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1. INTRODUCTION 

Local and domain account information, such as user passwords, group definitions, and domain 
associations are stored by the Windows operating system in registry. By default, the registry keys like 
HKEY_LOCAL_MACHINE\SAM, which holds most of this information, are unreadable even for the system 
administrator account. SAM stands for the Security Accounts Manager and is essentially a database of 
security information, user permissions and passwords. It is sometimes referred to as the Windows local 
security database. 

In the 2nd section of this paper we present the structure of the SAM registry and the location of the 
values we need in order to launch the attack.  

In the 3rd section we present the cryptographic transformations applied to the user password. We 
grouped these transformations in three different “encryption” levels. These levels are applied sequentially, 
the resulted values being stored into the registry structure. We call these levels “encryption levels” due to the 
cryptographic processing of the initial and intermediate values and even if these levels contain hash 
primitives. 

In order to recover the password of a Windows account, we implemented 3 different applications. A 
Windows service and a standalone application were implemented in order to gather all the data we need for 
the attack and to ease the final step of finding the password. The 3rd application, which recovers the password 
by brute-force, is implemented in CUDA technology in order to use the processing power of a compatible 
GPU card. 

The 4th section presents the description of the attack and a practical example of recovering an 
Administrator password. 

 
Observation: the techniques shown here are strictly for educational purposes and should not be used 

against systems for which you do not have authorization for. 

2. SAM STRUCTURE 

The initial information we need in order to launch the attack is stored in Windows registry.  The most 
important registry key in our attack is HKEY_LOCAL_MACHINE\SAM\SAM\Domains. This key contains 
two other subkeys: 

– Account subkey: contains information about defined user and group accounts. Administrator and 
Guest information is stored here, although these accounts are defined by default; 
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– BuiltIn subkey: contains information about operating system users defined by default. 
HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Names contains the list of all user accounts 

on the machine. Every user account in here has a key containing a hex value which is the RID (Relative 
Identifier) of the account or group. 

In HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Users each account is defined by a 
different subkey which is the RID (Relative Identifier) of that account or group. For the Administrator 
account, that is the account against which we apply the example attack, the RID value is the constant value 
0x000001F4 and it is not dependent on the computer. 

 For every user account, this key contains two REG_BINARY values (F and V) which contains some of 
the data we need [1]. 

The following information can be extracted from the V value: 

Table 1 

User information stored in HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Users\{RID}\V 

Address Information 
0x0c Offset of the account name 
0x10 Length of the account name 
0x18 Offset of the complete account name 
0x1c Length of the complete account name 
0x24 Offset of the comment 
0x28 Length of the comment 
0x48 Offset of the homedir name 
0x4c Length of the homedir name 
0x9c Offset of the final password hashes (SAM) 
0xc4 Number of hashes from history 

 
In order to extract a value, we must add 0xcc to the offset value from the table above. 
For example, the final hashes offset is computed as being V[0x9c] + 0xcc, the first one starting at the 

computed offset being LMHash, followed by NTHash. If SYSKEY is enabled, the encrypted hashes are 
prefixed by 0x10000000 [2]. 

3. ENCRYPTION LEVELS 

The process of encrypting the user password is done in three different steps, on three different levels of 
encryption. The figure below presents the notations used in this document for referring the output of each of 
these levels. 
 

 
Fig. 1 – Encryption levels. 
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The V registry value presented in the previous section contains the two final hashes for the password of 
the corresponding user account: 

– LMHashSAM: LAN Manager hash, was the primary hash that Microsoft LAN Manager and Microsoft 
Windows versions prior to Windows NT (MS Client for DOS, Windows for Workgroups, Windows 
95/98/Me and in some cases Windows NT or newer) used to store user passwords. Support for the 
legacy LAN Manager protocol continued in later versions of Windows for backward compatibility, but 
was recommended by Microsoft to be turned off by administrators; as of Windows Vista, the protocol 
is disabled by default [7]; 
– NTHashSAM: used in Windows NT/2000/2003/XP. 
The first encryption level is presented in the picture below. 
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Fig. 2 – The 1st encryption level. 

 One could observe the following vulnerabilities in LMHash computation: 
– the password is first converted to uppercase, thus it reduces the number of possible characters; 
– the password is used to encrypt a known fixed plaintext, making it susceptible to known plaintext 
cryptanalysis; 
– no salt, IV or any sort of randomness; two identical passwords will generate two identical hashes 
after in the first level; 
– password padding is done with the byte 0x00 to a length of 14 characters. So, a password with at 
most 7 characters will have 0x00 on all its 7 MSBs; the ciphertext resulted from this fixed block is 
known so it is easy to find if a password is less than 8 characters; 
– the password is split in two parts which then are used independently; in this way, one could attack the 
two parts separately. 

To avoid the LMHash vulnerabilities, there are some actions than could be performed: 
– use a password with more than 14 characters. The algorithm for LMHash generation supports only 
passwords less than this length, so it will not be generated; 
– disable LMHash generation (Windows 2000/XP/2003): 

o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa\NoLmHash: 
REG_DWORD=1, or: 
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o using GPO (Network Security: Do not store LAN Manager hash value on the next password 
change). 

The drawback of disabling the generation of the LMHash is that if for an user account this hash is not 
present, that user cannot authenticate from computers which support only the LM authentication protocol 
(Windows 95/98 or older). 

To add another layer of protection to the hashes provided by the 1st encryption level, Windows adds the 
2nd encryption layer, using DES and keys derived from the user’s RID, as presented in the picture below. 
 
 

 
Fig. 3 – The 2nd encryption level. 

The keys K1 and K2 used to encrypt the first and respectively the second half of the hashes resulted 
after applying the 1st encryption level are obtained from the user RID in the following manner: 
 
 

 
Fig. 4 – Obtaining the encryption keys for the 2nd encryption level. 

 By applying this level of encryption, even if two different users have the same password, the 
obfuscated hashes will be different because the users have different RID values. 
 The 3rd encryption level uses the most cryptographic functions, as we see in the picture below. 
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Fig. 5 – The 3rd encryption level. 

 Now, the only unknown values from this scheme are: SYSKEY, F0x70 and F0x80. 

 The information we need in order to compute the SYSKEY value is usually stored in Windows registry, 
under HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa. The SecureBoot REG_DWORD 
specifies if SYSKEY is stored in registry, if it is derived from a password set by administrator or if it will be 
stored on a Floppy Disk.  
 The registry key above contains four subkeys (JD, Skew1, GBG and Data), with four bytes each. In 
order to obtain the SYSKEY value, these values are concatenated and permuted by the following rules: 

 P[i] = {8, 10, 3, 7, 2, 1, 9, 15, 0, 5, 13, 4, 11, 6, 12, 14} 
 SYSKEY[P[i]] = [JD||Skew1||GBG||Data][i] 

 The values F0x70 and F0x80 represent 16 and respectively 32 bytes taken from the offsets 0x70 and 0x80 
from the F value under the subkey HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account. 

 The final values, LMHashSAM and NTHashSAM are the actual hashes stored in registry. 

4. THE ATTACK 

Attacking the encryption process of user passwords can be done in three steps: 

Step 1: extracting the necessary data from the registry: 
– JD, Skew1, GBG and Data, in order to compute SYSKEY; 
– F0x70 and F0x80; 
– LMHashSAM or NTHashSAM. 
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In order to achieve this, we have implemented a Windows service running under the System account in 
order to be able to access and extract these values.  

As an example, we demonstrate how to break an Administrator password, so the values LMHashSAM 
and NTHashSAM were read from the V value under the registry key 
HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Users\000001F4. The other values were taken 
from HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa and HKEY_LOCAL_MACHINE\ 
SAM\SAM\Domains\Account. 

Here are the actual keys extracted from the registry: 

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\JD: 
84 4E 40 71 

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\Skew1: 
42 E4 22 9D 

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\GBG: 
F4 D2 49 22 

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Lsa\Data: 
D5 A7 1F A2 

HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\F: 
02 00 01 00 00 00 00 00 30 AE 6E 84 7B 68 C6 01  
2E 00 00 00 00 00 00 00 00 00 00 00 40 DE FF FF  
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 80  
00 CC 1D CF FB FF FF FF 00 CC 1D CF FB FF FF FF  
00 00 00 00 00 00 00 00 F0 03 00 00 00 00 00 00  
00 00 00 00 00 00 00 00 01 00 00 00 03 00 00 00  
01 00 00 00 01 00 01 00 01 00 00 00 38 00 00 00  
F1 1B C8 92 CB 0B 0C 60 28 52 EC 58 80 2E F3 36  
A7 51 FD DA 49 8C 0B CD D8 7D 52 76 56 A4 CA 72  
78 7E 30 17 35 38 A7 73 C1 7D D9 D1 12 DB 62 D9  
00 00 00 00 00 00 00 00 01 00 00 00 38 00 00 00  
55 DC 56 3C 85 53 A0 73 D6 76 E4 9D FE F7 C5 20  
0D 89 95 E0 7D 99 37 EA B4 2D E0 42 A4 61 31 53  
6A 31 7A 38 F5 5C C9 22 AE 44 E1 23 06 21 4A 06  
00 00 00 00 00 00 00 00 02 00 00 00 00 00 00 00 

So, the values of F0x70 and F0x80 are: 
F0x70 = F1 1B C8 92 CB 0B 0C 60 28 52 EC 58 80 2E F3 36 
F0x80 = A7 51 FD DA 49 8C 0B CD D8 7D 52 76 56 A4 CA 72 
  78 7E 30 17 35 38 A7 73 C1 7D D9 D1 12 DB 62 D9 

HKEY_LOCAL_MACHINE\SAM\SAM\Domains\Account\Users\000001F4\V 
00 00 00 00 BC 00 00 00 02 00 01 00 BC 00 00 00  
1A 00 00 00 00 00 00 00 D8 00 00 00 00 00 00 00  
00 00 00 00 D8 00 00 00 6C 00 00 00 00 00 00 00  
44 01 00 00 00 00 00 00 00 00 00 00 44 01 00 00  
00 00 00 00 00 00 00 00 44 01 00 00 00 00 00 00  
00 00 00 00 44 01 00 00 00 00 00 00 00 00 00 00  
44 01 00 00 00 00 00 00 00 00 00 00 44 01 00 00  
00 00 00 00 00 00 00 00 44 01 00 00 00 00 00 00  
00 00 00 00 44 01 00 00 15 00 00 00 A8 00 00 00  
5C 01 00 00 08 00 00 00 01 00 00 00 64 01 00 00  
14 00 00 00 00 00 00 00 78 01 00 00 14 00 00 00  
00 00 00 00 8C 01 00 00 04 00 00 00 00 00 00 00  
90 01 00 00 04 00 00 00 00 00 00 00 01 00 14 80  
9C 00 00 00 AC 00 00 00 14 00 00 00 44 00 00 00  
02 00 30 00 02 00 00 00 02 C0 14 00 44 00 05 01  
01 01 00 00 00 00 00 01 00 00 00 00 02 C0 14 00  
FF FF 1F 00 01 01 00 00 00 00 00 05 07 00 00 00  
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02 00 58 00 03 00 00 00 00 00 14 00 5B 03 02 00  
01 01 00 00 00 00 00 01 00 00 00 00 00 00 18 00  
FF 07 0F 00 01 02 00 00 00 00 00 05 20 00 00 00  
20 02 00 00 00 00 24 00 44 00 02 00 01 05 00 00  
00 00 00 05 15 00 00 00 C2 3B F0 34 B0 BE 8D 6D  
49 94 37 B1 F4 01 00 00 01 02 00 00 00 00 00 05  
20 00 00 00 20 02 00 00 01 02 00 00 00 00 00 05  
20 00 00 00 20 02 00 00 41 00 64 00 6D 00 69 00  
6E 00 69 00 73 00 74 00 72 00 61 00 74 00 6F 00  
72 00 00 00 42 00 75 00 69 00 6C 00 74 00 2D 00  
69 00 6E 00 20 00 61 00 63 00 63 00 6F 00 75 00  
6E 00 74 00 20 00 66 00 6F 00 72 00 20 00 61 00  
64 00 6D 00 69 00 6E 00 69 00 73 00 74 00 65 00  
72 00 69 00 6E 00 67 00 20 00 74 00 68 00 65 00  
20 00 63 00 6F 00 6D 00 70 00 75 00 74 00 65 00  
72 00 2F 00 64 00 6F 00 6D 00 61 00 69 00 6E 00  
FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF  
FF FF FF FF FF BA 94 D8 01 02 00 00 07 00 00 00  
02 00 01 00 B2 2E F9 E6 15 F9 CC ED 53 0E 9F 5B  
B5 4F D6 56 02 00 01 00 90 F2 03 0E 6B 71 A1 8F  
90 62 FA C7 50 CA E5 18 02 00 01 00 02 00 01 00 

Final hashes’ offset is computed as V[0x9c] + 0xcc = 0x0164 + 0xcc = 0x230. So, the two hashes, 
named LMHashSAM and NTHashSAM, are:  
LMHashSAM = B2 2E F9 E6 15 F9 CC ED 53 0E 9F 5B B5 4F D6 56 
NTHashSAM = 90 F2 03 0E 6B 71 A1 8F 90 62 FA C7 50 CA E5 18 
 

Step 2: “reducing” the encryption levels. This step is about inverting the 3rd and the 2nd levels in order 
to obtain LMHash and NTHash (the values resulted after the 1st encryption level). 

This step is necessary in order to reduce the complexity and the number of transformations that must be 
executed in a brute-force attack. 

By looking at the cryptographic transformations in the last two levels, we can observe that: 
– the 3rd level can be reduced by using the data extracted in the 1st step of the attack and the constants 
of the 3rd level of the encryption scheme. First, we can compute the RC4 key, by knowing F0x70 and the 
computed SYSKEY value. Then, knowing F0x80 we can apply the RC4 function to obtain PEK_KM. 
Next, using the known RID of the user (0x000001F4 for Administrator) we apply the MD5 hash on the 
concatenated values as presented in the 3rd level scheme in order to compute PEK, the key used to 
encrypt LMHashobfusc and NTHashobfusc. So, by applying the RC4 algorithm on the hashes extracted 
from the registry in the 1st step and using the key computed above, we finally reduce the 3rd encryption 
level and obtain LMHashobfusc and NTHashobfusc; 
– the 2nd level can also be reduced, observing that the keys K1 and K2 used in the DES encryption can 
be easily computed, knowing the user’s RID. After computing these keys, we apply the inverse of the 
DES algorithm on LMHashobfusc and NTHashobfusc obtained above, obtaining the LMHash and NTHash. 

After reducing the 3rd and the 2nd encryption levels on the values extracted in the 1st step of the attack, 
we obtain the following values of LMHash and NTHash: 
LMHash = 90 94 83 75 BA 1B FE 9A AA D3 B4 35 B5 14 04 EE 
NTHash = 49 E4 AA 6C 65 AD DA 82 4E DB 19 21 E5 EF E7 27 

 
Step 3: brute-force attack on the 1st encryption level in order to break the account password. 

 The brute-force attack is applied on LMHash or NTHash in this way: 
– attacking LMHash consists in finding 2 DES encryption keys, in 2 independent steps: the 1st key 
determines the first 7 characters of the password and the 2nd key determines the last N-7 characters of 
the password, N being the length of the password; 
– attacking NTHash consists in finding the string for which the MD4 hash of its Unicode conversion 
equals NTHash. 
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In order to process large password subdomains in parallel for reducing the computational time, one 
may implement this step using fast parallel technologies such as FPGA, CUDA or other distributed 
implementations.  

We implemented the 3rd step of attacking the NTHash using the CUDA technology on an nVidia® 
Quadro FX 3700 graphic card [6]. The picture below presents the results of brute-forcing the NTHash 
resulted above after reducing the encryption levels. The password was found in less than 13 minutes, the 
average processing speed being 72.84 million passwords per second. The same application can be rewritten 
in order to brute-force DES instead of MD4, thus attacking the LMHash instead of NTHash. 
 

 
Fig. 6 – The 3rd step of the attack: brute-force example in CUDA implementation (attacking NTHash). 

 
We have implemented a console application (cudaGeneral) in order to apply a brute force attack for 

the NTHash algorithm (that is a brute force attack against the MD4 hash of the Unicode password). The 
application is written in Microsoft Visual Studio, using the C++ language, a CUDA driver and library, and it 
is compiled using nvcc (NVIDIA CUDA Compiler). 

The graphic card is programmed using C-CUDA, which extends the C language by allowing the 
definition of some C functions, called kernels. When called, these kernels are executed in N parallel CUDA 
threads, as opposite to classical functions which are executed only once [5]. 

A thread ID is automatically assigned to each thread. This ID can be accessed inside the kernel through 
the threadIdx variable (which is a 3-dimensional array). The threads are grouped into thread blocks which 
can be vectors, matrices or fields, depending on the definition of the thread. 

As an example, the sum of two matrices A and B can be implemented as follows [4]: 
// Kernel definition 
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) 
{ 
 int i = threadIdx.x; 
 int j = threadIdx.y; 
 C[i][j] = A[i][j] + B[i][j]; 
} 

int main() 
{ 
 // Thread block dimension 
 dim3 dimBlock(N, N); 

 // Calling the Kernel 
 MatAdd<<<1, dimBlock>>>(A, B, C); 
} 
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The number of threads in a block is limited by the memory resources of the processing cores. On 
current GPUs, a thread block can contain up to 512 threads. 

However, a kernel can be executed on multiple blocks, so the total number of threads equals the 
number of blocks multiplied by the number of threads per block. 

These blocks are organized into uni-directional or bi-directional block grids. The grid dimension is 
defined by the first parameter of the <<<...>>> syntax. 

The code above transforms as follows: 
// Kernel definition 
__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) 
{ 
 int i = blockIdx.x * blockDim.x + threadIdx.x; 
 int j = blockIdx.y * blockDim.y + threadIdx.y; 
 if (i<N && j<N) 
  C[i][j] = A[i][j] + B[i][j]; 
} 

int main() 
{ 
 // Thread block dimension 
 dim3 dimBlock(16, 16); 

// Grid dimension  
 dim3 dimGrid( (N + dimBlock.x - 1)/dimBlock.x, (N + dimBlock.y - 1)/dimBlock.y ); 

 // Calling the Kernel 
 MatAdd<<<dimGrid, dimBlock>>>(A, B, C); 
} 

In the CUDA technology, for the host (CPU) and the device (GPU) are allocated different memory 
spaces: global, shared, texture, local or registers. The developer must use carefully the read and write calls 
from/into these types of memory, as the performance of these actions will vary depending of the memory 
type and the overall performance will be affected.  

The CUDA project contains three main files:  
– cudaGeneral.cu – contains „device code”, executed on GPU. This file will include the kernel and 

other device functions defined in the next file; 
– cudaGeneral_kernel.cu – contains the kernel and other „device code”, executed on GPU. The code 

declares the following device memory spaces: 
__device__ __constant__ char charsetGPU[128]; 
__device__ __constant__ unsigned int charsetLenGPU; 
__device__ __constant__ unsigned long targetHashGPU[4]; 
__device__ __constant__ unsigned long long idStartPassGPU; 
__device__ __constant__ unsigned int passwordLenGPU; 

charsetGPU[128]: constant memory, containing the working charset 
charsetLenGPU: charset length 
targetHashGPU[4]: the hash to be attacked 
idStartPassGPU:  the Id of the first password that will be processed in the current kernel group  
passwordLenGPU: the length of the current passwords in process 
 

Functions Description 
void 
init_GPU_constant_memory (char *charset, unsigned int 
charsetLen, unsigned char *hashBytes) 

Initialization of the constant memory with: 
– charset 
– charset length 
– hash to attack 

void  
init_GPU_constant_memory_id (unsigned long long 
idStartPassCPU) 

Initialization of the constant memory with: 
– the Id of the first password in the kernel group 

void  
init_GPU_constant_memory_passLen (unsigned int 
passwordLen) 

Initialization of the constant memory with: 
– password length 



 Lucian Oprea 10 326 

(continued) 

int 
print_device_info(bool bDisplayDeviceInfo) 

Display CUDA info of the GPU 

__device__ bool 
Transform_md4_GPU( unsigned char *src) 

Executed on GPU. 
Compute the MD4 of the current Unicode password and compares 
with the hash to attack 

__device__ bool 
Transform_md5_GPU( unsigned char *src) 

Executed on GPU. 
Compute the MD5 of the current password and compares with the 
hash to attack 

__global__ void 
Brute_Kernel_GPU_NTHash( unsigned long long * 
resultGPU) 

The kernel that calls the hash processing of the current Unicode 
password and signals the CPU if a match is found 

__global__ void 
Brute_Kernel_GPU_md5( unsigned long long * 
resultGPU) 

The kernel that calls the MD5 processing of the current password and 
signals the CPU if a match is found 

– cudaGeneral_fnc.cpp – contains C functions executed by CPU. 
 

Function Description 
void 
hexAscii_to_bytes(char *src_ascii, unsigned char 
*dest_bytes) 

Convert hex string to byte array 

void 
tid_to_password(unsigned long long tid, char *charset, 
char *password, unsigned int passwordLen) 

Convert the thread Id into the password to process 

 
Assigning different passwords to the processing threads is performed as follows: 

 
// thread Id 
unsigned long long tid = idStartPassGPU + blockDim.x * blockIdx.x + threadIdx.x; 

// aux thread Id 
unsigned long long tid_aux = tid; 

// pass length 
unsigned int passwordLen = passwordLenGPU; 

// charset length 
unsigned int charsetLen = charsetLenGPU; 

// loop Id 
unsigned int i = 0; 

//9 (pass) || 1 (0x80) 
unsigned char curentPass[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};  

// password to be processed by the current thread 
while (i < passwordLen) 
{ 
 curentPass[i++] = charsetGPU[tid_aux % charsetLen]; 
 tid_aux /= charsetLen; 
} 
 
// append one bit of '1' 
curentPass[i] = 0x80; 

// if the computed hash equals the input one, the GPU signals the CPU  
// by using the variable resultGPU from global memory (carefully use 
// this variable because it drastically decreases the performance) 
if (Transform_md4_GPU(curentPass)) 
{ 
 resultGPU[0] = 1; 
 resultGPU[1] = tid; 
} 
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Each thread creates its own password and compares the resulting hash with the target hash stored in 
Constant Memory. If these are equal, the device function associated with the thread will return a true value to 
the kernel and the kernel writes the result into the corresponding Global Memory space. In this way, the 
GPU signals the CPU that the password was found by the thread with the ID tid. 

Finally, the CPU calls the conversion function (void tid_to_password(unsigned long long tid, char *charset, char 
*password, unsigned int passwordLen)) and displays the Built-In Administrator password found by the GPU. 

5. CONCLUSIONS 

Although LMHash has its own disadvantages over NTHash (reduced number of characters due to 
uppercase conversion, susceptible to known plaintext attacks, lacks the source of randomness, independent 
processing of password halves etc.), the bit level permutations in DES makes attacking the 1st encryption 
level harder and more challenging to implement than MD4, making the 3rd step of the attack more time 
consuming in the process of brute-forcing the password. 

The time to finalize the attack depends with a higher degree on the 1st encryption level (the 3rd step of 
the attack). The other two encryption levels can be reduced in a small amount of time as long as the 
necessary values (F0x70, F0x80, JD, Skew1, GBG and Data) are extracted from the protected registry keys on 
the attacked machine. 

The last two steps of the attack can be conducted offline, thus no interaction with the attacked 
computer or network is needed. 

Most of the published papers related to defense techniques against password cracking recommend 
disabling the LM hashing or enabling the use of SYSKEY. In this paper, we presented a practical attack that 
works even if these recommendations are applied. One of the best security measures still remains the use of 
complex passwords that are frequently changed. 
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