
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 14, Special Issue 2013, pp. 317–327

UNVEILLING THE PASSWORD ENCRYPTION PROCESS UNDER WINDOWS –
A PRACTICAL ATTACK

Lucian OPREA*

*Independent researcher, Bucharest, ROMANIA
Corresponding author: Lucian OPREA, E-mail: luc.oprea@gmail.com

In this paper we present a practical attack that is intended to break the encryption process used to
protect the users’ passwords in some versions of the Windows operating system.

Key words: password encryption, Windows, brute-force attack, password hashes.

1. INTRODUCTION

Local and domain account information, such as user passwords, group definitions, and domain
associations are stored by the Windows operating system in registry. By default, the registry keys like
HKEY_LOCAL_MACHINE\SAM, which holds most of this information, are unreadable even for the system
administrator account. SAM stands for the Security Accounts Manager and is essentially a database of
security information, user permissions and passwords. It is sometimes referred to as the Windows local
security database.

In the 2nd section of this paper we present the structure of the SAM registry and the location of the
values we need in order to launch the attack.

In the 3rd section we present the cryptographic transformations applied to the user password. We
grouped these transformations in three different “encryption” levels. These levels are applied sequentially,
the resulted values being stored into the registry structure. We call these levels “encryption levels” due to the
cryptographic processing of the initial and intermediate values and even if these levels contain hash
primitives.

In order to recover the password of a Windows account, we implemented 3 different applications. A
Windows service and a standalone application were implemented in order to gather all the data we need for
the attack and to ease the final step of finding the password. The 3rd application, which recovers the password
by brute-force, is implemented in CUDA technology in order to use the processing power of a compatible
GPU card.

The 4th section presents the description of the attack and a practical example of recovering an
Administrator password.

Observation: the techniques shown here are strictly for educational purposes and should not be used

against systems for which you do not have authorization for.

2. SAM STRUCTURE

The initial information we need in order to launch the attack is stored in Windows registry. The most
important registry key in our attack is HKEY_LOCAL_MACHINE\SAM\SAM\Domains. This key contains
two other subkeys:

– Account subkey: contains information about defined user and group accounts. Administrator and
Guest information is stored here, although these accounts are defined by default;

 Lucian Oprea 2 318

– BuiltIn subkey: contains information about operating system users defined by default.
HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Names contains the list of all user accounts

on the machine. Every user account in here has a key containing a hex value which is the RID (Relative
Identifier) of the account or group.

In HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Users each account is defined by a
different subkey which is the RID (Relative Identifier) of that account or group. For the Administrator
account, that is the account against which we apply the example attack, the RID value is the constant value
0x000001F4 and it is not dependent on the computer.

 For every user account, this key contains two REG_BINARY values (F and V) which contains some of
the data we need [1].

The following information can be extracted from the V value:

Table 1

User information stored in HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Users\{RID}\V

Address Information
0x0c Offset of the account name
0x10 Length of the account name
0x18 Offset of the complete account name
0x1c Length of the complete account name
0x24 Offset of the comment
0x28 Length of the comment
0x48 Offset of the homedir name
0x4c Length of the homedir name
0x9c Offset of the final password hashes (SAM)
0xc4 Number of hashes from history

In order to extract a value, we must add 0xcc to the offset value from the table above.
For example, the final hashes offset is computed as being V[0x9c] + 0xcc, the first one starting at the

computed offset being LMHash, followed by NTHash. If SYSKEY is enabled, the encrypted hashes are
prefixed by 0x10000000 [2].

3. ENCRYPTION LEVELS

The process of encrypting the user password is done in three different steps, on three different levels of
encryption. The figure below presents the notations used in this document for referring the output of each of
these levels.

Fig. 1 – Encryption levels.

3 Unveilling the Password Encryption Process under Windows – a Practical Attack 319

The V registry value presented in the previous section contains the two final hashes for the password of
the corresponding user account:

– LMHashSAM: LAN Manager hash, was the primary hash that Microsoft LAN Manager and Microsoft
Windows versions prior to Windows NT (MS Client for DOS, Windows for Workgroups, Windows
95/98/Me and in some cases Windows NT or newer) used to store user passwords. Support for the
legacy LAN Manager protocol continued in later versions of Windows for backward compatibility, but
was recommended by Microsoft to be turned off by administrators; as of Windows Vista, the protocol
is disabled by default [7];
– NTHashSAM: used in Windows NT/2000/2003/XP.
The first encryption level is presented in the picture below.

NTHash (16 octeţi)LMHash (16 octeţi)

- convert to uppercase
- padding with 0x00

First 7 bytes
(56 bits)

Last 7 bytes
(56 bits)

Fixed data block
(64 bits):

KGS !@ #$%
DES

key

DES

key

data data

LMHash1
(8 bytes)

LMHash2
(8 bytes)

- convert to Unicode

MD4

LMHash1
(8 bytes)

LMHash2
(8 bytes)

NTHash1
(8 bytes)

NTHash2
(8 bytes)

Password

Fig. 2 – The 1st encryption level.

 One could observe the following vulnerabilities in LMHash computation:
– the password is first converted to uppercase, thus it reduces the number of possible characters;
– the password is used to encrypt a known fixed plaintext, making it susceptible to known plaintext
cryptanalysis;
– no salt, IV or any sort of randomness; two identical passwords will generate two identical hashes
after in the first level;
– password padding is done with the byte 0x00 to a length of 14 characters. So, a password with at
most 7 characters will have 0x00 on all its 7 MSBs; the ciphertext resulted from this fixed block is
known so it is easy to find if a password is less than 8 characters;
– the password is split in two parts which then are used independently; in this way, one could attack the
two parts separately.

To avoid the LMHash vulnerabilities, there are some actions than could be performed:
– use a password with more than 14 characters. The algorithm for LMHash generation supports only
passwords less than this length, so it will not be generated;
– disable LMHash generation (Windows 2000/XP/2003):

o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\NoLmHash:
REG_DWORD=1, or:

 Lucian Oprea 4 320

o using GPO (Network Security: Do not store LAN Manager hash value on the next password
change).

The drawback of disabling the generation of the LMHash is that if for an user account this hash is not
present, that user cannot authenticate from computers which support only the LM authentication protocol
(Windows 95/98 or older).

To add another layer of protection to the hashes provided by the 1st encryption level, Windows adds the
2nd encryption layer, using DES and keys derived from the user’s RID, as presented in the picture below.

Fig. 3 – The 2nd encryption level.

The keys K1 and K2 used to encrypt the first and respectively the second half of the hashes resulted
after applying the 1st encryption level are obtained from the user RID in the following manner:

Fig. 4 – Obtaining the encryption keys for the 2nd encryption level.

 By applying this level of encryption, even if two different users have the same password, the
obfuscated hashes will be different because the users have different RID values.
 The 3rd encryption level uses the most cryptographic functions, as we see in the picture below.

5 Unveilling the Password Encryption Process under Windows – a Practical Attack 321

Fig. 5 – The 3rd encryption level.

 Now, the only unknown values from this scheme are: SYSKEY, F0x70 and F0x80.

 The information we need in order to compute the SYSKEY value is usually stored in Windows registry,
under HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa. The SecureBoot REG_DWORD
specifies if SYSKEY is stored in registry, if it is derived from a password set by administrator or if it will be
stored on a Floppy Disk.
 The registry key above contains four subkeys (JD, Skew1, GBG and Data), with four bytes each. In
order to obtain the SYSKEY value, these values are concatenated and permuted by the following rules:

 P[i] = {8, 10, 3, 7, 2, 1, 9, 15, 0, 5, 13, 4, 11, 6, 12, 14}
 SYSKEY[P[i]] = [JD||Skew1||GBG||Data][i]

 The values F0x70 and F0x80 represent 16 and respectively 32 bytes taken from the offsets 0x70 and 0x80
from the F value under the subkey HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account.

 The final values, LMHashSAM and NTHashSAM are the actual hashes stored in registry.

4. THE ATTACK

Attacking the encryption process of user passwords can be done in three steps:

Step 1: extracting the necessary data from the registry:
– JD, Skew1, GBG and Data, in order to compute SYSKEY;
– F0x70 and F0x80;
– LMHashSAM or NTHashSAM.

 Lucian Oprea 6 322

In order to achieve this, we have implemented a Windows service running under the System account in
order to be able to access and extract these values.

As an example, we demonstrate how to break an Administrator password, so the values LMHashSAM
and NTHashSAM were read from the V value under the registry key
HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Users\000001F4. The other values were taken
from HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa and HKEY_LOCAL_MACHINE\
SAM\SAM\Domains\Account.

Here are the actual keys extracted from the registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\JD:
84 4E 40 71

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\Skew1:
42 E4 22 9D

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\GBG:
F4 D2 49 22

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\Data:
D5 A7 1F A2

HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\F:
02 00 01 00 00 00 00 00 30 AE 6E 84 7B 68 C6 01
2E 00 00 00 00 00 00 00 00 00 00 00 40 DE FF FF
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 80
00 CC 1D CF FB FF FF FF 00 CC 1D CF FB FF FF FF
00 00 00 00 00 00 00 00 F0 03 00 00 00 00 00 00
00 00 00 00 00 00 00 00 01 00 00 00 03 00 00 00
01 00 00 00 01 00 01 00 01 00 00 00 38 00 00 00
F1 1B C8 92 CB 0B 0C 60 28 52 EC 58 80 2E F3 36
A7 51 FD DA 49 8C 0B CD D8 7D 52 76 56 A4 CA 72
78 7E 30 17 35 38 A7 73 C1 7D D9 D1 12 DB 62 D9
00 00 00 00 00 00 00 00 01 00 00 00 38 00 00 00
55 DC 56 3C 85 53 A0 73 D6 76 E4 9D FE F7 C5 20
0D 89 95 E0 7D 99 37 EA B4 2D E0 42 A4 61 31 53
6A 31 7A 38 F5 5C C9 22 AE 44 E1 23 06 21 4A 06
00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00

So, the values of F0x70 and F0x80 are:
F0x70 = F1 1B C8 92 CB 0B 0C 60 28 52 EC 58 80 2E F3 36
F0x80 = A7 51 FD DA 49 8C 0B CD D8 7D 52 76 56 A4 CA 72
 78 7E 30 17 35 38 A7 73 C1 7D D9 D1 12 DB 62 D9

HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Users\000001F4\V
00 00 00 00 BC 00 00 00 02 00 01 00 BC 00 00 00
1A 00 00 00 00 00 00 00 D8 00 00 00 00 00 00 00
00 00 00 00 D8 00 00 00 6C 00 00 00 00 00 00 00
44 01 00 00 00 00 00 00 00 00 00 00 44 01 00 00
00 00 00 00 00 00 00 00 44 01 00 00 00 00 00 00
00 00 00 00 44 01 00 00 00 00 00 00 00 00 00 00
44 01 00 00 00 00 00 00 00 00 00 00 44 01 00 00
00 00 00 00 00 00 00 00 44 01 00 00 00 00 00 00
00 00 00 00 44 01 00 00 15 00 00 00 A8 00 00 00
5C 01 00 00 08 00 00 00 01 00 00 00 64 01 00 00
14 00 00 00 00 00 00 00 78 01 00 00 14 00 00 00
00 00 00 00 8C 01 00 00 04 00 00 00 00 00 00 00
90 01 00 00 04 00 00 00 00 00 00 00 01 00 14 80
9C 00 00 00 AC 00 00 00 14 00 00 00 44 00 00 00
02 00 30 00 02 00 00 00 02 C0 14 00 44 00 05 01
01 01 00 00 00 00 00 01 00 00 00 00 02 C0 14 00
FF FF 1F 00 01 01 00 00 00 00 00 05 07 00 00 00

7 Unveilling the Password Encryption Process under Windows – a Practical Attack 323

02 00 58 00 03 00 00 00 00 00 14 00 5B 03 02 00
01 01 00 00 00 00 00 01 00 00 00 00 00 00 18 00
FF 07 0F 00 01 02 00 00 00 00 00 05 20 00 00 00
20 02 00 00 00 00 24 00 44 00 02 00 01 05 00 00
00 00 00 05 15 00 00 00 C2 3B F0 34 B0 BE 8D 6D
49 94 37 B1 F4 01 00 00 01 02 00 00 00 00 00 05
20 00 00 00 20 02 00 00 01 02 00 00 00 00 00 05
20 00 00 00 20 02 00 00 41 00 64 00 6D 00 69 00
6E 00 69 00 73 00 74 00 72 00 61 00 74 00 6F 00
72 00 00 00 42 00 75 00 69 00 6C 00 74 00 2D 00
69 00 6E 00 20 00 61 00 63 00 63 00 6F 00 75 00
6E 00 74 00 20 00 66 00 6F 00 72 00 20 00 61 00
64 00 6D 00 69 00 6E 00 69 00 73 00 74 00 65 00
72 00 69 00 6E 00 67 00 20 00 74 00 68 00 65 00
20 00 63 00 6F 00 6D 00 70 00 75 00 74 00 65 00
72 00 2F 00 64 00 6F 00 6D 00 61 00 69 00 6E 00
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
FF FF FF FF FF BA 94 D8 01 02 00 00 07 00 00 00
02 00 01 00 B2 2E F9 E6 15 F9 CC ED 53 0E 9F 5B
B5 4F D6 56 02 00 01 00 90 F2 03 0E 6B 71 A1 8F
90 62 FA C7 50 CA E5 18 02 00 01 00 02 00 01 00

Final hashes’ offset is computed as V[0x9c] + 0xcc = 0x0164 + 0xcc = 0x230. So, the two hashes,
named LMHashSAM and NTHashSAM, are:
LMHashSAM = B2 2E F9 E6 15 F9 CC ED 53 0E 9F 5B B5 4F D6 56
NTHashSAM = 90 F2 03 0E 6B 71 A1 8F 90 62 FA C7 50 CA E5 18

Step 2: “reducing” the encryption levels. This step is about inverting the 3rd and the 2nd levels in order
to obtain LMHash and NTHash (the values resulted after the 1st encryption level).

This step is necessary in order to reduce the complexity and the number of transformations that must be
executed in a brute-force attack.

By looking at the cryptographic transformations in the last two levels, we can observe that:
– the 3rd level can be reduced by using the data extracted in the 1st step of the attack and the constants
of the 3rd level of the encryption scheme. First, we can compute the RC4 key, by knowing F0x70 and the
computed SYSKEY value. Then, knowing F0x80 we can apply the RC4 function to obtain PEK_KM.
Next, using the known RID of the user (0x000001F4 for Administrator) we apply the MD5 hash on the
concatenated values as presented in the 3rd level scheme in order to compute PEK, the key used to
encrypt LMHashobfusc and NTHashobfusc. So, by applying the RC4 algorithm on the hashes extracted
from the registry in the 1st step and using the key computed above, we finally reduce the 3rd encryption
level and obtain LMHashobfusc and NTHashobfusc;
– the 2nd level can also be reduced, observing that the keys K1 and K2 used in the DES encryption can
be easily computed, knowing the user’s RID. After computing these keys, we apply the inverse of the
DES algorithm on LMHashobfusc and NTHashobfusc obtained above, obtaining the LMHash and NTHash.

After reducing the 3rd and the 2nd encryption levels on the values extracted in the 1st step of the attack,
we obtain the following values of LMHash and NTHash:
LMHash = 90 94 83 75 BA 1B FE 9A AA D3 B4 35 B5 14 04 EE
NTHash = 49 E4 AA 6C 65 AD DA 82 4E DB 19 21 E5 EF E7 27

Step 3: brute-force attack on the 1st encryption level in order to break the account password.

 The brute-force attack is applied on LMHash or NTHash in this way:
– attacking LMHash consists in finding 2 DES encryption keys, in 2 independent steps: the 1st key
determines the first 7 characters of the password and the 2nd key determines the last N-7 characters of
the password, N being the length of the password;
– attacking NTHash consists in finding the string for which the MD4 hash of its Unicode conversion
equals NTHash.

 Lucian Oprea 8 324

In order to process large password subdomains in parallel for reducing the computational time, one
may implement this step using fast parallel technologies such as FPGA, CUDA or other distributed
implementations.

We implemented the 3rd step of attacking the NTHash using the CUDA technology on an nVidia®
Quadro FX 3700 graphic card [6]. The picture below presents the results of brute-forcing the NTHash
resulted above after reducing the encryption levels. The password was found in less than 13 minutes, the
average processing speed being 72.84 million passwords per second. The same application can be rewritten
in order to brute-force DES instead of MD4, thus attacking the LMHash instead of NTHash.

Fig. 6 – The 3rd step of the attack: brute-force example in CUDA implementation (attacking NTHash).

We have implemented a console application (cudaGeneral) in order to apply a brute force attack for

the NTHash algorithm (that is a brute force attack against the MD4 hash of the Unicode password). The
application is written in Microsoft Visual Studio, using the C++ language, a CUDA driver and library, and it
is compiled using nvcc (NVIDIA CUDA Compiler).

The graphic card is programmed using C-CUDA, which extends the C language by allowing the
definition of some C functions, called kernels. When called, these kernels are executed in N parallel CUDA
threads, as opposite to classical functions which are executed only once [5].

A thread ID is automatically assigned to each thread. This ID can be accessed inside the kernel through
the threadIdx variable (which is a 3-dimensional array). The threads are grouped into thread blocks which
can be vectors, matrices or fields, depending on the definition of the thread.

As an example, the sum of two matrices A and B can be implemented as follows [4]:
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])
{
 int i = threadIdx.x;
 int j = threadIdx.y;
 C[i][j] = A[i][j] + B[i][j];
}

int main()
{
 // Thread block dimension
 dim3 dimBlock(N, N);

 // Calling the Kernel
 MatAdd<<<1, dimBlock>>>(A, B, C);
}

9 Unveilling the Password Encryption Process under Windows – a Practical Attack 325

The number of threads in a block is limited by the memory resources of the processing cores. On
current GPUs, a thread block can contain up to 512 threads.

However, a kernel can be executed on multiple blocks, so the total number of threads equals the
number of blocks multiplied by the number of threads per block.

These blocks are organized into uni-directional or bi-directional block grids. The grid dimension is
defined by the first parameter of the <<<...>>> syntax.

The code above transforms as follows:
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])
{
 int i = blockIdx.x * blockDim.x + threadIdx.x;
 int j = blockIdx.y * blockDim.y + threadIdx.y;
 if (i<N && j<N)
 C[i][j] = A[i][j] + B[i][j];
}

int main()
{
 // Thread block dimension
 dim3 dimBlock(16, 16);

// Grid dimension
 dim3 dimGrid((N + dimBlock.x - 1)/dimBlock.x, (N + dimBlock.y - 1)/dimBlock.y);

 // Calling the Kernel
 MatAdd<<<dimGrid, dimBlock>>>(A, B, C);
}

In the CUDA technology, for the host (CPU) and the device (GPU) are allocated different memory
spaces: global, shared, texture, local or registers. The developer must use carefully the read and write calls
from/into these types of memory, as the performance of these actions will vary depending of the memory
type and the overall performance will be affected.

The CUDA project contains three main files:
– cudaGeneral.cu – contains „device code”, executed on GPU. This file will include the kernel and

other device functions defined in the next file;
– cudaGeneral_kernel.cu – contains the kernel and other „device code”, executed on GPU. The code

declares the following device memory spaces:
__device__ __constant__ char charsetGPU[128];
__device__ __constant__ unsigned int charsetLenGPU;
__device__ __constant__ unsigned long targetHashGPU[4];
__device__ __constant__ unsigned long long idStartPassGPU;
__device__ __constant__ unsigned int passwordLenGPU;

charsetGPU[128]: constant memory, containing the working charset
charsetLenGPU: charset length
targetHashGPU[4]: the hash to be attacked
idStartPassGPU: the Id of the first password that will be processed in the current kernel group
passwordLenGPU: the length of the current passwords in process

Functions Description
void
init_GPU_constant_memory (char *charset, unsigned int
charsetLen, unsigned char *hashBytes)

Initialization of the constant memory with:
– charset
– charset length
– hash to attack

void
init_GPU_constant_memory_id (unsigned long long
idStartPassCPU)

Initialization of the constant memory with:
– the Id of the first password in the kernel group

void
init_GPU_constant_memory_passLen (unsigned int
passwordLen)

Initialization of the constant memory with:
– password length

 Lucian Oprea 10 326

(continued)

int
print_device_info(bool bDisplayDeviceInfo)

Display CUDA info of the GPU

__device__ bool
Transform_md4_GPU(unsigned char *src)

Executed on GPU.
Compute the MD4 of the current Unicode password and compares
with the hash to attack

__device__ bool
Transform_md5_GPU(unsigned char *src)

Executed on GPU.
Compute the MD5 of the current password and compares with the
hash to attack

__global__ void
Brute_Kernel_GPU_NTHash(unsigned long long *
resultGPU)

The kernel that calls the hash processing of the current Unicode
password and signals the CPU if a match is found

__global__ void
Brute_Kernel_GPU_md5(unsigned long long *
resultGPU)

The kernel that calls the MD5 processing of the current password and
signals the CPU if a match is found

– cudaGeneral_fnc.cpp – contains C functions executed by CPU.

Function Description
void
hexAscii_to_bytes(char *src_ascii, unsigned char
*dest_bytes)

Convert hex string to byte array

void
tid_to_password(unsigned long long tid, char *charset,
char *password, unsigned int passwordLen)

Convert the thread Id into the password to process

Assigning different passwords to the processing threads is performed as follows:

// thread Id
unsigned long long tid = idStartPassGPU + blockDim.x * blockIdx.x + threadIdx.x;

// aux thread Id
unsigned long long tid_aux = tid;

// pass length
unsigned int passwordLen = passwordLenGPU;

// charset length
unsigned int charsetLen = charsetLenGPU;

// loop Id
unsigned int i = 0;

//9 (pass) || 1 (0x80)
unsigned char curentPass[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

// password to be processed by the current thread
while (i < passwordLen)
{
 curentPass[i++] = charsetGPU[tid_aux % charsetLen];
 tid_aux /= charsetLen;
}

// append one bit of '1'
curentPass[i] = 0x80;

// if the computed hash equals the input one, the GPU signals the CPU
// by using the variable resultGPU from global memory (carefully use
// this variable because it drastically decreases the performance)
if (Transform_md4_GPU(curentPass))
{
 resultGPU[0] = 1;
 resultGPU[1] = tid;
}

11 Unveilling the Password Encryption Process under Windows – a Practical Attack 327

Each thread creates its own password and compares the resulting hash with the target hash stored in
Constant Memory. If these are equal, the device function associated with the thread will return a true value to
the kernel and the kernel writes the result into the corresponding Global Memory space. In this way, the
GPU signals the CPU that the password was found by the thread with the ID tid.

Finally, the CPU calls the conversion function (void tid_to_password(unsigned long long tid, char *charset, char
*password, unsigned int passwordLen)) and displays the Built-In Administrator password found by the GPU.

5. CONCLUSIONS

Although LMHash has its own disadvantages over NTHash (reduced number of characters due to
uppercase conversion, susceptible to known plaintext attacks, lacks the source of randomness, independent
processing of password halves etc.), the bit level permutations in DES makes attacking the 1st encryption
level harder and more challenging to implement than MD4, making the 3rd step of the attack more time
consuming in the process of brute-forcing the password.

The time to finalize the attack depends with a higher degree on the 1st encryption level (the 3rd step of
the attack). The other two encryption levels can be reduced in a small amount of time as long as the
necessary values (F0x70, F0x80, JD, Skew1, GBG and Data) are extracted from the protected registry keys on
the attacked machine.

The last two steps of the attack can be conducted offline, thus no interaction with the attacked
computer or network is needed.

Most of the published papers related to defense techniques against password cracking recommend
disabling the LM hashing or enabling the use of SYSKEY. In this paper, we presented a practical attack that
works even if these recommendations are applied. One of the best security measures still remains the use of
complex passwords that are frequently changed.

REFERENCES

1. Dobromir Todorov, Mechanics of User Identification and Authentication – Fundamentals of Identity Management, Auerbach
Publications – Taylor & Francis Group, 2007.
2. Todd Sabin, BindView Security Advisory, http://packetstorm.foofus.com/9912-exploits/bindview.syskey.txt, 2009.
3. http://xfocus.net/articles/200306/550.html.
4. Nvidia CudaTM, Programming Guide, Version 2.2.1, 2009.
5. David Kirk, Wen-Mei Hwu, CUDA (Ch. 1 to 7), 2006-2008.
6. http://www.nvidia.com/cuda.
7. http://en.wikipedia.org/wiki/LM_hash.

Received July 25, 2013

