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This paper obtains exact traveling wave solutions to the nonlinear Schrödinger’s equation that is 
considered with spatio-temporal dispersion in addition to group-velocity dispersion. The two types of 
nonlinearity associated with this equation are polynomial and triple-power law. The obtained optical 
soliton solutions are in terms of elliptic function of third kind.      
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1. INTRODUCTION 

The theory of optical solitons is one of the most progressive areas of research in applied and theoretical 
physics [1-32]. This research has lead to several overwhelming and interesting results. The most commonly 
studied aspects of optical solitons are conservation laws, birefringent fibers, dense wavelength-division 
multiplexing (DWDM) systems, polarization mode dispersion, Thirring solitons, cascaded systems, timing, 
frequency and amplitude jitter, four-wave mixing, and several other aspects. The governing equation is the 
nonlinear Schrödinger’s equation (NLSE) that contains the nonlinear term and the group velocity dispersion 
(GVD), besides the linear evolution term. It is the delicate balance between GVD and nonlinearity that 
results in the formation of optical solitons. These temporal optical solitons propagate along trans-continental 
and trans-oceanic distances along the optical fibers. 

It was very recently pointed out that NLSE with only GVD and nonlinearity is an ill-posed model [4, 
7]. The inclusion of spatio-temporal dispersion (STD) was suggested in 2012 in order to make NLSE a well 
posed model [7]. This paper will therefore address NLSE with GVD and STD terms included. The types of 
nonlinearity that will be studied in this paper are polynomial law as well as triple-power law. It must be 
noted that the cases of Kerr law, power law, parabolic law, dual-power law as well as the log law 
nonlinearity are already studied with the so called “improved” NLSE [9]. Also, the cases of polynomial law 
and triple-power law nonlinearity of NLSE with just GVD, without STD, was studied in 2009 [2]. 
Additionally in Ref. [2] this problem was studied with only GVD, and the GVD coefficient was a particular 
constant, namely 1/2. However, this paper will study with GVD and STD, both with arbitrary real-valued 
coefficients. Therefore, the results of this paper will match the results obtained earlier for special choice of 
the parameters and the coefficients of the evolution equation. The traveling wave hypothesis will be the 
integration tool that will be adopted here. 
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2. DYNAMICAL MODEL 

In non-Kerr law media, the dynamics of soliton propagation for long distances is governed by 
dimensionless NLSE with GVD and STD as follows   

2( ) 0,t xx xtiq aq bq F q q+ + + =  (1)

where ),( txq  represents the complex-valued wave profile. Here x and t represent spatial and temporal 
variables, respectively. The coefficients a and b are GVD and STD, respectively. The first term is the linear 
evolution of the pulses in nonlinear optical fibers. The last term represents non-Kerr law nonlinearity. Here, 

2( ) :F q q C C→ . If the complex plane C is a two-dimensional linear space R2, 2( )F q q  is k times 
continuously differentiable, then 
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The current trend is to study the dynamics of solitons with GVD and nonlinearity. The STD term is newly 
proposed so that equation (1) is a well-posed problem [7]. Solitons are the outcome of a delicate balance 
between nonlinearity and dispersion, in this case between GVD and STD. In this paper we will integrate 
equation (1) by traveling wave hypothesis for two forms of nonlinear optical media. They are polynomial 
law nonlinearity and triple-power law nonlinearity.  

In order to integrate (1), the traveling wave hypothesis given by [2, 9] 
i ( , )( , ) ( )e x tq x t g s φ=  (2)

is selected. Here  
,s x vt= −  (3)

where v is the speed of the soliton and the phase is  

( , ) .x t x tφ = −κ + ω + θ  (4)

 The frequency is denoted by κ while the wave number of the soliton is denoted by ω. Substituting (2) 
into (1) and decomposing into real and imaginary parts leads to  

2
1
b av

b
ω − κ

=
− κ

 (5)

2 2( ) '' ( ) ( )a bv g a b g F g g− = ω + κ − ωκ −  (6)

respectively. Here the notations ' d / dg g s=  and 2 2'' d / dg g s=  are introduced. Thus, the imaginary part 
leads to the speed of the soliton irrespective of the type of nonlinearity in question. Multiplying both sides of 
(6) by g’ and integrating leads to 

2 2 2 2( )( ') ( ) 2 ( ) 'd
g

a bv g a b g F h hh h− = ω + κ − ωκ − ∫  (7)

after choosing integration constant to be zero, since the search is for a localized soliton solution. Next, 
separating variables and integrating leads to 
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(8)

Equation (8) will now be separately analyzed for the two laws of nonlinearity in the next two subsections. 
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2.1. Polynomial law nonlinearity 

 Polynomial law nonlinearity is an extension of parabolic law nonlinearity. Therefore this type of 
nonlinear optical medium takes the form  

3
3

2
21)( sksksksF ++=  (9)

so that the NLSE (1) transforms to  
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Equation (8) therefore reduces to 
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Performing the integration in (11) gives the implicit solution  
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where Π is the incomplete elliptic integral of third kind that is defined as 
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and  
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Thus, relation (18) prompts the constraint condition 

( ) 32
2 1 3 116 54 4 0k k k r− + + >  (19)

in order for the solution to exist.  
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2.2. Triple-power law nonlinearity 

 This is a generalization of polynomial law nonlinearity and an extension of dual-power law 
nonlinearity. In this case,  

nnn sksksksF 3
6

2
54)( ++=  (20)

so that the NLSE (1) transforms to  
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 Equation (8) therefore reduces to 
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Performing the integration in (22) leads to the solution 
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and 
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 The relation for R2 given by (29) prompts the constraint condition 
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that must remain valid in order for the soliton solution to exist. 

3. CONCLUSIONS 

This paper studied optical solitons with polynomial and triple-power law nonlinearity. The traveling 
wave hypothesis revealed exact solutions that are in terms of incomplete elliptic functions of third kind. 
These exact solutions, which are rather complicated ones, are however important in nonlinear optics studies. 
One can easily employ these solutions to address several important aspects of optical solitons that were 
enumerated in introduction. The inclusion of perturbation terms such as inter-modal dispersion, multi-photon 
absorption, and several others will give an additional flavor to this research area. Those results, along with 
several other interesting aspects will be reported elsewhere. 
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