
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 14, Special Issue 2013, pp. 269–285

A FULLY DYNAMIC UNIVERSAL ACCUMULATOR

Atefeh MASHATAN and Serge VAUDENAY

EPFL, Lausanne, Switzerland
http://lasec.epfl.ch

A dynamic universal accumulator is an accumulator that allows one to efficiently compute both
membership and nonmembership witnesses in a dynamic way. It was first defined and instantiated by
Li et al., based on the Strong RSA problem, building on the dynamic accumulator of Camenisch and
Lysyanskaya. We revisit their construction and show that it does not provide efficient witness
computation in certain cases and, thus, is only achieving the status of a partially dynamic universal
accumulator. In particular, their scheme is not equipped with an efficient mechanism to produce non-
membership witnesses for a new element, whether a newly deleted element or an element which
occurs for the first time.
We construct the first fully dynamic universal accumulator based on the Strong RSA assumption,
building upon the construction of Li et al., by providing a new proof structure for the non-
membership witnesses. In a fully dynamic universal accumulator, we require that not only one can
always create a membership witness without having to use the accumulated set for a newly added
element, but also one can always create non-membership witnesses for a new element, whether a
newly deleted element or an element which occurs for the first time, i.e., a newcomer who is not a
member, without using the accumulated set.

Key words: Dynamic Accumulators, Universal Accumulators.

1. INTRODUCTION

Cryptographic accumulators allow us to encapsulate a large number of elements in a single short
accumulator along with short witnesses that can be used for proving whether or not an element has been
accumulated. The notion of cryptographic accumulators was first introduced by Benaloh and de Mare [1] and
further pursued by many researchers as they come very practical in many scenarios such as anonymous
credential systems and group signatures, see for example [9, 8, 4], and that they can be instantiated based on
a variety of techniques and hardness assumptions, for instance, the strong RSA assumption, bilinear maps,
the Decisional Diffie-Hellman assumption, and one-way hash functions.

We are now going to focus on a number of schemes which are based on the Strong RSA assumption
and they were built one after the other in an evolutionary process. Barić and Pfitzmann [2] followed the work
of Benaloh and de Mare [1] and introduced collision-free accumulators. This scheme provided membership
proofs. Later, Camenisch and Lysyanskaya [5] augmented the latter work and proposed a dynamic
accumulator, in which elements can be efficiently added to and removed from the set of accumulated values.
Finally, Li et al. [7] built their scheme based on the proposal of Camenisch and Lysyanskaya [5] and
introduced universal accumulators in which there is a witness, whether a member or not, for every elements
in the input domain. (See [6] for a survey.) Although Li et al. promise to provide efficient non-membership
proofs, we will see that the structure of the witness fails to offer efficient dynamic proof computation for
certain elements and, hence, achieves the desired dynamism only partially. In a fully dynamic universal
accumulator, we require that not only one can always create a membership witness without having to use the
accumulated set for a newly added element, but also one can always create non-membership witnesses for a
new element, whether a newly deleted element or an element which occurs for the first time, i.e., a
newcomer who is not a member, without using the accumulated set.

Although accumulators are not so new elements in cryptographic schemes, formal security definitions
and classifications on different requirements have not been adequately dealt with. The literature often fails to

2 A Fully Dynamic Universal Accumulator 270

provide exact correctness or security definitions for different classes of accumulators and there have been
several security notion proposed. We focus on the strongest security notion, considering a powerful
adversary who can invoke the authority with polynomially many accumulator initiations. This notion is
referred to as the Chosen Element Attack model, in the literature [11]. Informally, a polynomially bounded
adversary interacts with the authority who maintains the accumulators. The adversary invokes the authority
to initiate a polynomial number of accumulators and make changes to them according to the adversary's
instructions on what element to add or delete. Finally, the adversary chooses an element and an accumulator
and produces a witness. The adversary wins if the witness proves that the chosen element is not a member
when in fact it is, or it proves that the chosen element is a member when in fact it is not.

Accumulators have proven to be a very strong mathematical tool with applications in a variety of
privacy preserving technologies where there is a desire to represent a set of elements in a compact form, for
example, certificate revocation schemes, anonymous credential systems, and group signatures. In particular,
fully dynamic universal accumulators can come handy in a variety of real-life scenarios. For example,
consider the set of people who have a medical condition that allows them to benefit from some discount
medication, but denies them the access to certain areas, such as swimming pools. These people should be
able to efficiently prove their membership at a pharmacy and everyone else should be able to show their
nonmembership when entering a swimming pool, for example.

It is known that batch updates cannot be done [3]. This means that updating a (non)membership proof
without the secret key requires to go through all the accumulator updates.

Our contributions.
In this paper, we first point out the lack of efficiency in the dynamic updating process of the dynamic

universal accumulator of Li et al. [7], where the authority has to go through the already accumulated set to
create non-membership witnesses for certain members, namely newly considered values which are not
members and newly deleted members, defying the claim that the scheme provides efficient non-membership
proofs in all cases.

Moreover, we introduce the notion of weak dynamic accumulators, a special case of dynamic
accumulators where the only operation is addition and the elements can dynamically be added to the
accumulator. Hence, a dynamic accumulator is trivially a weak dynamic accumulator. Further, we present a
generic transformation from a weak dynamic accumulator with a domain having a certain structure, e.g., the
domain being a set of odd primes, to a weak dynamic accumulator with a domain of arbitrary form, e.g., a
subset of *{0,1} .

Furthermore, we formally define what we require from a fully dynamic universal accumulator and
instantiate the first such scheme based on the Strong RSA assumption and a weak dynamic accumulator with
an arbitrary domain. This instantiation builds on the previous schemes based on the same hardness
assumption by keeping the structure of the membership proofs, due to Camenisch and Lysyanskaya [5], but
providing a new structure for the non-membership proofs. This property, i.e., being fully dynamic, comes at a
price. Our accumulators are a bit larger. However, as it is more efficient when introducing new elements
compared to previously introduced partially dynamic accumulators, it achieves the same level of efficiency
as the set of accumulated values is growing. Moreover, the efficacy of the new structure of non-membership
proofs allows the authority to perform batch updates, a desired property that had not been achieved
successfully so far.

Structure of the paper.
The rest of the paper is organized as follows. Section 2 is dedicated to briefly describing, notations,

definitions, different classes of already existing accumulators, and the particular variant of the dynamic
accumulator of Camenisch and Lysyanskaya [5] due to Li et al. [7]. In Section 3, we define the notion of
Weak Dynamic Accumulators and present a generic transformation to obtain a Weak Dynamic Accumulators
with arbitrary domain. Finally, Section 4 is devoted to defining Fully Dynamic Universal Accumulators
followed by an instantiation whose security is based on the strong RSA assumption. Last but not least, we
wrap up with some concluding remarks in Section 5.

271 Atefeh Mashatan and Serge Vaudenay 3

2. PRELIMINARIES

In this section, we list definitions, notations, and the building blocks which will be used to construct
and analyze our scheme in the following section.

Throughout this paper, we use the expression)(xAy ← to mean that y is the output of algorithm A
running on input x. An algorithm is said to have polynomial running time, if its running time can be
expressed as a polynomial in the size of its inputs. If X denotes a set, || X denotes its cardinality and

Xx R∈ expresses that x is chosen from X according to the uniform distribution. If X and Y are sets,
then YX \ denotes the set of elements in X, but not in Y. For convenience, we also use }{xX + and

}{xX − when an element x is being added in or deleted from a set X. We also use the classical notion of a
negligible function: RNf →: is said to be negligible in k if for any positive polynomial function (.)p
there exists a 0k such that if k ≥ k0, then)(1/<)(kpkf .

The strong RSA assumption states that given an RSA modulus n and a random x drawn from *
nZ , it

is infeasible to find 1>e and *
ny Z∈ such that ye = x mod n.

2.1. Evolution of Cryptographic Accumulators

In this section, we illustrate the evolution of the cryptographic accumulators in the literature. There are
different notions of security used in the literature and, due to lack of space, we only focus on the strongest
notion, sometimes referred to as the Chosen Element Attack model. As for the notion of correctness of an
accumulator, one requires that correctly accumulated values have verifying witnesses, regardless of the type
of accumulator. The literature has often stopped here and has failed to provide a more precise definition of
correctness. We will provide the first formal definition of correctness that can be applied to several
categories of accumulators with different functionalities.

There is an authority who initiates and maintains the accumulator and interacts with other participants.
The authority generates the secret and public keys and keeps a state including the keys, the accumulated
value, the set of elements which are accumulated. The authority delivers the proofs to the participants. In the
security definition, the adversary asks the authority to provide certain proofs in the form of an oracle.

The definitions below are mostly gathered by Wang et al. [12], but contain some twists to make them
consistent with the following sections.

Definition 1 (Accumulators). An accumulator scheme Acc , with a domain P, a set PX ⊆ , and

values Xx∈ to be accumulated, consists of the following algorithms.
– A setup probabilistic algorithm),()(1KeyGen ps

k KK→ , where sK is only used by the

authority and pK is public.

– An algorithm cXKK ps →),,(AccVal , which computes an accumulator value c , for the set X,
from the keys.11
– An algorithm WxXcKs →),,,(WitGen to generate a proof of membership for Xx∈ in
accumulator c .
– A predicate),,,(Verify WxcK p to check a proof.

One problem with this primitive is the lack of any possibility to dynamically update a set X. Ideally, we
would like to insert or delete members of X and update the accumulator c accordingly. To make it efficient
we want all values to have a length which only depends on k and not on the cardinality of X. So, we amend
the definition by introducing the UpdEle and UpdWit algorithms. This defines the notion of Dynamic
Accumulator (see Def. 11 in Appendix).

1For some constructions, sK is not used by AccVal.

4 A Fully Dynamic Universal Accumulator 272

The accumulator does not consider proofs of non-membership. This is the next desired functionality to
have. This is done with the notion of Universal Accumulator (see Def. 12 in Appendix).

A proof W for x is said to be valid with respect to),(cX if and only if the predicate
),,,(Verify WxcK p holds. Moreover, a proof W for x is said to be coherent with respect to),(cX if and

only if it is valid and)(IsMem W is equivalent to		ݔ ∈ ܺ. One problem with this construction is that the
authority must figure out whether or not x is a member of X to generate a coherent proof. That is, the
information on X cannot be compressed. The lack of dynamism is also a problem.

Finally, we formalize the dynamic universal accumulator notion due to Li et al. [7] as follows. The
reason why we call it a partially dynamic universal accumulator is discussed below. Note that our formalism
is a bit more detailed that theirs to be consistent with the rest of our paper.

Definition 2 (Partially Dynamic Universal (PDU) Accumulators). A partially dynamic universal

accumulator PDUAcc, with a domain P, a set ܺ	 ⊆ ܲ, and values Xx∈ to be accumulated, consists of
the following algorithms.

– A setup probabilistic algorithm),()(1KeyGen ps
k KK→ , where sK is only used by the

authority and pK is public.

– An algorithm cXKK ps →),,(AccVal , which computes an accumulator value c of the set X,
from the keys.
– An algorithm)extra,(),op,,,(UpdEle cxcKK ps ′→ , where +=op or −=op , which

computes the accumulator c′ for }{op xX from the accumulator c for X. When +=op , we must
have Xx∈/ and we say that x is inserted into X. When −=op , we must have Xx∈ and we say
that x is deleted from X. The algorithm also returns some extra information extra , which might be
needed for dynamic witness update.
– An algorithm WxXcKs →),,,(WitGen to generate a proof of membership or non-membership
for the value x with respect to accumulator c of X.
– An algorithm WyWxccK p ′→′),,,op,extra,,,(UpdWit to generate a proof W ′ for y in

accumulator c′ from a proof W for y in accumulator c , where
)extra,(),op,,,(UpdEle cxcKK ps ′→ . It must be the case that yx ≠ .

– A predicate)(IsMem W telling whether W is a proof of membership (true case) or a proof of
non-membership (false case).
– A predicate),,,(Verify WxcK p to check a proof.

We let X be a subset of P which is initially empty. Every time we run),op(.,.,.,UpdEle x , we
replace X by }{op xX . Clearly, for WitGen to generate coherent proofs, WitGenIsMemo must be a
predicate to decide whether an arbitrary x belongs to X or not. Since we want c to have a length which
only depends on k (and not on the cardinality of X), it is not possible to require WitGen to generate
coherent proofs without X as an input while X has been filled. It is still possible to invoke WitGen to
create from X a new proof. Then, we count on UpdWit to update all coherent proofs.

With this notion, UpdWit cannot create a new witness for x = y, that is for a value y which has just
been added or deleted. This is why we call it Partially Dynamic Universal.

2.2. Formalizing the Notions of Correctness and Security for Accumulators

We now describe our notion of correctness than can be applied to several types of accumulators. This
definition is our attempt to formalize the notion of correctness which was missing in the literature. One
difficulty is that the accumulator interface introduces many options, and that we want to formalize that

273 Atefeh Mashatan and Serge Vaudenay 5

whatever sequence of option is selected, the accumulator always keep consistent properties. Here, the
sequence of options is arbitrary. We formalize this by introducing an adversary who can select it maliciously.

Intuitively, the notation Xc p means that c is a correct accumulator value computed for the set X,
while ܹ ⊢ ሺݔ, ܺ, ܿ, ሻ means that W݈ܾ is a valid computed proof for x being/not being (depending on the
Boolean bool) in Xc p .

Definition 3 (Correctness). Consider a game in which we first run),()(1KeyGen ps
k KK→ and

allow the adversary to take pK and sK and play with the rest of the algorithms available for the respective

accumulator, e.g., ,.),(AccVal ps KK , ,.,.,.)(MemWitGen sK , ,.,.,.)(enNonMemWitG sK ,

,.)op,.,,(UpdEle ps KK , or ,.,.,.)op,.,.,.,(UpdWit pK . We recursively define the relations Xc p and ܹ ⊢ ሺݔ, ܺ, ܿ, :ሻ by the following conditions݈ܾ
– If the adversary calls AccVal൫ܭ௦,ܭ, ܺ൯ → ܿ, then Xc p .
– If Xc p and the adversary queries)extra,(),op,,,(UpdEle cxcKK ps ′→ , then xXc opp′ .

– If Xc p and the adversary queries WxXcKs →),,,(WitGen or

,),,,(MemWitGen WxXcKs → then ܹ ⊢ ሺݔ, ܺ, ܿ, ሻ. If Xc݁ݑݎݐ p and the adversary calls

,),,,(enNonMemWitG WxXcKs → then	ܹ ⊢ ሺݔ, ܺ, ܿ, . ሻ݁ݏ݈݂ܽ
– If Xc p and the adversary called

WyWxccKcxcKK pps ′→′′→),,,op,extra,,,(UpdWitthen)extra,(),op,,,(UpdEle
with yx ≠ and ܹ ⊢ ሺݕ, ܺ, ܿ, ܾሻ, then ܹ′ ⊢ ሺݕ, ܺop, ܿ′, ܾሻ.

The accumulator scheme is said to be correct if for all probabilistic polynomial time adversaries, and
for all possible choices of W, x, X and c, we have that ܹ ⊢ ሺݔ, ܺ, ܿ, ܾሻ implies),,,(Verify WxcK p and, in
the case of universal accumulators, XxW ∈⇔)(IsMem .

Note that it is unusual to have an adversary in a definition of correctness. This is necessary here as we
want to have correctness whatever the history of interactions with the interface.

Next, we describe the Chosen Element Attack scenario [12] when defining security for a PDU
accumulator.

Definition 4 (Chosen Element Attack (CEA) Model). The security of a PDU accumulator is defined

in terms of a game, based on a security parameter k , played by a polynomially bounded adversary. Firstly,
KeyGen is run and pK is given to the adversary. Secondly, the adversary selects a polynomially bounded

number l . There are registers sK , iX , and ic , lK,1,=i , for a secret key and to keep track of l sets iX
and their accumulator values ic . Initially, all iX 's are empty and ic is set to),,(AccVal ips XKK . The

adversary can then call an ,.,.),,(UpdEle ips cKK oracle for a selected i which updates iX and ic

accordingly. It is not allowed to add an x to iX when x is already in iX , nor is it allowed to delete x
from iX when x is not in iX . The adversary can also call a ,.),,(WitGen iis XcK oracle for a selected i
and an ,.),(AccVal ps KK oracle which do not update an iX of ic . After making many oracle queries, the
adversary ends by producing some),,(Wxi . The adversary wins if W is an incoherent proof for x with
respect to iX and accumulator ic .

Note that when the algorithms are all deterministic, we can always reduce to 1=l and remove access
to the ,.),(AccVal ps KK oracle. This follows because calling AccVal on the same inputs is going to

produce the same outputs. Moreover, the information that the adversary obtains from calling AccVal for the
sets iX can all be simulated by a single set X.

6 A Fully Dynamic Universal Accumulator 274

2.3. An Instantiation of Partially Dynamic Universal Accumulators due to Li et al.

We now describe a PDU accumulator based on the scheme presented by Li et al. [7].
In what follows, we have a domain P of possible values for x with some specific form. A subset
PX ⊆ has an accumulator c and public parameters n and g . A proof of non-membership for XPx \∈

for c is a tuple),(da such that

.)(mod ngdc xa ≡

By writing a Euclidean division qxaa +′= , we can easily transform such a proof),(da into a new proof
),(da ′′ , with ndcd q mod= −′ , such that xa <0 ′≤ . We refer to

)mod,mod(=],[
)mod(

ndcxada x
xaa

x

−
−

as the “reduced'' proof, where the public parameters are implicit. Note that xda],[can be computed without
the secret key for any integer a . When a is a rational number, we need the secret key to compute it.

Domain: P is a set of odd prime numbers, e.g., all odd prime numbers up to a given bound .B

KeyGen(1k): pick two different prime numbers p and q such that
2

1−p
 and

2
1−q

 are both prime and not

in P , take pqn = ,)(
2
1= nr λ , and g an element of order r in *Zn . Then,),(= gnK p and .= rKs

AccVal (Kp,X): the value of c is defined by

 .mod= ngc
x

Xx
∏
∈ (1)

 Note that sK is not required to compute c .

UpdEle(Ks,Kp,c,op,x): if +=op , we have ncc x mod=′ (sK is not required). If −=op , we have

ncc x mod=
1

′ (sK is required). It returns),,op,(=extra cxc ′ . Since it is not allowed to delete a non-
member of X , c′ can be computed without sK but using X by applying (1).

WitGen(Ks,c,X,x): if Xx∈ , then),mem(= wW with ncw x mod=
1

. This does not require .X It can
also be computed without sK , but using X by observing that

 .mod= }{ ncw
y

xXy
∏

−∈ (2)

If Xx∈/ , then)],[,nonmem(= xdaW with
1

=
y X

a y
−

∈

∏ and 1=d .

Clearly, the final),(da is such that

 () .mod=mod=
1

1

1

ngcdandxya xa

Xy

−

−

∈

∏ (3)

The above computation requires .sK Below, we give an algorithm to compute xda],[without sK ,
but by going through all X members.
UpdWit(Kp,extra, W,y): with),,op,(=extra cxc ′ , there are four cases to update the proof for y in X after
adding or deleting x :

275 Atefeh Mashatan and Serge Vaudenay 7

− W of the form),mem(w and x just added (+=op): set),mem(= wW ′′ with nww x mod=′ .
− W of the form),mem(w and x just deleted (−=op): set),mem(= wW ′′ with

ncww y
xz

z mod=
1−

′′ and y
x

z mod1= .

− W of the form),,nonmem(da and x just added (+=op): set)],[,nonmem(= ydaW ′′′ with

aza =′ , ndcd y
xza

mod=
1−

−
′ and y

x
z mod1= .

− W of the form),,nonmem(da and x just deleted (−=op): set)],[,nonmem(= ydaW ′′ with

axa =′ .
IsMem(W): is true if and only if W is of the form ,.)mem(.

Verify(Kp, c,x,W): if W is of the form),mem(w , it is true if and only if nwc x mod= . If W is of the form

),,nonmem(da , it is true if and only if)(mod ngdc xa ≡ .

We can compute the non-membership proof yda],[for Xy∈/ by iteratively going through all Xx∈ . For

this, we start with ,(1,1)=),(da which is a proof of non-membership for y in the empty set with

accumulator 1=c . Then, for each Xx∈ we update)),,(),mod,,,(,(UpdWit),(ydancxcKda x
p +←

and ncc x mod← .
Note that all algorithms are deterministic here. It can be easily proven that all oracle calls in the

security game preserve the relations (1), (2), and (3). Then, we easily prove that UpdWit preserves (2) and

(3) as well. Since (1) can be computed without sK and that the game does not allow the adversary to add a

member or to delete a non-member, all oracle calls in the game can be simulated without knowing sK . So,

the security is equivalent to forging PX ⊆ and Px∈ together with W which is an incoherent proof for
x with respect to X with pK as a sole input. We can easily see that this implies breaking the strong RSA
assumption (c.f. [7] for more details).

Quite importantly, it is necessary that all proofs of non-membership satisfy (3). Indeed, assuming that
Xx∈/ and we have some),(da ′′ such that)(mod ngdc xa ′≡′ , the adversary can compute),(da

satisfying (3) by going through all X members and without requiring sK . Then, he would obtain a relation

)(mod)/(nddc xaa ′≡−′ . If the proof),(da ′′ does not satisfy (3), then x does not divide aa −′ . So, the

adversary can invert aa −′ modulo x and obtain a relation cnwx =mod which is a proof of membership
although x has been deleted. Security collapses. So, it is important to provide only proofs),(da such that
(3) holds. A similar weakness was spotted in [10]. It was based on a proposal to compute),(da from

y X

y
∈
∏)(mod nϕ instead of

y X

y
∈
∏ , which is quite a bad idea! The above procedure is safe. (Indeed, its

computation does not require the secret key, so it is zero-knowledge.)
One drawback of LLX is that after deleting x from X we cannot create a proof of non-membership

for x except by recomputing a from scratch, since (3) must be satisfied. Although it seems dynamic, it fails
to provide the promised efficiency since we need X to compute a and, hence, only offers a partially
dynamic universal accumulator. A similar drawback exists in the WitGen algorithm. Indeed, the authority
willing to issue a proof of non-membership for a non-member which never needed such a proof has to go
through the entire X structure.

8 A Fully Dynamic Universal Accumulator 276

3. WEAK DYNAMIC ACCUMULATORS FOR ARBITRARY DOMAINS

In this section, we define the notion of weak dynamic accumulator where elements can be dynamically
added to the accumulator. It's called a weak dynamic accumulator because it only considers adding and not
deleting elements, and that is all we need for our construction in Section 4. When compared to Dynamic
Accumulators in Def. 11, WD accumulators do not require an AccVal to compute c from X.

Definition 5 (Weak Dynamic (WD) Accumulators). A weak dynamic accumulator WDAcc, with a

domain P, a set PX ⊆ , and values Xx∈ to be accumulated, consists of the following algorithms.
– A setup probabilistic algorithm),()(1KeyGen ps

k KK→ , where sK is only used by the authority

and pK is public.

– An algorithm cKK ps →),(InitAccVal , which computes an initial accumulator value c of the
empty set, from the keys.
– An algorithm)extra,(),,,(AddEle cxcKK ps ′→ , which computes the accumulator c′ for

}{xX + from the accumulator c for X . We must have Xx∈/ and we say that x is inserted into X .
The algorithm also returns some extra information extra , which might be needed for dynamic witness
update.
– An algorithm WyWxccK p ′→′),,,extra,,,(UpdWit to generate a proof W ′ for y in accumulator

c′ from a proof W for y in accumulator c , where)extra,(),,,(AddEle cxcKK ps ′→ .

– A predicate),,,(Verify WxcK p to check a proof.

Note that all WD accumulators are dynamic, by definition. Hence, the constructions due to Li et al. or
Camenisch and Lysyanskaya are both WD accumulators. Moreover, Def. 3, the correctness definitions, can
be applied to WD accumulators considering + as the only possibility for op . Furthermore, the security
notion for a WD accumulator is a special case of a Chosen Element Attack scenario since there are no
deletions.

Definition 6 (Security of a WD accumulator). The security of the WD accumulator is defined in

terms of a game, based on a security parameter k , played by a polynomially bounded adversary. Firstly,
KeyGen is run and pK is given to the adversary. Secondly, the adversary selects a polynomially bounded

number l . There are registers sK , iX , and ic , lK,1,=i , for a secret key and to keep track of l sets iX

and their accumulator values ic . Initially, all iX 's are empty and ic is set to),(InitAccVal ps KK . The

adversary can then call an ,.,.),,(AddEle ips cKK oracle for a selected i which updates iX and ic

accordingly. It is not allowed to add an x to iX when x is already in iX . After making many oracle

queries, the adversary ends by producing some),,(Wxi . The adversary wins if W is an incoherent proof

for x with respect to iX and accumulator ic .

We now describe a generic way of transforming a WD accumulator 0WDAcc with domain ,P set of
elements x with some special form, to a WD accumulator with an arbitrary domain, i.e., a finite subset of

*{0,1} . In this generic transformation, we will make use of a signature scheme. In the following description,

277 Atefeh Mashatan and Serge Vaudenay 9

the algorithms, values, and predicates with index of 0, e.g., 0KeyGen , refer to the corresponding items in

0WDAcc defined as above, whereas values indexed by sig refer to those of a signature scheme.

We assume that the elements in P can be enumerated starting from init= hh and then iterating by
means of an operation h←next.elementሺ݄ሻ. The overall idea is that the value of the new accumulator consists
of a pair)last.h,(0c , where 0c is the accumulator value for 0WDAcc and the last added last.h value. To
add a new string x , we get a new h using next.element and we bind h to x using a signature on),(hx . A
witness for x is a triplet),,(wh σ , where h is the bound value, σ is a valid signature, and w is a witness
for h in 0WDAcc . When a new x is added, the witness for it is computed and returned as the extra
information.

A generic transformation to obtain a WD accumulator with arbitrary domain:
Domain: S is a large enough subset of *{0,1} .
KeyGen(1k): run)(1KeyGen0

k and obtain 0
pK and 0

sK . Further, run)(1KeyGensig
k and obtain

),(sigsig
ps KK . Then),(= sig0

ppp KKK and),(= sig0
sss KKK .

InitAccVal(Kp,X) →c=(c0, hinit): where 0c is the output of),(InitAccVal 000
ps KK .

AddEle(Ks, Kp,(c0, last.h),x): Let nt(last.h)next.eleme←h denote the next element in the list and call

)extra,'(),,,(AddEle 0
00000 chcKK ps → . Then let),,(sig sig hxKs←σ . Return))extra,(),,'((0

0 σhc .

UpdWit(Kp,(c0, last.h), ('0c , next.h), (σ,extra), x, W, y): If yx = , then return)extra,,next.h(σ . If yx ≠ ,
extract h and w from),,(= whW σ and then return .)),,next.h,extra,',,(UpdWit,,(0000 hwccKh pσ

Verify(Kp, (c0, last.h), x, (h,σ,w)): is true if and only if both)),,(,(Verify sigsig σhxK p and

),,,(Verify 000 whcK p are true.

Very similar generic transformations exist in the literature, see for example [4], where it is suggested
that the issuer of the accumulator would need to publish a mapping from S to P used along with a
signature scheme. The advantage of our scheme compared to those approaches is that we do not require any
mapping to be published: we just assume that the elements of P can be enumerated and that it is easy to
move to the next element, given the previous one.

The following theorem states that starting from a correct and secure WD accumulator with domain P
and using a secure signature scheme, we obtain a correct and secure WD accumulator with the arbitrary
domain S with the above generic transformation.

Theorem 7. Consider a correct and secure WD accumulator 0WDAcc and a secure digital signature

scheme sig (i.e., signatures are unforgeable under chosen message attacks). The resulting WD accumulator
WDAcc of the above generic transformation is correct and secure.

Proof. For simplicity, we show the proof for the case of deterministic algorithm, hence assume 1=l .

The general case follows similarly.
The correctness follows immediately as both the signature's and the original accumulator's verification

predicate are being verified. More precisely, we need to show that WDAcc is correct according to Def. 3.
Since it is not a universal accumulator, all we need to show is that ܹ ⊢ ሺݔ, ܺ, ܿ, ܾሻ implies

,),,,(Verify WxcK p for all probabilistic polynomial time adversaries, and for all possible choices of

,,, XxW and c. Note that both AddEle and UpdWit call upon the respective algorithms in 0WDAcc . In

particular, we have that),(= 0 hcc , for some h . Hence, ܹ ⊢ ሺݔ, ܺ, ܿ, ܾሻ for WDAcc implies that 	

10 A Fully Dynamic Universal Accumulator 278

ܹ ⊢ ሺ݄, ܺ, ܿ, ܾሻ for 0WDAcc . Now, since 0WDAcc is a correct accumulator, ܹ ⊢ ሺ݄, ܺ, ܿ, ܾሻ
implies),,,(Verify 0 WhcK p , which in turn implies),,,(Verify WxcK p .

Moreover, as the signature scheme is only binding elements of the two domains together, any
incoherent witness with respect to the domain S of WDAcc produces an incoherent witness for a
corresponding element in the domain P . More precisely, we can reduce an adversary A who can find an
incoherent proof with respect to WDAcc to an adversary B who produces an incoherent proof with respect
to 0WDAcc . We now outline this reduction.

According to the security game of Def. 6 for WDAcc, KeyGen is run and),(= sig0
ppp KKK is given

to the adversary. Initially, X is empty and the accumulator is set to),(InitAccVal ps KK . In particular, the

value of the accumulator c is),(init
0 hc , where 0c is the output of),(InitAccVal 000

ps KK . Then A can call

the ,.,.),,(AddEle cKK ps oracle which updates X and c accordingly, but is not allowed to add an x to
X when x is already in X . In particular, each AddEle query lets nt(last.h)next.eleme:=h , calls

)extra,(),,,(AddEle 0
0000 chcKK ps → , computes),,(sig:= sig hxKsσ , and returns))extra,(),,((0

0 σhc .
After enough oracle queries, the adversary ends the game by producing some),(Wx which is an incoherent
proof for x with respect to X and accumulator c , where),,(= wxW xσ .

Now let's look at the game played by B. Firstly, 0KeyGen is run and 0
pK is given to the adversary.

Initially, 0X is empty and 0c is set to),(InitAccVal 000
ps KK . The adversary calls

,.,.),,(AddEle 0000 cKK ps oracles to update 0X and 0c accordingly, but is not allowed to add an 0x to 0X

when 0x is already in 0X . Once the adversary has made enough queries, she produces some),(0 wx . She
wins if w is an incoherent proof for 0x with respect to 0X and accumulator 0c .

We are now going to use A to help B win his game. Upon receiving 0
pK , B runs)(1KeyGensig

k and

obtains),(sigsig
ps KK . Then provides A with),(= sig0

ppp KKK . For every ,.,.),,(AddEle cKK ps oracle

query of A, B does the following. He lets nt(last.h)next.eleme:=h , calls

)extra,(),,,(AddEle 0
0000 chcKK ps → , computes),,(sig:= sig hxKsσ , and returns))extra(,),,((0

0 σhc

to A. Note that B posses sK because he ran)(1KeyGensig
k at the beginning of this reduction. Finally, A

provides B with some),(Wx which is an incoherent proof for x with respect to X and accumulator c.

Note that witnesses of WDAcc are of the form),,(wh σ , where),,(sig:= sig hxKsσ and the accumulator

c is of the form))extra,(),,((0
0 σhc . Hence, an incoherent witness),,(wh σ of x in WDAcc implies an

incoherent witness W of h in 0WDAcc . □

4. FULLY DYNAMIC UNIVERSAL ACCUMULATORS

In this section we formalize the notion of fully dynamic universal accumulator, then show how to
construct some based on the [LLX] accumulator and a weak dynamic accumulator.

4.1. Definitions

We say that a dynamic universal accumulator is fully dynamic if the following conditions are satisfied:
1. We can always create a non-membership proof for a new x (i.e., a value x occurring for the first

time or a newly deleted x) without using X.

279 Atefeh Mashatan and Serge Vaudenay 11

2. We can create a proof of membership without using X for a newly added x .

That is, we can create proofs for newly occurring values x (e.g., non-members) with an algorithm
which does not depend on the cardinality of X. To make this change possible, we introduce a new operation
dec in UpdEle to “declare” new non-members, and we make UpdWit run with yx = without any prior
witness W for operations + and dec. This UpdEle can be used to compute the initial proof of non-
membership for x . However, it requires to update the accumulator value c. More formally, we define a fully
dynamic universal accumulator as follows.

Definition 8 (Fully Dynamic Universal (FDU) Accumulator). A fully dynamic universal

accumulator FDUAcc , with a domain P, a set PX ⊆ , and values Xx∈ to be accumulated, consists of
the following algorithms.

– A setup probabilistic algorithm),()(1KeyGen ps
k KK→ , where sK is only used by the authority

and pK is public.

– An algorithm cXKK ps →),,(AccVal , which computes an accumulator value c of the set X, from
the keys.
– An algorithm)extra,(),op,,,(UpdEle cxcKK ps ′→ , where +=op , −=op , or dec=op ,

which computes the accumulator c′ from an accumulator c . When +=op , we must have Xx∈/ and
we say that x is inserted into X. When −=op , we must have Xx∈ and we say that x is deleted
from X. When dec=op , we must have Xx∈/ and we say that x is declared as a non-member of X.
The algorithm also returns some extra information extra . For dec=op , the algorithm also returns
some new proof of non-membership for x (if not already in extra).
– An algorithm WxXcKs →),,,(WitGen to generate a proof of membership or non-membership
for the value x with respect to accumulator c of X.
– An algorithm WyWK p ′→),,extra,(UpdWit to generate a proof W ′ for y in accumulator after

UpdEle returned extra from a previous proof W.
– A predicate)(IsMem W telling whether W is a proof of membership (true case) or a proof of non-
membership (false case).
– A predicate),,,(Verify WxcK p to check a proof.

Note that UpdWit no longer requires that y is different from the element involved in the last
UpdEle call.

The correctness notion is similar to that of WD accumulators with the obvious change that the
witnesses are not only produced by UpdWit , but also by WitGen and that witnesses are either for
membership or non-membership proofs. This change was foreseen in our general correctness notion in Def. 3.

Next, we detail a variant of the Chosen Element Attack scenario corresponding to FDU accumulators,
in which the adversary is allowed to declare new elements as well as add or delete.

Definition 9 (Extended Chosen Element Attack (ECEA) Model). The security of an FDU

accumulator is defined in terms of a game, based on a security parameter k, played by a polynomially
bounded adversary. Firstly, KeyGen is run and pK is given to the adversary. Secondly, the adversary

selects a polynomially bounded number l. There are registers sK , iX , and ic , lK,1,=i , for a secret key

and to keep track of l sets iX and their accumulator values ic . Initially, all iX 's are empty and ic is set to
),,(AccVal ips XKK . The adversary can then call an ,.,.),,(UpdEle ips cKK oracle for a selected i

12 A Fully Dynamic Universal Accumulator 280

which updates iX and ic accordingly. It is not allowed to add an x to iX when x is already in iX , nor is

it allowed to delete x from iX when x is not in iX . Moreover, the adversary is not allowed to declare an
element which has already been declared, i.e., is either a member or a non-member. The adversary can also
call a ,.),,(WitGen iis XcK oracle for a selected i and an ,.),(AccVal ps KK oracle which do not update

an iX of ic . After making many oracle queries, the adversary ends by producing some),,(Wxi . The

adversary wins if WX is an incoherent proof for x with respect to iX and accumulator ic .

4.2. Instantiating an FDU Accumulator based on the Strong RSA Assumption

Below we construct a fully dynamic universal accumulator based on a variant of the [LLX]
accumulator. The main idea relies on providing a two-layer accumulator. The lower layer 2c is a WD
accumulator where we accumulate all declared elements. I.e., all values which have ever be used, whether
they are member or not. There is no withdrawal in this layer. The upper layer 1c is a fully dynamic
accumulator which can only treat elements of the lower layer. Essentially,),,,(whda is a proof of non-

membership for x in accumulator),(21 cc , if)(mod 11 nhdc xa ≡ and w is a proof of membership for h in

accumulator 2c , i.e., .=mod 22 cnwh To create a proof of non-membership for a newly deleted member or

a new comer who is not a member, we only have to pick a random xa Z∈ and *Znd ∈ and compute the

corresponding h to add in the second accumulator. That is, the WD accumulator is only used to validate new
h values which are needed to create new proofs. Since proofs also have a part in the PDU accumulator, it is
not necessary to delete h from the WD accumulator.

Equation (3) is now replaced by

 () ,mod=mod= 1

1
1

1
0

0 nhcdandx
y

y
aa xa

Xy

Xy −

∈

∈

∏

∏
 (4)

 where 0a , respectively 0X , is the initial value for a , respectively ,X and 0a is chosen at random.

Our accumulator is defined as follows. The value of c is defined by),(= 21 ccc corresponding to two

accumulators 1c and 2c . It will be convenient in the security game to define two sets 1X , defined as before,

and 2X , a finite set of elements, corresponding to this value c .

The set 1X is updated by UpdEle and is accumulated in the value 1c , whereas the set 2X is

accumulated in 2c by means of a WD accumulator with arbitrary domain. Hence, the value of c is

deterministically defined by 1c and 2c , where

 .mod= 1
1

1 ngc

x

Xx
∏
∈

The value of c will corresponds to 1= XX . So, there are many c 's corresponding to the same X

depending on 2X .
In the following description, the algorithms, values, and predicates with index of 1, e.g., 1KeyGen ,

refer to the corresponding items in the PDU accumulator of Li et al. [7], whereas the algorithms, values, and

281 Atefeh Mashatan and Serge Vaudenay 13

predicates with index of 2, e.g., 2Verify , refer to those of a WD accumulator with arbitrary domain as
defined in Section 3.

A Concrete FDU accumulator:
Domain: P is a large enough set of odd prime numbers, e.g., all odd numbers up to a given bound B .
KeyGen(1k): run)(1KeyGen1

k and obtain),(= 11
1 gnK p and 1

1 = rKs . Further, run)(1KeyGen2
k and

obtain),(22
ps KK . Then),(= 21

ppp KKK and),(= 21
sss KKK .

AccVal(Kp,X): compute

11 mod= ngc
x

Xx
∏
∈

 and return))(InitAccVal,(= 2
21 sKcc . Note that sK is not used.

UpdEle(Ks, Kp, c, op, x): if +=op , we have 111 mod= ncc x′ and 22 = cc′ (1
sK is not required). Set

),,,(=extra cxc ′+ . If −=op , we set 1

1

11 mod= ncc x′ (1
sK is required) and proceed like for dec.=op

If dec=op , we pick xa Z∈ and *

1
Znd ∈ at random, and compute 11 mod= ndch xa − , then we set

)),,,(,nonmem(= 2chdaW . We set),,,(AddEle=)extra,(2
22

222 hcKKc ps′ . The extra information

is then set to)extra,,,,op,(=extra 2Wcxc ′ .

WitGen(Ks, c, X, x): if Xx∈ , then),mem(= wW with 1

1

1 mod= ncw x . This requires sK , but not X. It

can also be computed without sK , but using X by observing that

.mod= 1
}{

1 ncw
y

xXy
∏

−∈

 If ,Xx∈/ then)),(,nonmem(= daW as in the [LLX] accumulator by using X.

UpdWit(Kp, extra, W,y): with)extra,,,,op,(=extra 2ecxc ′ , there a several cases to update the proof for y
in X after adding or deleting x for yx ≠ :

– W of the form),mem(w and x just added (+=op): set),mem(= wW ′′ with .mod= 1nww x′
– W of the form),mem(w and x just deleted (−=op): set),mem(= wW ′′ with

1

1

mod= ncww y
xz

z
−

′′ and y
x

z mod1= .

– W of the form),mem(w and x just declared (dec=op): WW =′ .
– W of the form),,nonmem(da and x just added (+=op): set)],[,nonmem(= ydaW ′′′ with

aza =′ , 1

1

mod= ndcd y
xza −

−
′ and y

x
z mod1= .

– W of the form),,nonmem(da and x just deleted (−=op): set)],[,nonmem(= ydaW ′′ with

axa =′ .
– W of the form),,nonmem(da and x just declared (dec=op): .=WW′
– W of the form),,,,nonmem(whda and x just added (+=op): set

),,],[,nonmem(= whdaW y′′′ with aza =′ , 1

1

mod= ndcd y
xza −

−
′ and y

x
z mod1= .

14 A Fully Dynamic Universal Accumulator 282

– W of the form),,,,nonmem(whda and x just deleted (−=op): set

),,],[,nonmem(= whdaW y ′′′ with axa =′ and),,extra,',,(UpdWit= 222
2

2 hwccKw p′ .

– W of the form),,,,nonmem(whda and x just declared (dec=op):
),,extra,',,(UpdWit= 222

2
2 hwccKw p′ .

For yx = , there are two cases:

 – x just added (+=op): set),mem(= wW ′ with 1= cw from),(= 21 ccc .
 – x just deleted (−=op) or just declared (dec=op): set eW =′ .

IsMem(W): is true if and only if W is of form ,.)mem(.

Verify(Kp, c,x,W): if W is of the form),mem(w , it is true if and only if 11 mod= nwc x . If W is of form

,),,nonmem(da it is true if and only if)(mod 1ngdc xa ≡ . If W is of the form

,),,,,nonmem(whda it is true if and only if)(mod 11 nhdc xa ≡ and),,,(Verify 2
2

2 hwcK p holds.

We now prove the correctness and security of our FDU accumulator scheme based on the Strong RSA
assumption.

Theorem 10. If the Strong RSA Assumption holds, the aforementioned FDU accumulator is correct

and secure under the ECEA model.

Proof. The correctness follows immediately since both PDU and WDU considered as building blocks

of our FDU are correct accumulators according to Def. 3.
All oracle calls in the security game preserve the relations described in the AccVal and WitGen

algorithms. Furthermore, since the game does not allow the adversary to add a member or to delete a non-
member, all oracle calls in the game can be simulated without knowing 1

sK . Hence, the security is equivalent
to forging PX ⊆ and Px∈ together with W which is an incoherent proof for x with respect to X and

pK as the only input. Hence, an incoherent witness implies breaking the strong RSA assumption. In other

words, computing an incoherent witness for Xx∈ implies an incoherent witness for the PDU accumulator
of Li et al. [7] and computing an incoherent witness for Xx∉ implies that, given 1n and a random 1c
drawn from *

1nZ , the adversary has found *

1nw Z∈ and 1>x such that 11 mod= nwc x .

More precisely, we can reduce an adversary A who produces incoherent proofs in the aforementioned
FDU accumulator to an adversary B who produces incoherent proofs in either the WD accumulator with
arbitrary domain as defined in Section 3 or the PDU accumulator of Li et al. [7], which, in turn, implies an
adversary who breaks the Strong RSA Assumption. The reduction is detailed below.

According to Def. 9, the security game starts with running KeyGen and giving pK to the adversary.

That is, both 1KeyGen and 2KeyGen are run to obtain 1
1

11
1 =),,(= rKgnK sp , and .),(22

ps KK Then,

),(= 21
ppp KKK is given to the adversary. Initially, X is empty and c is set to .),(AccVal XK p That is,

11 mod= ngc
x

Xx∏ ∈ is computed and))(InitAccVal,(= 2
21 sKcc is returned. Note that sK is not used in

this computation.
Then, the adversary calls ,.,.),,(UpdEle cKK ps oracle queries to update X and c accordingly. She

is not allowed to add an x to X when x is already in ,X nor is she allowed to delete x from X when
x is not in X. Moreover, the adversary is not allowed to declare an element which has already been declared,
i.e., is either a member or a non-member. When an element x is being added, we have 111 mod= ncc x′ , i.e.,

283 Atefeh Mashatan and Serge Vaudenay 15

using the PDU accumulator of Li et al. [7], and 22 = cc′ , i.e., in the WDU accumulator. If x is being
declared, random xa Z∈ and *

1
Znd ∈ are picked to compute 11 mod= ndch xa − , again as in the PDU

accumulator of Li et al. [7], to obtain)),,,(,nonmem(= 2chdaW . If the element x is being deleted, we

have 1

1

11 mod= ncc x′ and proceed like the declaration process. Note that 1
sK is not required in any of these

steps.
The adversary can also call a ,.),,(WitGen XcKs oracle query. If Xx∈ , then),mem(= wW with

1
}{

1 mod= ncw
y

xXy∏ −∈ , which can be computed without sK , but using X. If Xx∈/ , then
)),(,nonmem(= daW as in the PDU accumulator of Li et al. [7]. Note that, again, sK is not required in

any of these steps.
Once the adversary has made enough oracle queries, she ends the game by producing some),(Wx that

is an incoherent proof for x with respect to X and accumulator),(= 21 ccc . The witness W is of the form
),mem(w ,),,nonmem(da , or),,,,nonmem(whda . We are going to consider each case separately.

– If W , the incoherent proof, is of the form),mem(w , then, by definition of the verification

algorithm Verify , we must have that 11 mod= nwc x , which directly breaks the Strong RSA
assumption.
– In order for an incoherent witness W of form),,nonmem(da to pass the verification step, we must

have that)(mod 1ngdc xa ≡ . This translates to an incoherent witness for the PDU accumulator of Li
et al. [7].
– If the incoherent witness W is of the form .),,,,nonmem(whda Then, both)(mod 11 nhdc xa ≡
and),,,(Verify 2

2
2 hwcK p must hold for it to pass the verification step. This translates to either an

incoherent witness for the PDU accumulator of Li et al. [7] or an incoherent proof for the WD
accumulator of Section 3.

Hence, an adversary who can find incoherent witnesses for our FDU accumulator is capable of
producing incoherent proofs for the WD accumulator with arbitrary domain as defined in Section 3 or the
PDU accumulator of Li et al. [7], both of which are based on the Strong RSA assumption.

□
Note that setting hg = reduces the structure of our non-membership proofs to that of Li et al. [7].
We point out that the efficacy of our proof structure allows the authority to perform efficient batch

updates (with the secret key) for a given value x . The authority first checks to see whether x is a member
of the accumulated set or not. If a member, then using the same procedure as in the scheme of Li et al. the
authority can efficiently update the witness. This is not incompatible with the impossibility of batch update
without the secret key [3]. However, the scheme of Li et al. did not offer such a mechanism for a non-
member element. In our scheme, we can create a new non-membership proof deploying the mechanism for
declaration.

5. CONCLUSIONS AND FUTURE WORK

We constructed the first fully dynamic universal accumulator, based on the Strong RSA assumption, by
providing a new proof structure for the non-membership witnesses. Moreover, this new structure of non-
membership proofs allows our scheme to be the first of its kind to offer an efficient batch update mechanism
to the authority, for both members and non-members. We obtained our fully dynamic universal accumulator
by means of deploying a weak dynamic accumulator with arbitrary domain, which we showed how to obtain
from a weak dynamic accumulator with a domain of certain form.

16 A Fully Dynamic Universal Accumulator 284

ACKNOWLEDGEMENTS

We would like to thank Nokia for initiating this work, as well as Rafik Chaabouni who contributed.

A. EXTRA DEFINITIONS

Definition 11 (Dynamic Accumulators). A dynamic accumulator DAcc, with a domain P , a set
PX ⊆ , and values Xx∈ to be accumulated, consists of the following algorithms.

– A setup probabilistic algorithm),()(1KeyGen ps
k KK→ , where sK is only used by the

authority and pK is public.

– An algorithm cXKK ps →),,(AccVal , which computes an accumulator value c .

– An algorithm)extra,(),op,,,(UpdEle cxcKK ps ′→ , where +=op or −=op , which

computes the accumulator c′ for }{op xX from the accumulator c for X . When +=op , we must
have Xx∈/ and we say that x is inserted into X . When −=op , we must have Xx∈ and we say
that x is deleted from X . The algorithm also returns some extra information extra , which might
be needed for dynamic witness update.
– An algorithm WxXcKs →),,,(WitGen to generate a proof of membership for the value x with
respect to accumulator c of X .
– An algorithm WyWxccK p ′→′),,,op,extra,,,(UpdWit to generate a proof W ′ for y in

accumulator c′ from a proof W for y in accumulator c , where
)extra,(),op,,,(UpdEle cxcKK ps ′→ . It must be the case that yx ≠ .

– A predicate),,,(Verify WxcK p to check a proof.

Definition 12 (Universal Accumulators). A universal accumulator scheme UAcc, with a domain P
a set PX ⊆ , and values Xx∈ to be accumulated, consists of the following algorithms.

– A setup probabilistic algorithm),()(1KeyGen ps
k KK→ , where sK is only used by the

authority and pK is public.

– An algorithm cXKK ps →),,(AccVal , which computes an accumulator value c .

– An algorithm WxXcKs →),,,(MemWitGen to generate a proof of membership for Xx∈ .

– An algorithm WxXcKs →),,,(enNonMemWitG to generate a proof of non-membership for
XPx \∈ .

– A predicate)(IsMem W telling whether W is a proof of membership (true case) or a proof of
non-membership (false case).
– A predicate),,,(Verify WxcK p to check a proof.

REFERENCES

1. Josh Cohen Benaloh and Michael De Mare, One-way accumulators: A decentralized alternative to digital sinatures (extended
abstract), in EUROCRYPT 1993, pp. 274–285, 1993.

2. Niko Barić and Birgit Pfitzmann, Collision-free accumulators and fail-stop signature schemes without trees, in Proceedings of the
16th annual international conference on Theory and application of cryptographic techniques, EUROCRYPT 1997,
pp. 480–494, Berlin, Heidelberg, 1997. Springer-Verlag.

3. Philippe Camacho and Alejandro Hevia, On the Impossibility of Batch Update for Cryptographic Accumulators, LATINCRYPT
2010, volume 6212 of Lecture Notes in Computer Science, pp. 178–188, 2010.

285 Atefeh Mashatan and Serge Vaudenay 17

4. Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente, An accumulator based on bilinear maps and efficient revocation for
anonymous credentials Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of Lecture Notes in Computer
Science, pp. 481–500, Springer, 2009.

5. Jan Camenisch and Anna Lysyanskaya, Dynamic accumulators and application to efficient revocation of anonymous credentials,
in Moti Yung, editor, CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pp. 61–76. Springer, 2002.

6. Nelly Fazio and Antonio Nicolosi, Cryptographic Accumulators: Definitions, constructions and applications, Manuscript, 2003.
7. Jiangtao Li and Ninghui Li and Rui Xue, Universal Accumulators with efficient nonmembership proofs, Jonathan Katz and Moti

Yung, editors, ACNS 2007, volume 4521 of Lecture notes in Computer Science, pp. 253–269. Springer, 2007.
8. Lan Nguyen, Accumulators from bilinear pairings and applications, Alfred Menezes, editor, CT-RSA 2005, volume 3376 of

Lecture Notes in Computer Science, pp. 275–292. Springer, 2005.
9. Kaisa Nyberg, Fast Accumulated Hashing, FSE 1996, volume 1039 of Lecture Notes in Computer Science, pages 83-87. Springer,

1996.
10. Kun Peng and Feng Bao, Vulnerability of a non-membership proof scheme, SECRYPT 2010, pages 419-422. SciTePress, 2010.
11. Peishun Wang, Huaxiong Wang, and Josef Pieprzyk, A new dynamic accumulator for batch updates, Sihan Qing, Hideki Imai,

and GuilinWang, editors, ICICS 2007, volume 4861 of Lecture Notes in Computer Science, pp. 98–112. Springer, 2007.
12. Peishun Wang, Huaxiong Wang, and Josef Pieprzyk, Improvement of a dynamic accumulator at icics 07 and its application in

multi-user keyword-based retrieval on encrypted data, in APSCC 2008, pp. 1381–1386. IEEE, 2008.

Received July 15, 2013

