→ . It must be the case that yx ≠ .  

– A predicate )(IsMem W  telling whether W  is a proof of membership (true case) or a proof of 
non-membership (false case).  
– A predicate ),,,(Verify WxcK p  to check a proof.  

We let X  be a subset of P  which is initially empty. Every time we run ),op(.,.,.,UpdEle x , we 
replace X  by }{op xX . Clearly, for WitGen to generate coherent proofs, WitGenIsMemo  must be a 
predicate to decide whether an arbitrary x  belongs to X  or not. Since we want c  to have a length which 
only depends on k  (and not on the cardinality of X ), it is not possible to require WitGen to generate 
coherent proofs without X  as an input while X  has been filled. It is still possible to invoke WitGen to 
create from X  a new proof. Then, we count on UpdWit  to update all coherent proofs. 

With this notion, UpdWit  cannot create a new witness for  x = y, that is for a value y  which has just 
been added or deleted. This is why we call it Partially Dynamic Universal. 

2.2. Formalizing the Notions of Correctness and Security for Accumulators 

We now describe our notion of correctness than can be applied to several types of accumulators. This 
definition is our attempt to formalize the notion of correctness which was missing in the literature. One 
difficulty is that the accumulator interface introduces many options, and that we want to formalize that 
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whatever sequence of option is selected, the accumulator always keep consistent properties. Here, the 
sequence of options is arbitrary. We formalize this by introducing an adversary who can select it maliciously. 

Intuitively, the notation Xc p  means that c  is a correct accumulator value computed for the set X, 
while ܹ ⊢ ሺݔ, ܺ, ܿ, ሻ means that W݈ܾ  is a valid computed  proof for x  being/not being (depending on the 
Boolean bool ) in Xc p . 

Definition 3 (Correctness). Consider a game in which we first run ),()(1KeyGen ps
k KK→  and 

allow the adversary to take pK  and sK  and play with the rest of the algorithms available for the respective 

accumulator, e.g., ,.),(AccVal ps KK , ,.,.,.)(MemWitGen sK , ,.,.,.)(enNonMemWitG sK , 

,.)op,.,,(UpdEle ps KK , or ,.,.,.)op,.,.,.,(UpdWit pK . We recursively define the relations Xc p  and ܹ ⊢ ሺݔ, ܺ, ܿ,  :ሻ by the following conditions݈ܾ
– If the adversary calls AccVal൫ܭ௦,ܭ, ܺ൯ → ܿ, then Xc p .  
– If Xc p  and the adversary queries )extra,(),op,,,(UpdEle cxcKK ps ′→ , then xXc opp′ . 

– If Xc p  and the adversary queries WxXcKs →),,,(WitGen  or 

,),,,(MemWitGen WxXcKs →  then ܹ ⊢ ሺݔ, ܺ, ܿ, ሻ. If Xc݁ݑݎݐ p  and the adversary calls 

,),,,(enNonMemWitG WxXcKs →  then	ܹ ⊢ ሺݔ, ܺ, ܿ,   . ሻ݁ݏ݈݂ܽ
– If Xc p  and the adversary called                 

WyWxccKcxcKK pps ′→′′→ ),,,op,extra,,,(UpdWitthen)extra,(),op,,,(UpdEle  
with yx ≠  and ܹ ⊢ ሺݕ, ܺ, ܿ, ܾሻ, then ܹ′ ⊢ ሺݕ, ܺop, ܿ′, ܾሻ.  

The accumulator scheme is said to be correct if for all probabilistic polynomial time adversaries, and 
for all possible choices of  W, x, X and c, we have that ܹ ⊢ ሺݔ, ܺ, ܿ, ܾሻ implies ),,,(Verify WxcK p  and, in 
the case of universal accumulators, XxW ∈⇔)(IsMem . 

Note that it is unusual to have an adversary in a definition of correctness. This is necessary here as we 
want to have correctness whatever the history of interactions with the interface. 

Next, we describe the Chosen Element Attack scenario [12] when defining security for a PDU 
accumulator. 

 
Definition 4 (Chosen Element Attack (CEA) Model). The security of a PDU accumulator is defined 

in terms of a game, based on a security parameter k , played by a polynomially bounded adversary. Firstly, 
KeyGen  is run and pK  is given to the adversary. Secondly, the adversary selects a polynomially bounded 

number l . There are registers sK , iX , and ic , lK,1,=i , for a secret key and to keep track of l  sets iX  
and their accumulator values ic . Initially, all iX 's are empty and ic  is set to ),,(AccVal ips XKK . The 

adversary can then call an ,.,.),,(UpdEle ips cKK  oracle for a selected i  which updates iX  and ic  

accordingly. It is not allowed to add an x  to iX  when x  is already in iX , nor is it allowed to delete x  
from iX  when x  is not in iX . The adversary can also call a ,.),,(WitGen iis XcK  oracle for a selected i  
and an ,.),(AccVal ps KK  oracle which do not update an iX  of ic . After making many oracle queries, the 
adversary ends by producing some ),,( Wxi . The adversary wins if W  is an incoherent proof for x  with 
respect to iX  and accumulator ic .  

Note that when the algorithms are all deterministic, we can always reduce to 1=l  and remove access 
to the ,.),(AccVal ps KK  oracle. This follows because calling AccVal on the same inputs is going to 

produce the same outputs. Moreover, the information that the adversary obtains from calling AccVal for the 
sets iX  can all be simulated by a single set X. 
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2.3. An Instantiation of Partially Dynamic Universal Accumulators due to Li et al. 

We now describe a PDU accumulator based on the scheme presented by Li et al. [7]. 
In what follows, we have a domain P  of possible values for x  with some specific form. A subset 
PX ⊆  has an accumulator c  and public parameters n  and g . A proof of non-membership for XPx \∈  

for c  is a tuple ),( da  such that  

.)(mod ngdc xa ≡  

By writing a Euclidean division qxaa +′= , we can easily transform such a proof ),( da  into a new proof 
),( da ′′ , with ndcd q mod= −′ , such that xa <0 ′≤ . We refer to  

 )mod,mod(=],[
)mod(

ndcxada x
xaa

x

−
−

 
as the “reduced'' proof, where the public parameters are implicit. Note that xda ],[  can be computed without 
the secret key for any integer a . When a  is a rational number, we need the secret key to compute it.   

Domain: P  is a set of odd prime numbers, e.g., all odd prime numbers up to a given bound .B  

KeyGen(1k): pick two different prime numbers p  and q  such that 
2

1−p
 and 

2
1−q

 are both prime and not 

in P , take pqn = , )(
2
1= nr λ , and g an element of order r  in *Zn . Then, ),(= gnK p  and .= rKs  

AccVal (Kp,X):  the value of c  is defined by  

 .mod= ngc
x

Xx
∏
∈  (1) 

        Note that sK  is not required to compute c .  

UpdEle(Ks,Kp,c,op,x): if +=op , we have ncc x mod=′  ( sK  is not required). If −=op , we have 

ncc x mod=
1

′  ( sK  is required). It returns ),,op,(=extra cxc ′ . Since it is not allowed to delete a non-
member of X , c′  can be computed without sK  but using X  by applying (1).  

WitGen(Ks,c,X,x): if Xx∈ , then ),mem(= wW  with ncw x mod=
1

. This does not require .X  It can 
also be computed without sK , but using X  by observing that  

 .mod= }{ ncw
y

xXy
∏

−∈  (2) 

If Xx∈/ , then )],[,nonmem(= xdaW  with 
1

=
y X

a y
−

∈

 
 
 
∏  and 1=d . 

Clearly, the final ),( da  is such that  

 ( ) .mod=mod=
1

1

1

ngcdandxya xa

Xy

−

−

∈








∏  (3) 

The above computation requires .sK  Below, we give an algorithm to compute xda ],[  without sK , 
but by going through all X  members.  
UpdWit(Kp,extra, W,y): with ),,op,(=extra cxc ′ , there are four cases to update the proof for y  in X  after 
adding or deleting x :   
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−  W  of the form ),mem( w  and x  just added ( +=op ): set ),mem(= wW ′′  with nww x mod=′ .  
−  W  of the form ),mem( w  and x  just deleted ( −=op ): set ),mem(= wW ′′  with 

ncww y
xz

z mod=
1−

′′  and y
x

z mod1= .  

−  W  of the form ),,nonmem( da  and x  just added ( +=op ): set )],[,nonmem(= ydaW ′′′  with 

aza =′ , ndcd y
xza

mod=
1−

−
′  and y

x
z mod1= .  

−  W  of the form ),,nonmem( da  and x  just deleted ( −=op ): set )],[,nonmem(= ydaW ′′  with 

axa =′ .  
IsMem(W): is true if and only if W  is of the form ,.)mem( .  

Verify(Kp, c,x,W): if W  is of the form ),mem( w , it is true if and only if nwc x mod= . If W  is of the form 

),,nonmem( da , it is true if and only if )(mod ngdc xa ≡ .  

We can compute the non-membership proof yda ],[  for Xy∈/  by iteratively going through all Xx∈ . For 

this, we start with ,(1,1)=),( da  which is a proof of non-membership for y  in the empty set with 

accumulator 1=c . Then, for each Xx∈  we update )),,(),mod,,,(,(UpdWit),( ydancxcKda x
p +←  

and ncc x mod← . 
Note that all algorithms are deterministic here. It can be easily proven that all oracle calls in the 

security game preserve the relations (1), (2), and (3). Then, we easily prove that UpdWit  preserves (2) and 

(3) as well. Since (1) can be computed without sK  and that the game does not allow the adversary to add a 

member or to delete a non-member, all oracle calls in the game can be simulated without knowing sK . So, 

the security is equivalent to forging PX ⊆  and Px∈  together with W  which is an incoherent proof for 
x  with respect to X  with pK  as a sole input. We can easily see that this implies breaking the strong RSA 
assumption (c.f. [7] for more details). 

Quite importantly, it is necessary that all proofs of non-membership satisfy (3). Indeed, assuming that 
Xx∈/  and we have some ),( da ′′  such that )(mod ngdc xa ′≡′ , the adversary can compute ),( da  

satisfying (3) by going through all X  members and without requiring sK . Then, he would obtain a relation 

)(mod)/( nddc xaa ′≡−′ . If the proof ),( da ′′  does not satisfy (3), then x  does not divide aa −′ . So, the 

adversary can invert aa −′  modulo x  and obtain a relation cnwx =mod  which is a proof of membership 
although x  has been deleted. Security collapses. So, it is important to provide only proofs ),( da  such that 
(3) holds. A similar weakness was spotted in [10]. It was based on a proposal to compute ),( da  from  

y X

y
∈
∏ )(mod nϕ  instead of 

y X

y
∈
∏ , which is quite a bad idea! The above procedure is safe. (Indeed, its 

computation does not require the secret key, so it is zero-knowledge.) 
One drawback of LLX is that after deleting x  from X  we cannot create a proof of non-membership 

for x  except by recomputing a  from scratch, since (3) must be satisfied. Although it seems dynamic, it fails 
to provide the promised efficiency since we need X  to compute a  and, hence, only offers a partially 
dynamic universal accumulator. A similar drawback exists in the WitGen algorithm. Indeed, the authority 
willing to issue a proof of non-membership for a non-member which never needed such a proof has to go 
through the entire X  structure. 
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3. WEAK DYNAMIC ACCUMULATORS FOR ARBITRARY DOMAINS 

In this section, we define the notion of weak dynamic accumulator where elements can be dynamically 
added to the accumulator. It's called a weak dynamic accumulator because it only considers adding and not 
deleting elements, and that is all we need for our construction in Section 4. When compared to Dynamic 
Accumulators in Def. 11, WD accumulators do not require an AccVal to compute c  from X. 

 
Definition 5 (Weak Dynamic (WD) Accumulators). A  weak dynamic accumulator WDAcc, with a 

domain P, a set PX ⊆ , and values Xx∈  to be accumulated, consists of the following algorithms.   
– A setup probabilistic algorithm ),()(1KeyGen ps

k KK→ , where sK  is only used by the authority 

and pK  is public.  

– An algorithm cKK ps →),(InitAccVal , which computes an initial accumulator value c  of the 
empty set, from the keys.  
– An algorithm )extra,(),,,(AddEle cxcKK ps ′→ , which computes the accumulator c′  for 

}{xX +  from the accumulator c  for X . We must have Xx∈/  and we say that x  is inserted into X . 
The algorithm also returns some extra information extra , which might be needed for dynamic witness 
update.  
– An algorithm WyWxccK p ′→′ ),,,extra,,,(UpdWit  to generate a proof W ′  for y  in accumulator 

c′  from a proof W  for y  in accumulator c , where )extra,(),,,(AddEle cxcKK ps ′→ .  

– A predicate ),,,(Verify WxcK p  to check a proof.  
 

Note that all WD accumulators are dynamic, by definition. Hence, the constructions due to Li et al. or 
Camenisch and Lysyanskaya are both WD accumulators. Moreover, Def. 3, the correctness definitions, can 
be applied to WD accumulators considering +  as the only possibility for op . Furthermore, the security 
notion for a WD accumulator is a special case of a Chosen Element Attack scenario since there are no 
deletions. 

 
Definition 6 (Security of a WD accumulator). The security of the WD accumulator is defined in 

terms of a game, based on a security parameter k , played by a polynomially bounded adversary. Firstly, 
KeyGen  is run and pK  is given to the adversary. Secondly, the adversary selects a polynomially bounded 

number l . There are registers sK , iX , and ic , lK,1,=i , for a secret key and to keep track of l  sets iX  

and their accumulator values ic . Initially, all iX 's are empty and ic  is set to ),(InitAccVal ps KK . The 

adversary can then call an ,.,.),,(AddEle ips cKK oracle for a selected i  which updates iX  and ic  

accordingly. It is not allowed to add an x  to iX  when x  is already in iX . After making many oracle 

queries, the adversary ends by producing some ),,( Wxi . The adversary wins if W  is an incoherent proof 

for x  with respect to iX  and accumulator ic .  

We now describe a generic way of transforming a WD accumulator 0WDAcc  with domain ,P  set of 
elements x  with some special form, to a WD accumulator with an arbitrary domain, i.e., a finite subset of 

*{0,1} . In this generic transformation, we will make use of a signature scheme. In the following description, 
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the algorithms, values, and predicates with index of 0, e.g., 0KeyGen , refer to the corresponding items in 

0WDAcc  defined as above, whereas values indexed by sig  refer to those of a signature scheme. 

We assume that the elements in P  can be enumerated starting from init= hh  and then iterating by 
means of an operation h←next.elementሺ݄ሻ. The overall idea is that the value of the new accumulator consists 
of a pair )last.h,( 0c , where 0c  is the accumulator value for 0WDAcc  and the last added last.h  value. To 
add a new string x , we get a new h  using next.element and we bind h  to x  using a signature on ),( hx . A 
witness for x  is a triplet ),,( wh σ , where h  is the bound value, σ  is a valid signature, and w  is a witness 
for h  in 0WDAcc . When a new x  is added, the witness for it is computed and returned as the extra  
information. 

 
A generic transformation to obtain a WD accumulator with arbitrary domain:    
Domain: S  is a large enough subset of *{0,1} .    
KeyGen(1k): run )(1KeyGen0

k  and obtain 0
pK  and 0

sK . Further, run )(1KeyGensig
k  and obtain       

),( sigsig
ps KK . Then ),(= sig0

ppp KKK  and ),(= sig0
sss KKK .  

InitAccVal(Kp,X) →c=(c0, hinit): where 0c  is the output of ),(InitAccVal 000
ps KK . 

  
AddEle(Ks, Kp,(c0, last.h),x): Let nt(last.h)next.eleme←h  denote the next element in the list and call 

)extra,'(),,,(AddEle 0
00000 chcKK ps → . Then let ),,(sig sig hxKs←σ . Return ))extra,(),,'(( 0

0 σhc .   

UpdWit(Kp,(c0, last.h), ( '0c , next.h), (σ,extra), x, W, y): If yx = , then return )extra,,next.h( σ . If yx ≠ , 
extract h  and w  from ),,(= whW σ  and then return .)),,next.h,extra,',,(UpdWit,,( 0000 hwccKh pσ  

Verify(Kp, (c0, last.h), x, (h,σ,w)): is true if and only if both )),,(,(Verify sigsig σhxK p  and 

),,,(Verify 000 whcK p  are true. 
 

Very similar generic transformations exist in the literature, see for example [4], where it is suggested 
that the issuer of the accumulator would need to publish a mapping from S  to P  used along with a 
signature scheme. The advantage of our scheme compared to those approaches is that we do not require any 
mapping to be published: we just assume that the elements of P  can be enumerated and that it is easy to 
move to the next element, given the previous one. 

The following theorem states that starting from a correct and secure WD accumulator with domain P  
and using a secure signature scheme, we obtain a correct and secure WD accumulator with the arbitrary 
domain S  with the above generic transformation. 

 
Theorem 7. Consider a correct and secure WD accumulator 0WDAcc  and a secure digital signature 

scheme sig  (i.e., signatures are unforgeable under chosen message attacks). The resulting WD accumulator 
WDAcc of the above generic transformation is correct and secure.  

  
Proof. For simplicity, we show the proof for the case of deterministic algorithm, hence assume 1=l . 

The general case follows similarly. 
The correctness follows immediately as both the signature's and the original accumulator's verification 

predicate are being verified. More precisely, we need to show that WDAcc is correct according to Def. 3. 
Since it is not a universal accumulator, all we need to show is that ܹ ⊢ ሺݔ, ܺ, ܿ, ܾሻ implies 

,),,,(Verify WxcK p  for all probabilistic polynomial time adversaries, and for all possible choices of 

,,, XxW  and c. Note that both AddEle and UpdWit  call upon the respective algorithms in 0WDAcc . In 

particular, we have that ),(= 0 hcc , for some h . Hence, ܹ ⊢ ሺݔ, ܺ, ܿ, ܾሻ for WDAcc implies that 	
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ܹ ⊢ ሺ݄, ܺ, ܿ, ܾሻ for 0WDAcc . Now, since 0WDAcc  is a correct accumulator, ܹ ⊢ ሺ݄, ܺ, ܿ, ܾሻ 
implies ),,,(Verify 0 WhcK p , which in turn implies ),,,(Verify WxcK p . 

Moreover, as the signature scheme is only binding elements of the two domains together, any 
incoherent witness with respect to the domain S  of WDAcc produces an incoherent witness for a 
corresponding element in the domain P . More precisely, we can reduce an adversary A who can find an 
incoherent proof with respect to WDAcc to an adversary B who produces an incoherent proof with respect 
to 0WDAcc . We now outline this reduction. 

According to the security game of Def. 6 for WDAcc, KeyGen  is run and ),(= sig0
ppp KKK  is given 

to the adversary. Initially, X  is empty and the accumulator is set to ),(InitAccVal ps KK . In particular, the 

value of the accumulator c  is ),( init
0 hc , where 0c  is the output of ),(InitAccVal 000

ps KK . Then A can call 

the ,.,.),,(AddEle cKK ps  oracle which updates X  and c  accordingly, but is not allowed to add an x  to 
X  when x  is already in X . In particular, each AddEle query lets nt(last.h)next.eleme:=h , calls 

)extra,(),,,(AddEle 0
0000 chcKK ps → , computes ),,(sig:= sig hxKsσ , and returns ))extra,(),,(( 0

0 σhc . 
After enough oracle queries, the adversary ends the game by producing some ),( Wx  which is an incoherent 
proof for x  with respect to X  and accumulator c , where ),,(= wxW xσ . 

Now let's look at the game played by B. Firstly, 0KeyGen  is run and 0
pK  is given to the adversary. 

Initially, 0X  is empty and 0c  is set to ),(InitAccVal 000
ps KK . The adversary calls 

,.,.),,(AddEle 0000 cKK ps  oracles to update 0X  and 0c  accordingly, but is not allowed to add an 0x  to 0X  

when 0x  is already in 0X . Once the adversary has made enough queries, she produces some ),( 0 wx . She 
wins if w  is an incoherent proof for 0x  with respect to 0X  and accumulator 0c . 

We are now going to use A to help B win his game. Upon receiving 0
pK , B runs )(1KeyGensig

k  and 

obtains ),( sigsig
ps KK . Then provides A with ),(= sig0

ppp KKK . For every ,.,.),,(AddEle cKK ps  oracle 

query of A, B does the following. He lets nt(last.h)next.eleme:=h , calls 

)extra,(),,,(AddEle 0
0000 chcKK ps → , computes ),,(sig:= sig hxKsσ , and returns ))extra(,),,(( 0

0 σhc  

to A. Note that B posses sK  because he ran )(1KeyGensig
k  at the beginning of this reduction. Finally, A 

provides B with some ),( Wx  which is an incoherent proof for x  with respect to X  and accumulator c. 

Note that witnesses of WDAcc are of the form ),,( wh σ , where ),,(sig:= sig hxKsσ  and the accumulator 

c  is of the form ))extra,(),,(( 0
0 σhc . Hence, an incoherent witness ),,( wh σ  of x  in WDAcc implies an 

incoherent witness W  of h  in 0WDAcc .                                                                                          □ 

4. FULLY DYNAMIC UNIVERSAL ACCUMULATORS 

In this section we formalize the notion of fully dynamic universal accumulator, then show how to 
construct some based on the [LLX] accumulator and a weak dynamic accumulator. 

4.1. Definitions 

We say that a dynamic universal accumulator is fully dynamic if the following conditions are satisfied:   
1. We can always create a non-membership proof for a new x  (i.e., a value x  occurring for the first 

time or a newly deleted x ) without using X. 
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2. We can create a proof of membership without using X  for a newly added x .  

That is, we can create proofs for newly occurring values x  (e.g., non-members) with an algorithm 
which does not depend on the cardinality of  X. To make this change possible, we introduce a new operation 
dec  in UpdEle  to  “declare” new non-members, and we make UpdWit  run with yx =  without any prior 
witness W  for operations +  and dec. This UpdEle  can be used to compute the initial proof of non-
membership for x . However, it requires to update the accumulator value c. More formally, we define a fully 
dynamic universal accumulator as follows. 

 
Definition 8 (Fully Dynamic Universal (FDU) Accumulator). A fully dynamic universal 

accumulator FDUAcc , with a domain P, a set PX ⊆ , and values Xx∈  to be accumulated, consists of 
the following algorithms.   

– A setup probabilistic algorithm ),()(1KeyGen ps
k KK→ , where sK  is only used by the authority 

and pK  is public.  

– An algorithm cXKK ps →),,(AccVal , which computes an accumulator value c  of the set X,  from 
the keys.  
– An algorithm )extra,(),op,,,(UpdEle cxcKK ps ′→ , where +=op , −=op , or dec=op , 

which computes the accumulator c′  from an accumulator c . When +=op , we must have Xx∈/  and 
we say that x  is inserted into X. When −=op , we must have Xx∈  and we say that x  is deleted 
from X. When dec=op , we must have Xx∈/  and we say that x  is declared as a non-member of X. 
The algorithm also returns some extra information extra . For dec=op , the algorithm also returns 
some new proof of non-membership for x  (if not already in extra ).  
– An algorithm WxXcKs →),,,(WitGen  to generate a proof of membership or non-membership 
for the value x  with respect to accumulator c  of X. 
– An algorithm WyWK p ′→),,extra,(UpdWit  to generate a proof W ′  for y  in accumulator after 

UpdEle  returned extra  from a previous proof W. 
– A predicate )(IsMem W  telling whether W  is a proof of membership (true case) or a proof of non-
membership (false case).  
– A predicate ),,,(Verify WxcK p  to check a proof.  

Note that UpdWit  no longer requires that y  is different from the element involved in the last 
UpdEle  call. 

The correctness notion is similar to that of WD accumulators with the obvious change that the 
witnesses are not only produced by UpdWit , but also by WitGen and that witnesses are either for 
membership or non-membership proofs. This change was foreseen in our general correctness notion in Def. 3. 

Next, we detail a variant of the Chosen Element Attack scenario corresponding to FDU accumulators, 
in which the adversary is allowed to declare new elements as well as add or delete. 

 
Definition 9 (Extended Chosen Element Attack (ECEA) Model). The security of an FDU 

accumulator is defined in terms of a game, based on a security parameter k, played by a polynomially 
bounded adversary. Firstly, KeyGen  is run and pK  is given to the adversary. Secondly, the adversary 

selects a polynomially bounded number l. There are registers sK , iX , and ic , lK,1,=i , for a secret key 

and to keep track of l  sets iX  and their accumulator values ic . Initially, all iX 's are empty and ic  is set to 
),,(AccVal ips XKK . The adversary can then call an ,.,.),,(UpdEle ips cKK  oracle for a selected i  
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which updates iX  and ic  accordingly. It is not allowed to add an x  to iX  when x  is already in iX , nor is 

it allowed to delete x  from iX  when x  is not in iX . Moreover, the adversary is not allowed to declare an 
element which has already been declared, i.e., is either a member or a non-member. The adversary can also 
call a ,.),,(WitGen iis XcK  oracle for a selected i  and an ,.),(AccVal ps KK  oracle which do not update 

an iX  of ic . After making many oracle queries, the adversary ends by producing some ),,( Wxi . The 

adversary wins if WX is an incoherent proof for x  with respect to iX  and accumulator ic .  

4.2. Instantiating an FDU Accumulator based on the Strong RSA Assumption 

Below we construct a fully dynamic universal accumulator based on a variant of the [LLX] 
accumulator. The main idea relies on providing a two-layer accumulator. The lower layer 2c  is a WD 
accumulator where we accumulate all declared elements. I.e., all values which have ever be used, whether 
they are member or not. There is no withdrawal in this layer. The upper layer 1c  is a fully dynamic 
accumulator which can only treat elements of the lower layer. Essentially, ),,,( whda  is a proof of non-

membership for x  in accumulator ),( 21 cc , if )(mod 11 nhdc xa ≡  and w  is a proof of membership for h  in 

accumulator 2c , i.e., .=mod 22 cnwh  To create a proof of non-membership for a newly deleted member or 

a new comer who is not a member, we only have to pick a random xa Z∈  and *Znd ∈  and compute the 

corresponding h  to add in the second accumulator. That is, the WD accumulator is only used to validate new 
h  values which are needed to create new proofs. Since proofs also have a part in the PDU accumulator, it is 
not necessary to delete h  from the WD accumulator. 

Equation (3) is now replaced by  

 ( ) ,mod=mod= 1

1
1

1
0

0 nhcdandx
y

y
aa xa

Xy

Xy −

∈

∈

∏

∏
 (4) 

 where 0a , respectively 0X , is the initial value for a , respectively ,X  and 0a  is chosen at random. 

Our accumulator is defined as follows. The value of c  is defined by ),(= 21 ccc  corresponding to two 

accumulators 1c  and 2c . It will be convenient in the security game to define two sets 1X , defined as before, 

and 2X , a finite set of elements, corresponding to this value c . 

The set 1X  is updated by UpdEle  and is accumulated in the value 1c , whereas the set 2X  is 

accumulated in 2c  by means of a WD accumulator with arbitrary domain. Hence, the value of c  is 

deterministically defined by 1c  and 2c , where  

 .mod= 1
1

1 ngc

x

Xx
∏
∈  

The value of c  will corresponds to 1= XX . So, there are many c 's corresponding to the same X  

depending on 2X . 
In the following description, the algorithms, values, and predicates with index of 1, e.g., 1KeyGen , 

refer to the corresponding items in the PDU accumulator of Li et al. [7], whereas the algorithms, values, and 
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predicates with index of 2, e.g., 2Verify , refer to those of a WD accumulator with arbitrary domain as 
defined in Section 3. 

A Concrete FDU accumulator: 
Domain: P  is a large enough set of odd prime numbers, e.g., all odd numbers up to a given bound B .   
KeyGen(1k): run )(1KeyGen1

k  and obtain ),(= 11
1 gnK p  and 1

1 = rKs . Further, run )(1KeyGen2
k  and  

obtain ),( 22
ps KK . Then ),(= 21

ppp KKK  and ),(= 21
sss KKK .   

AccVal(Kp,X): compute  

11 mod= ngc
x

Xx
∏
∈  

 and return ))(InitAccVal,(= 2
21 sKcc . Note that sK  is not used.   

UpdEle(Ks, Kp, c, op, x): if +=op , we have 111 mod= ncc x′  and 22 = cc′  ( 1
sK  is not required). Set 

),,,(=extra cxc ′+ . If −=op , we set 1

1

11 mod= ncc x′  ( 1
sK  is required) and proceed like for dec.=op  

If dec=op , we pick xa Z∈  and *

1
Znd ∈  at random, and compute 11 mod= ndch xa − , then we set 

)),,,(,nonmem(= 2chdaW . We set ),,,(AddEle=)extra,( 2
22

222 hcKKc ps′ . The extra information 

is then set to )extra,,,,op,(=extra 2Wcxc ′ . 

WitGen(Ks, c, X, x): if Xx∈ , then ),mem(= wW  with 1

1

1 mod= ncw x . This requires sK , but not X. It 

can also be computed without sK , but using X  by observing that  

.mod= 1
}{

1 ncw
y

xXy
∏

−∈  

 If ,Xx∈/  then )),(,nonmem(= daW  as in the [LLX] accumulator by using X.   

UpdWit(Kp, extra, W,y): with )extra,,,,op,(=extra 2ecxc ′ , there a several cases to update the proof for y  
in X  after adding or deleting x  for yx ≠ :    

– W  of the form ),mem( w  and x  just added ( +=op ): set ),mem(= wW ′′  with .mod= 1nww x′  
– W  of the form ),mem( w  and x  just deleted ( −=op ): set ),mem(= wW ′′  with 

1

1

mod= ncww y
xz

z
−

′′  and y
x

z mod1= . 

– W  of the form ),mem( w  and x  just declared ( dec=op ): WW =′ . 
– W  of the form ),,nonmem( da  and x  just added ( +=op ):  set )],[,nonmem(= ydaW ′′′  with 

aza =′ , 1

1

mod= ndcd y
xza −

−
′  and y

x
z mod1= . 

– W  of the form ),,nonmem( da  and x  just deleted ( −=op ): set )],[,nonmem(= ydaW ′′  with 

axa =′ . 
– W  of the form ),,nonmem( da  and x  just declared ( dec=op ): .=WW′  
– W  of the form ),,,,nonmem( whda  and x  just added ( +=op ): set 

),,],[,nonmem(= whdaW y′′′  with aza =′ , 1

1

mod= ndcd y
xza −

−
′  and y

x
z mod1= . 
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– W  of the form ),,,,nonmem( whda  and x  just deleted ( −=op ): set 

),,],[,nonmem(= whdaW y ′′′  with axa =′  and ),,extra,',,(UpdWit= 222
2

2 hwccKw p′ . 

– W  of the form ),,,,nonmem( whda  and x  just declared ( dec=op ): 
),,extra,',,(UpdWit= 222

2
2 hwccKw p′ . 

For yx = , there are two cases:    

            – x  just added ( +=op ): set ),mem(= wW ′  with 1= cw  from ),(= 21 ccc .   
            – x  just deleted ( −=op ) or just declared ( dec=op ): set eW =′ .  

IsMem(W): is true if and only if W  is of form ,.)mem( .  

Verify(Kp, c,x,W): if W is of the form ),mem( w , it is true if and only if 11 mod= nwc x . If W  is of form 

,),,nonmem( da  it is true if and only if )(mod 1ngdc xa ≡ . If W  is of the form 

,),,,,nonmem( whda  it is true if and only if )(mod 11 nhdc xa ≡  and ),,,(Verify 2
2

2 hwcK p  holds.  
 

We now prove the correctness and security of our FDU accumulator scheme based on the Strong RSA 
assumption. 

 
Theorem 10. If the Strong RSA Assumption holds, the aforementioned FDU accumulator is correct 

and secure under the ECEA model.  
 
Proof. The correctness follows immediately since both PDU and WDU considered as building blocks 

of our FDU are correct accumulators according to Def. 3. 
All oracle calls in the security game preserve the relations described in the AccVal  and WitGen  

algorithms. Furthermore, since the game does not allow the adversary to add a member or to delete a non-
member, all oracle calls in the game can be simulated without knowing 1

sK . Hence, the security is equivalent 
to forging PX ⊆  and Px∈  together with W  which is an incoherent proof for x  with respect to X  and 

pK  as the only input. Hence, an incoherent witness implies breaking the strong RSA assumption. In other 

words, computing an incoherent witness for Xx∈  implies an incoherent witness for the PDU accumulator 
of Li et al. [7] and computing an incoherent witness for Xx∉  implies that, given 1n  and a random 1c  
drawn from *

1nZ , the adversary has found *

1nw Z∈  and 1>x  such that 11 mod= nwc x . 

More precisely, we can reduce an adversary A who produces incoherent proofs in the aforementioned 
FDU accumulator to an adversary B who produces incoherent proofs in either the WD accumulator with 
arbitrary domain as defined in Section 3 or the PDU accumulator of Li et al. [7], which, in turn, implies an 
adversary who breaks the Strong RSA Assumption. The reduction is detailed below. 

According to Def. 9, the security game starts with running KeyGen  and giving pK  to the adversary. 

That is, both 1KeyGen  and 2KeyGen  are run to obtain 1
1

11
1 =),,(= rKgnK sp , and .),( 22

ps KK  Then, 

),(= 21
ppp KKK  is given to the adversary. Initially, X  is empty and c  is set to .),(AccVal XK p  That is, 

11 mod= ngc
x

Xx∏ ∈  is computed and ))(InitAccVal,(= 2
21 sKcc  is returned. Note that sK  is not used in 

this computation. 
Then, the adversary calls ,.,.),,(UpdEle cKK ps  oracle queries to update X  and c  accordingly. She 

is not allowed to add an x  to X  when x  is already in ,X  nor is she allowed to delete x  from X  when 
x  is not in X. Moreover, the adversary is not allowed to declare an element which has already been declared, 
i.e., is either a member or a non-member. When an element x  is being added, we have 111 mod= ncc x′ , i.e., 
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using the PDU accumulator of Li et al. [7], and 22 = cc′ , i.e., in the WDU accumulator. If x  is being 
declared, random xa Z∈  and *

1
Znd ∈  are picked to compute 11 mod= ndch xa − , again as in the PDU 

accumulator of Li et al. [7], to obtain )),,,(,nonmem(= 2chdaW . If the element x  is being deleted, we 

have 1

1

11 mod= ncc x′  and proceed like the declaration process. Note that 1
sK  is not required in any of these 

steps. 
The adversary can also call a ,.),,(WitGen XcKs  oracle query. If Xx∈ , then ),mem(= wW  with 

1
}{

1 mod= ncw
y

xXy∏ −∈ , which can be computed without sK , but using X. If Xx∈/ , then 
)),(,nonmem(= daW  as in the PDU accumulator of Li et al. [7]. Note that, again, sK  is not required in 

any of these steps. 
Once the adversary has made enough oracle queries, she ends the game by producing some ),( Wx  that 

is an incoherent proof for x  with respect to X  and accumulator ),(= 21 ccc . The witness W  is of the form 
),mem( w , ),,nonmem( da , or ),,,,nonmem( whda . We are going to consider each case separately. 

– If W , the incoherent proof, is of the form ),mem( w , then, by definition of the verification 

algorithm Verify , we must have that 11 mod= nwc x , which directly breaks the Strong RSA 
assumption. 
– In order for an incoherent witness W  of form ),,nonmem( da  to pass the verification step, we must 

have that )(mod 1ngdc xa ≡ . This translates to an incoherent witness for the PDU accumulator of Li 
et al. [7]. 
– If the incoherent witness W  is of the form .),,,,nonmem( whda  Then, both )(mod 11 nhdc xa ≡  
and ),,,(Verify 2

2
2 hwcK p  must hold for it to pass the verification step. This translates to either an 

incoherent witness for the PDU accumulator of Li et al. [7] or an incoherent proof for the WD 
accumulator of Section 3. 

Hence, an adversary who can find incoherent witnesses for our FDU accumulator is capable of 
producing incoherent proofs for the WD accumulator with arbitrary domain as defined in Section 3 or the 
PDU accumulator of Li et al. [7], both of which are based on the Strong RSA assumption. 

□ 
Note that setting hg =  reduces the structure of our non-membership proofs to that of Li et al. [7]. 
We point out that the efficacy of our proof structure allows the authority to perform efficient batch 

updates (with the secret key) for a given value x . The authority first checks to see whether x  is a member 
of the accumulated set or not. If a member, then using the same procedure as in the scheme of Li et al. the 
authority can efficiently update the witness. This is not incompatible with the impossibility of batch update 
without the secret key [3]. However, the scheme of Li et al. did not offer such a mechanism for a non-
member element. In our scheme, we can create a new non-membership proof deploying the mechanism for 
declaration. 

5. CONCLUSIONS AND FUTURE WORK 

We constructed the first fully dynamic universal accumulator, based on the Strong RSA assumption, by 
providing a new proof structure for the non-membership witnesses. Moreover, this new structure of non-
membership proofs allows our scheme to be the first of its kind to offer an  efficient batch update mechanism 
to the authority, for both members and non-members. We obtained our fully dynamic universal accumulator 
by means of deploying a weak dynamic accumulator with arbitrary domain, which we showed how to obtain 
from a weak dynamic accumulator with a domain of certain form. 
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A. EXTRA DEFINITIONS 

Definition 11 (Dynamic Accumulators). A dynamic accumulator DAcc, with a domain P , a set 
PX ⊆ , and values Xx∈  to be accumulated, consists of the following algorithms.   

– A setup probabilistic algorithm ),()(1KeyGen ps
k KK→ , where sK  is only used by the 

authority and pK  is public.  

– An algorithm cXKK ps →),,(AccVal , which computes an accumulator value c .  

– An algorithm )extra,(),op,,,(UpdEle cxcKK ps ′→ , where +=op  or −=op , which 

computes the accumulator c′  for }{op xX  from the accumulator c  for X . When +=op , we must 
have Xx∈/  and we say that x  is inserted into X . When −=op , we must have Xx∈  and we say 
that x  is deleted from X . The algorithm also returns some extra information extra , which might 
be needed for dynamic witness update.  
– An algorithm WxXcKs →),,,(WitGen  to generate a proof of membership for the value x  with 
respect to accumulator c  of X .  
– An algorithm WyWxccK p ′→′ ),,,op,extra,,,(UpdWit  to generate a proof W ′  for y  in 

accumulator c′  from a proof W  for y  in accumulator c , where 
)extra,(),op,,,(UpdEle cxcKK ps ′→ . It must be the case that yx ≠ .  

– A predicate ),,,(Verify WxcK p  to check a proof.  
  

Definition 12 (Universal Accumulators).  A  universal accumulator scheme UAcc, with a domain P  
a set PX ⊆ , and values Xx∈  to be accumulated, consists of the following algorithms.   

– A setup probabilistic algorithm ),()(1KeyGen ps
k KK→ , where sK  is only used by the 

authority and pK  is public.  

– An algorithm cXKK ps →),,(AccVal , which computes an accumulator value c .  

– An algorithm WxXcKs →),,,(MemWitGen  to generate a proof of membership for Xx∈ .  

– An algorithm WxXcKs →),,,(enNonMemWitG  to generate a proof of non-membership for 
XPx \∈ .  

– A predicate )(IsMem W  telling whether W  is a proof of membership (true case) or a proof of 
non-membership (false case).  
– A predicate ),,,(Verify WxcK p  to check a proof.  
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