A PERTURBATIVE ANALYSIS OF NONLINEAR CUBIC-QUINTIC DUFFING OSCILLATORS

Khosro SAYEVAND ${ }^{1}$, Dumitru BALEANU ${ }^{2}$, Mojtaba FARDI ${ }^{3}$
${ }^{1}$ Malayer University, Faculty of Mathematical Sciences, Malayer, Iran
${ }^{2}$ Cankaya University, Faculty of Art and Sciences, Department of Mathematics and Computer Sciences, Ankara, Turkey
${ }^{2}$ King Abdulaziz University, Faculty of Engineering, Department of Chemical and Materials Engineering, P.O. Box 80204, Jeddah, 21589, Saudi Arabia
${ }^{2}$ Institute of Space Sciences, MG-23, R 76900, Magurele-Bucharest, Romania
${ }^{3}$ Islamic Azad University, Department of Mathematics, Najafabad Branch, Najafabad, Iran
E-mail: ksayehvand@malayeru.ac.ir

Abstract

Duffing oscillators comprise one of the canonical examples of Hamilton systems. The presence of a quintic term makes the cubic-quintic Duffing oscillator more complex and interesting to study. In this paper, the homotopy analysis method (HAM) is used to obtain the analytical solution for the nonlinear cubic-quintic Duffing oscillators. The HAM helps to obtain the frequency ω in the form of approximation series of a convergence control parameter \hbar. The valid region of \hbar is determined by plotting the $\omega-\hbar$ curve and afterwards we compared the obtained results with the exact solutions.

Key words: homotopy analysis method, homotopy-Padé technique, oscillator.

1. INTRODUCTION

Duffing equation is used to model the conservative double-well oscillators, which can occur, for example, in magneto-elastic mechanical systems [1]. These systems can be presented in the following form

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} t^{2}}+\alpha u(t)+\beta u^{3}(t)+\gamma u^{5}(t)=0, \tag{1}\\
u(0)=B, \quad u^{\prime}(0)=0,
\end{array}\right.
$$

where B is the amplitude of the oscillator. Under the initial conditions mentioned above the nonlinear cubic-quintic Duffing oscillator has the exact frequency [2]:

$$
\begin{align*}
& \omega_{\varepsilon}=\frac{\pi \sqrt{\alpha+\beta \frac{B^{2}}{2}+\gamma \frac{B^{4}}{4}}}{\int_{0}^{\frac{\pi}{2}}\left(1+M \sin ^{2}(t)+N \sin ^{4}(t)\right)^{\frac{-1}{2}} \mathrm{~d} t}, \tag{2}\\
& M=\frac{3 \beta B^{2}+2 \gamma B^{4}}{6 \alpha+3 \beta B^{2}+2 \gamma B^{4}}, \\
& N=\frac{2 \gamma B^{4}}{6 \alpha+3 \beta B^{2}+2 \gamma B^{4}} .
\end{align*}
$$

Eq. (1) describes an oscillator with an unknown frequency ω. Under the transformations

$$
\begin{equation*}
\tau=\omega t, \quad u(t)=B U(\tau), \tag{3}
\end{equation*}
$$

the original Eq. (1) becomes

$$
\left\{\begin{array}{l}
\omega^{2} \frac{\mathrm{~d}^{2} U}{\mathrm{~d} \tau^{2}}+\alpha U(\tau)+B^{2} \beta U^{3}(\tau)+B^{4} \gamma U^{5}(\tau)=0 \tag{4}\\
U(0)=1, \quad U^{\prime}(0)=0
\end{array}\right.
$$

In the present paper, we use the homotopy analysis method (HAM) to obtain the periodic solutions of the nonlinear cubic-quintic Duffing oscillators. It is to be noted that Liao [3] employed the basic ideas of the homotopy to overcome the restrictions of traditional techniques [4-18] namely the HAM. Notice that the HAM contains an auxiliary parameter \hbar which provides a convenient way to control the convergence region and the rate of approximation series. Liao investigated the influence of \hbar on the convergence of solution series by means of \hbar-curves [3].

2. APPLICATION OF HOMOTOPY ANALYSIS METHOD

The periodic solution of $U(\tau)$ with the frequency ω can be written as

$$
\begin{equation*}
U(\tau)=\sum_{m=0}^{\infty} c_{m} \cos (m \tau) \tag{5}
\end{equation*}
$$

where c_{m} are coefficients. It is convenient to choose

$$
\begin{equation*}
U_{0}(\tau)=\cos \tau \tag{6}
\end{equation*}
$$

as the initial guess of $U(\tau)$. Let ω_{0} denotes the initial guess of ω, then we choose the auxiliary linear operator

$$
\begin{equation*}
L[\varphi(\tau ; q)]=\omega_{0}^{2}\left[\frac{\mathrm{~d}^{2} \varphi(\tau ; q)}{\mathrm{d} \tau^{2}}+\varphi(\tau ; q)\right], \tag{7}
\end{equation*}
$$

with the property

$$
\begin{equation*}
L\left[C_{1} \cos \tau+C_{2} \sin \tau\right]=0 \tag{8}
\end{equation*}
$$

where C_{1} and C_{2} are coefficients. We define a nonlinear operator

$$
\begin{equation*}
N[\varphi(\tau ; q), \Omega(q)]=\Omega^{2}(q) \frac{\mathrm{d}^{2} \varphi(\tau ; q)}{\mathrm{d} \tau^{2}}+\alpha \varphi(\tau ; q)+B^{2} \beta \varphi^{3}(\tau ; q)+B^{4} \gamma \varphi^{5}(\tau ; q) . \tag{9}
\end{equation*}
$$

Let \hbar denotes a nonzero auxiliary parameter and $H(\tau)$ a nonzero auxiliary function. Then, we construct the zero-order deformation equation

$$
\begin{equation*}
(1-q) L[\varphi(\tau ; q)]=q \hbar H(\tau) N[\varphi(\tau ; q), \Omega(q)], \quad q \in[0,1] \tag{10}
\end{equation*}
$$

such that

$$
\begin{equation*}
\varphi(0, q)=1,\left.\quad \frac{\partial \varphi(\tau ; q)}{\partial \tau}\right|_{\tau=0}=0 . \tag{11}
\end{equation*}
$$

When $q \in[0,1]$, the solution $\varphi(\tau ; q)$ varies from $U_{0}(\tau)$ to $U(\tau)$ so does $\Omega(q)$ from ω_{0} to ω. The Taylor's series with respect to q can be constructed for $\varphi(\tau ; q)$ and $\Omega(q)$ and if these two series are convergent at $q=1$, we have:

$$
\begin{equation*}
U(\tau)=U_{0}(\tau)+\sum_{j=0}^{\infty} U_{j}(\tau), \quad \omega=\omega_{0}+\sum_{j=0}^{\infty} \omega_{j} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{m}(\tau)=\left.\frac{\partial^{m} \varphi(\tau ; q)}{m!\partial q^{m}}\right|_{q=0} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{m}=\left.\frac{\partial^{m} \Omega(q)}{m!\partial q^{m}}\right|_{q=0} . \tag{14}
\end{equation*}
$$

Differentiating the zero-order deformation Eq. (10) and Eq. (11) m times with respect to embedding parameter q and then dividing them by m ! and finally setting $q=0$, we have the so-called m th order deformation equation

$$
\begin{gather*}
L\left[U_{m}(\tau)-\chi_{m} U_{m-1}(\tau)\right]=\hbar R_{m}\left(U_{0}, \omega_{0}, \ldots, U_{m-1}, \omega_{m-1}\right), \tag{15}\\
U_{m}(0)=0, \quad U_{m}^{\prime}(0)=0, \quad m \geq 1, \tag{16}
\end{gather*}
$$

where

$$
\begin{equation*}
R_{m}\left(U_{0}, \omega_{0}, \ldots, U_{m-1}, \omega_{m-1}\right)=\left.\frac{\partial^{m-1} N[\varphi(\tau ; q), \Omega(q)]}{(m-1)!\partial q^{m-1}}\right|_{q=0} \tag{17}
\end{equation*}
$$

Note that U_{m}, ω_{m-1} are all unknown, but we have only Eq. (15) for U_{m}, thus an additional algebraic equation is required for determining ω_{m-1}. It is found that the right-hand side of the $m^{\text {th }}$ order deformation Eq. (15) is expressed by

$$
\begin{equation*}
R_{m}\left(U_{0}, \omega_{0}, \ldots, U_{m-1}, \omega_{m-1}\right)=\sum_{k=0}^{\psi(m)} c_{m, k}\left(\omega_{m-1}\right) \cos ((2 k+1) \tau), \tag{18}
\end{equation*}
$$

where $c_{m, k}$ is a coefficient and $\psi(m)$ is a positive integer dependent on order m.
If $R_{m}\left(U_{0}, \omega_{0}, \ldots, U_{m-1}, \omega_{m-1}\right)$ contains the term $\cos \tau$ then the solution of Eq. (15) involves the socalled secular term $\tau \cos \tau$ that this disobeys the rules of solutions expression, thus coefficient $c_{m, 0}$ must be enforced to be zero. This provides with the additional algebraic equation for determining ω_{m-1}

$$
\begin{equation*}
c_{m, 0}\left(\omega_{m-1}\right)=0 . \tag{19}
\end{equation*}
$$

Consequently, we obtain

$$
\begin{equation*}
U_{m}(\tau)=\chi_{m} U_{m-1}(\tau)+\frac{\hbar}{\omega_{0}^{2}} \sum_{j=1}^{\psi(m)} \frac{c_{m, j}\left(\omega_{m-1}\right)}{1-(2 j+1)^{2}} \cos [(2 j+1) \tau]+C_{1} \cos \tau+C_{2} \sin \tau \tag{20}
\end{equation*}
$$

where C_{1}, C_{2} are two coefficients and to be determined by conditions $U_{m}(0)=0$ and $U_{m}^{\prime}(0)=0$.
Thus the N th order approximation can be given by

$$
\begin{equation*}
U(\tau)=U_{0}(\tau)+\sum_{j=0}^{N} U_{j}(\tau) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega=\omega_{0}+\sum_{j=0}^{N} \omega_{j} . \tag{22}
\end{equation*}
$$

3. NUMERICAL RESULTS AND DISCUSSION

For given $\alpha=\beta=\gamma=1$ the amplitude ω_{m-1} can be determined by the analytic approach mentioned above. For $m=1,2$ we have:

$$
\left\{\begin{array}{l}
\omega_{0}=\frac{1}{\sqrt{10 B^{4}+12 B^{2}+16}}, \tag{23}\\
\omega_{1}=\frac{1}{96} \frac{B^{2} \hbar\left(48+100 B^{2}+65 B^{6}+96 B^{4}\right)}{\sqrt{10 B^{4}+12 B^{2}+16}\left(5 B^{4}+6 B^{2}+8\right)} .
\end{array}\right.
$$

Note. The obtained results contain the auxiliary parameter \hbar. It is found that convergence regions of the approximation series are dependent upon \hbar [3]. For example, consider cases $B=0.1,0.15$. We plotted the $\omega-\hbar$ curve to determine the so-called valid region of \hbar, as shown in Fig. 1. Obviously, the valid regions of \hbar for $B=0.1,0.15$ are $-4<\hbar<4$ and $-3.5<\hbar<3.5$, respectively, for instance for $B=0.1$ we have the result $\omega=1.003733$ as shown in Table 1.

Also, we consider cases $B=1,1.1$. We plotted the $\omega-\hbar$ curve to determine the so-called valid region of \hbar as shown in Fig. 2. It is shown that the valid regions of \hbar for $B=1,1.1$ are $-1<\hbar<0.9$ and $-0.9<\hbar<0.8$, respectively. Furthermore for $B=1$, we have result $\omega=1.538669$ as shown in Table 1. In Table 2, we compared the $14^{\text {th }}$ order approximations of HAM with the exact solutions.

Table 1
Approximation of ω for $B=0.1,1$ and comparison with exact frequency ω_{e}

M	$B=0.1\left(\omega_{e}=1.003770\right)$	$B=1\left(\omega_{e}=1.523590\right)$
7	1.003753	1.538663
8	1.003728	1.538669
9	1.003733	1.538669
10	1.003732	1.538695
11	1.003733	1.538669
12	1.003733	1.538669
13	1.003733	1.538669
14	1.003733	1.538669

Table 2
Comparison of the $14{ }^{\text {th }}$-order approximations of HAM with the exact solutions

B	HAM	Exact	Error
0.3	1.035516	1.035540	2.32×10^{-5}
0.5	1.107092	1.106540	4.99×10^{-4}
3	7.636706	7.268630	5.06×10^{-2}
5	20.256660	19.181500	5.60×10^{-2}
8	51.078098	48.294600	5.75×10^{-2}
10	79.536112	75.177400	5.79×10^{-2}
20	316.703160	299.223000	5.84×10^{-2}
50	1976.897968	1867.570000	5.85×10^{-2}

Fig. 1 - The $\omega-\hbar$ curve for $B=0.1,0.15$.
Fig. 2 - The $\omega-\hbar$ curve for $B=1,1.1$.

3.1. Square residual error

We obtained the constant \hbar using the least square method. In theory, at the M th-order of approximation, we can define the exact square residual error

$$
\begin{equation*}
\Delta_{M}(\hbar)=\int_{D}\left(N\left(\sum_{k=0}^{M} U_{k}(\tau), \sum_{k=0}^{M} \omega_{k}\right)\right)^{2} d \tau \tag{24}
\end{equation*}
$$

Clearly, the more rapidly $\Delta_{M}(\hbar)$ decreases to zero, the faster the approximation series converges.

Fig. 3 - The $\Delta_{10}(\hbar)-\hbar$ curve for $B=0.1$.

Fig. 4 - The $\Delta_{10}(\hbar)-\hbar$ curve for $B=1$.

Remark 1. The curve of $\Delta_{10}(\hbar)$ versus \hbar at $B=0.1$ is shown in Fig. 3, which indicates that the optimal values of \hbar is about -1.5.

Remark 2.The curve of $\Delta_{10}(\hbar)$ versus \hbar at $B=1$ is shown in Fig. 4, which indicates that the optimal values of \hbar is about -0.78 .

4. HOMOTOPY-PADÉ TECHNIQUE

The Padé technique is widely applied to enlarge the convergence region and convergence rate of given series. The so-called homotopy-Padé technique was suggested by means of combining the Padé technique with HAM.

For a given series

$$
\begin{equation*}
S_{k}(q)=\sum_{j=0}^{k} \omega_{j} q^{j}, \tag{25}
\end{equation*}
$$

the corresponding $[n, m]$ Padé approximate is expressed by

$$
\begin{equation*}
S_{n+m}(q)=\frac{C_{n, m}(q)}{D_{n, m}(q)}=\frac{\sum_{j=0}^{n} c_{j} q^{j}}{1+\sum_{j=1}^{m} d_{j} q^{j}}, \tag{26}
\end{equation*}
$$

where c_{j}, d_{j} can be determined by solving the linear system:

$$
\left\{\begin{array}{l}
\omega_{i}+\sum_{j=0}^{i-1} \omega_{j} d_{i-j}=c_{i}, \quad i=0,1,2, \ldots, n, \tag{27}\\
\omega_{i}+\sum_{j=i-m}^{i-1} \omega_{j} d_{i-j}=0, \quad i=n+1, \ldots, n+m .
\end{array}\right.
$$

Setting $q=1$ provides the $[n, m]$ homotopy-Padé approximation

$$
\begin{equation*}
\omega^{[n, m]}=S_{n+m}(1)=\sum_{j=0}^{n+m} \omega_{j}=\frac{C_{n, m}(1)}{D_{n, m}(1)}=\frac{\sum_{j=0}^{n} c_{j}}{1+\sum_{j=1}^{m} d_{j}}, \tag{28}
\end{equation*}
$$

which accelerate the convergence rate of solution series of HAM. We have applied the homotopy-Padé technique to accelerate the convergence rate of M th-order approximations of HAM. In Table 3 we compared the approximations of homotopy-Padé technique with exact solutions.

Table 3
Comparison the exact solution with approximation of homotopy-Padé technique

	$B=0.1$	$B=0.3$	$B=1$	$B=3$
$\omega^{[1,1]} / \omega_{e}$	1.00037	1.00482	1.01757	1.01842
$\omega^{[2,2]} / \omega_{e}$	1.00015	1.00326	1.01317	1.01674
$\omega^{[3,3]} / \omega_{e}$	1.00011	1.00232	1.01219	1.01655
$\omega^{[4,4]} / \omega_{e}$	1.00013	1.00236	1.01087	1.01638
$\omega^{[5,5]} / \omega_{e}$	1.00010	1.00219	1.01058	1.01550
$\omega^{[6,6]} / \omega_{e}$	1.00010	1.00168	1.00876	1.01537
$\omega^{[7,7]} / \omega_{e}$	1.00010	1.00143	1.00781	1.01531

5. CONCLUSIONS

In this paper, the HAM is presented to calculate the frequency and the solution of the nonlinear cubicquintic Duffing oscillators. According to obtained results, the HAM and homotopy-Padé technique could give efficient frequency approximations for the nonlinear cubic-quintic Duffing oscillators. It is worth mentioning that nonlinear cubic-quintic oscillator models arise in many areas of nonlinear science, e.g., in the study of optical solitons [19]-[20]; thus in nonlinear optics the cubic-quintic Ginzburg-Landau partial differential equation is a generic nonlinear dynamical model describing optical soliton propagation in laser cavities, see, for example, Ref. [21].

REFERENCES

1. Z.-Y. ZHANG, J. ZHONG, S.S. DOU, J. LIU, D. PENG, T. GAO, A new method to construct traveling wave solutions for the Klein-Gordon-Zakharov equations, Rom. J. Phys., 58, pp. 766-777, 2013.
Z.-Y. ZHANG, J. ZHONG, S.S. DOU, J. LIU, D. PENG, T. GAO, Abundant exact traveling wave solutions for the Klein-Gordon-Zakharov equations via the tanh-coth expansion method and and Jacobi elliptic function expansion method, Rom. J. Phys., 58, pp. 749-765, 2013.
2. S.K. LAI, C. W. LAM, B.S. WU, C. WANG, Q.C. ZENG, X.F. HE, Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quinitic Duffing oscillators, Appl. Math. Model., 33, pp. 852-866, 2008.
3. S.J. LIAO, Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman \& Hall CRC Press, Boca Raton, 2003.
4. A.H. NAYFEH, Perturbation method, New York, John Wiley \& Sons, 2000.
5. A.M. LYAPUNOV, General problem on stability of motion, London, Taylor \& Francis, 1992.
6. A.V. KARMISHIN, AT. ZHUKOV, V.G. KOLOSOV, Method of dynamics calculation and testing for thin-walled structures (in Russian), Mashinostroyenie, Moscow, 1990.
7. G. ADOMIAN, Nonlinear stochastic differential equations, J. Math. Anal. Appl., 55, pp. 441-52, 1976.
8. G. ADOMIAN, G.E. ADOMIAN, A global method for solution complex systems, Math. Model., 51, pp. 521-68, 1984.
9. M. GHASEMI, M. FARDI, M. TAVASSOLI KAJANI, R. KHOSHSIAR GHAZIANI, Numerical solution of fifth order KdV equations by homotopy perturbation method, Math. Sci. Quarterly J., 2, pp. 169-181, 2011.
10. M. GHASEMI, A. AZIZI, M. FARDI, Numerical solution of seven-order Sawada-Kotara equations by homotopy perturbation method, Math. Scientific J., 1, pp. 69-77, 2011.
11. S. VAHDATI, Z. ABBAS, M. GHASEMI, Math. Application of Homotopy Analysis Method to Fredholm and Volterra integral equations, Sci. Quarterly J., 4, pp. 267-282, 2010.
12. H. JAFARI, A. GOLBABAI, S. SEIFI, K. SAYEVAND, Homotopy analysis method for solving multi-term linear and nonlinear diffusion wave equations of fractional order, Comput. Math. Appl., 59, pp. 1337-1344, 2010.
13. A. GOLBABAI, M. FARDI, K. SAYEVAND, Application of the optimal homotopy asymptotic method for solving a strongly nonlinear oscillatory system, Comput. Math. Model., 58, pp. 1837-1843, 2013.
14. H. JAFARI, K. SAYEVAND, H. TAJADODI, D. BALEANU, Homotopy analysis method for solving Abel differential equation of fractional order, Cent. Eur. J. Phys. Doi: 2013.10.24781, 2013.
15. A. K. GOLMANKHANEH, N.A. PORGHOVEH, D. BALEANU, Mean square solutions of second-order random differential equations by using homotopy analysis method, Rom. Rep. Phys., 65, pp. 350-362, 2013.
16. X.-J. YANG, D. BALEANU, W.-P. ZHONG, Approximate solutions for diffusion equations on Cantor space-time, Proc. Romanian. Acad. A, 14, pp. 127-133, 2013;
A. JAFARIAN et al., On a one-dimensional coupled system of equations in the theory of thermoelasticity, Rom. J. Phys., 58, pp. 694-702, 2013.
17. D. KUMAR, J. SINGH, SUSHILA, Application of homotopy analysis transform method to fractional biological population model, Rom. Rep. Phys., 65, pp. 63-75, 2013;
A. JAFARIAN et al., Construction of soliton solutions to the Kadomtsev-Petviashvili-II equation using homotopy analysis method, Rom. Rep. Phys., 65, pp. 76-83, 2013;
A.K. GOLMANKHANEH et al., Homotopy perturbation method for solving a system of Schrödinger-Korteweg-de Vries equations, Rom. Rep. Phys., 63, pp. 609-623, 2011.
18. S. AL-JABER, Solution of the radial N-dimensional Schrödinger equation using homotopy perturbation method, Rom. J. Phys., 58, pp. 247-259, 2013.
19. Y.V. KARTASHOV et al., Solitons in nonlinear lattices, Rev. Mod. Phys., 83, pp. 247-306, 2011;
D. MIHALACHE, Linear and nonlinear light bullets: Recent theoretical and experimental studies, Rom. J. Phys., 57, pp. 352-371, 2012;
Y.V. KARTASHOV et al., Generation of surface soliton arrays, Opt. Lett., 31, pp. 2329-2331, 2006;
D. MIHALACHE et al., Stationary walking solitons in bulk quadratic nonlinear media, Opt. Commun., 137, pp. 113-117, 1997;
D. MIHALACHE et al., Multiple-humped bright solitary waves in second-order nonlinear media, Opt. Eng., 35, pp. 1616-1623, 1996.
20. H. LEBLOND, D. MIHALACHE, Models of few optical cycle solitons beyond the slowly varying envelope approximation, Phys. Reports, 523, pp. 61-126, 2013;
H. LEBLOND et al., Theoretical studies of ultrashort-soliton propagation in nonlinear optical media from a general quantum model, Rom. Rep. Phys., 65, pp. 925-942, 2013.
21. V. SKARKA et al., Varieties of stable vortical solitons in Ginzburg-Landau media with radially inhomogeneous losses, Phys. Rev. Lett., 105, 213901 (2010);
D. MIHALACHE et al., Collisions between coaxial vortex solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation, Phys. Rev. A, 77, 033817, 2008.
