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Duffing oscillators comprise one of the canonical examples of Hamilton systems. The presence of a 
quintic term makes the cubic-quintic Duffing oscillator more complex and interesting to study. In this 
paper, the homotopy analysis method (HAM) is used to obtain the analytical solution for the 
nonlinear cubic-quintic Duffing oscillators. The HAM helps to obtain the frequency ω  in the form of 
approximation series of a convergence control parameter . The valid region of  is determined by 
plotting the ω -  curve and afterwards we compared the obtained results with the exact solutions. 
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1. INTRODUCTION 

Duffing equation is used to model the conservative double-well oscillators, which can occur, for 
example, in magneto-elastic mechanical systems [1]. These systems can be presented in the following form 
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where B is the amplitude of  the oscillator. Under the initial conditions mentioned above the nonlinear 
cubic-quintic Duffing oscillator has the exact frequency [2]: 
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Eq. (1) describes an oscillator with an unknown frequency ω . Under the transformations 

, ( ) ( ),t u t BUτ = ω = τ  (3) 

the original Eq. (1) becomes 
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In the present paper, we use the homotopy analysis method (HAM) to obtain the periodic solutions of 
the nonlinear cubic-quintic Duffing oscillators. It is to be noted that Liao [3] employed the basic ideas of the 
homotopy to overcome the restrictions of traditional techniques [4–18] namely the HAM. Notice that the 
HAM contains an auxiliary parameter  which provides a convenient way to control the convergence region 
and the rate of approximation series. Liao investigated the influence of  on the convergence of solution 
series by means of -curves [3]. 

2. APPLICATION OF HOMOTOPY ANALYSIS METHOD 

The periodic solution of ( )U τ  with the frequency ω  can be written as 
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where mc  are coefficients. It is convenient to choose 

0 ( ) cos ,U =τ τ  (6) 

as the initial guess of ( )U τ . Let 0ω  denotes the initial guess of ω , then we choose the auxiliary linear 
operator 
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with the property 
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where 1C  and 2C  are coefficients. We define a nonlinear operator 
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Let  denotes a nonzero auxiliary parameter and ( )H τ  a nonzero auxiliary function. Then, we 
construct the zero-order deformation equation 
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such that 

0
( ; )(0, ) 1, 0.qq τ=

∂ϕ τ
ϕ = =

∂τ
 (11)

When [0,1]q∈ , the solution ( ; )qϕ τ varies from 0 ( )U τ to ( )U τ  so does ( )qΩ from 0ω  to ω . The 
Taylor’s series with respect to q  can be constructed for ( ; )qϕ τ and ( )qΩ  and if these two series are 
convergent at 1q = , we have: 
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Differentiating the zero-order deformation Eq. (10) and Eq. (11) m  times with respect to embedding 
parameter q  and then dividing them by !m  and finally setting 0q = , we have the so-called m th order 
deformation equation 
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Note that 1,m mU −ω  are all unknown, but we have only Eq. (15) for mU , thus an additional algebraic 
equation is required for determining 1m−ω . It is found that the right-hand side of the mth order deformation 
Eq. (15) is expressed by 
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where ,m kc  is a coefficient and ( )mψ is a positive integer dependent on order m . 
If 0 0 1 1( , , ..., , )m m mR U U − −ω ω contains the term cos τ  then the solution of Eq. (15) involves the so-

called secular term cosτ τ  that this disobeys the rules of solutions expression, thus coefficient ,0mc  must be 
enforced to be zero. This provides with the additional algebraic equation for determining 1m−ω  

,0 1( ) 0.m mc −ω =  (19)

Consequently, we obtain 
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where 1 2,C C  are two coefficients and to be determined by conditions (0) 0mU = and (0) 0mU ′ = . 
Thus the N th order approximation can be given by 
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3. NUMERICAL RESULTS AND DISCUSSION 

For given 1α =β = γ =  the amplitude 1m−ω  can be determined by the analytic approach mentioned 
above. For 1, 2m =  we have: 
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Note. The obtained results contain the auxiliary parameter . It is found that convergence regions of 
the approximation series are dependent upon  [3]. For example, consider cases 0.1,0.15B = . We plotted 
theω − curve to determine the so-called valid region of , as shown in Fig. 1. Obviously, the valid regions 
of for 0.1,0.15B =  are 4 4− < <  and 3.5 3.5− < < , respectively, for instance for 0.1B =  we have the 
result 1.003733ω =  as shown in Table 1. 

Also, we consider cases 1,1.1B = . We plotted the ω − curve to determine the so-called valid region 
of as shown in Fig. 2. It is shown that the valid regions of  for 1,1.1B =  are 1 0.9− < <  and 

0.9 0.8− < < , respectively. Furthermore for 1B = , we have result 1.538669ω =  as shown in Table 1. In 
Table 2, we compared the 14th order approximations of HAM with the exact solutions. 

     Table 1 

Approximation of ω  for 0.1,1B =  and comparison with exact frequency eω  

M  0.1( 1.003770)eB = ω =  1( 1.523590)eB = ω =  
7 1.003753 1.538663 
8 1.003728 1.538669 
9 1.003733 1.538669 

10 1.003732 1.538695 
11 1.003733 1.538669 
12 1.003733 1.538669 
13 1.003733 1.538669 
14 1.003733 1.538669 

Table 2 

Comparison of the 14 th-order approximations of HAM with the exact solutions 

B  HAM  Exact  Error  
0.3 1.035516 1.035540 52.32 10−×  
0.5 1.107092 1.106540 44.99 10−×  
3 7.636706 7.268630 25.06 10−×  
5 20.256660 19.181500 25.60 10−×  
8 51.078098 48.294600 25.75 10−×  

10 79.536112 75.177400 25.79 10−×  
20 316.703160 299.223000 25.84 10−×  
50 1976.897968 1867.570000 25.85 10−×  

 

Fig. 1 – The ω−  curve for 0.1, 0.15B = . Fig. 2 – The ω− curve for 1,1.1B = . 
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3.1. Square residual error 

We obtained the constant  using the least square method. In theory, at the M th-order of 
approximation, we can define the exact square residual error 
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Clearly, the more rapidly ( )M∆ decreases to zero, the faster the approximation series converges. 
 

 
Fig. 3 – The 10( )∆ -  curve for 0.1B = . Fig. 4 – The 10( )∆ − curve for 1B = . 

Remark 1. The curve of 10 ( )∆  versus  at 0.1B =  is shown in Fig. 3, which indicates that the 
optimal values of  is about -1.5.  

Remark 2.The curve of 10 ( )∆  versus  at 1B =  is shown in Fig. 4, which indicates that the optimal 
values of  is about -0.78. 

4. HOMOTOPY-PADÉ TECHNIQUE 

The Padé technique is widely applied to enlarge the convergence region and convergence rate of given 
series. The so-called homotopy-Padé technique was suggested by means of combining the Padé technique 
with HAM. 

For a given series 
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where ,j jc d can be determined by solving the linear system: 
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Setting 1q =  provides the [ , ]n m  homotopy-Padé approximation 

0,[ , ]

0 ,

1

(1)
(1) ,

(1)
1

n

n m j
jn mn m

n m j m
j n m

j
j

c
C

S
D

d

+

=
+

=

=

ω = = ω = =

+

∑
∑

∑
 (28)

which accelerate the convergence rate of solution series of HAM. We have applied the homotopy-Padé 
technique to accelerate the convergence rate of M th-order approximations of HAM. In Table 3 we 
compared the approximations of homotopy-Padé technique with exact solutions. 

Table 3 

Comparison the exact solution with approximation of homotopy-Padé technique 

 0.1B =  0.3B =  1B =  3B =  
[1,1] / eω ω  1.00037 1.00482 1.01757 1.01842 
[2,2] / eω ω  1.00015 1.00326 1.01317 1.01674 
[3,3] / eω ω  1.00011 1.00232 1.01219 1.01655 
[4,4] / eω ω  1.00013 1.00236 1.01087 1.01638 
[5,5] / eω ω  1.00010 1.00219 1.01058 1.01550 

[6,6] / eω ω  1.00010 1.00168 1.00876 1.01537 
[7,7] / eω ω  1.00010 1.00143 1.00781 1.01531 

5. CONCLUSIONS 

In this paper, the HAM is presented to calculate the frequency and the solution of the nonlinear cubic-
quintic Duffing oscillators. According to obtained results, the HAM and homotopy-Padé technique could 
give efficient frequency approximations for the nonlinear cubic-quintic Duffing oscillators. It is worth 
mentioning that nonlinear cubic-quintic oscillator models arise in many areas of nonlinear science, e.g., in 
the study of optical solitons [19]-[20]; thus in nonlinear optics the cubic-quintic Ginzburg-Landau partial 
differential equation is a generic nonlinear dynamical model describing optical soliton propagation in laser 
cavities, see, for example, Ref. [21].  
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