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In this work we study the (2+1)-dimensional integrable Gardner equation. The simplified form of 
Hirota’s direct method is used to derive multiple kink solutions and multiple singular kink solutions 
for this equation.  
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1. INTRODUCTION  

The (1+1)-dimensional Gardner equation reads  
2 236 = 0,

2t x xxx xu uu u u u+ β + − α  (1) 

that combines the Korteweg-de Vries (KdV) equation and the modified KdV (mKdV) equation. For = 0α , 
Eq. (1) reduces to the KdV equation, whereas for = 0β  it reduces to the mKdV equation. The KdV equation 
was complemented with a higher-order cubic nonlinear term of the form xuu2  to obtain the Gardner 
equation (1), which is completely integrable like the KdV equation and the mKdV equation. The function 

),( txu  is the amplitude of the relevant wave mode. Gardner equation is widely used in various branches of 
physics, such as plasma physics, fluid physics, and quantum field theory [1–7]. It also describes a variety of 
wave phenomena in plasma and solid state physics [5, 6]. 

Kadomtsov and Petviashivilli [7] extended the KdV equation to obtain the Kadomtsov–Petviashivilli 
(KP) equation  

( 6 ) = 0.t x xxx x yyu uu u u+ + +  (2) 

Kadomtsov and Petviashivilli [7] relaxed the restriction that the waves be strictly one dimensional, namely 
the x-direction of the KdV equation, to derive the completely integrable KP equation (2). The KP equation 
describes the evolution of quasi-one dimensional shallow-water waves when effects of the surface tension 
and the viscosity are negligible. However, Wazwaz [6] used the sense of Kadomtsov and Petviashivilli of the 
relaxation of the restriction that the waves be strictly one dimensional in the Gardner equation, and 
introduced the Gardner-KP equation given by  

2( 6 6 ) = 0.t x x xxx x yyu uu u u u u+ + + +  (3) 

The Gardner-KP equation was proved to be integrable. The Lie symmetries, conservation laws, reductions, 
and exact solutions via generalized double reduction theorem are computed for the Gardner-KP equation in 
[8]. However, in [9], the bifurcation concept was used to handle (3) and explicit parameter expressions of all 
types of bounded traveling wave solutions were derived. 

In [2, 3], the (2+1)-dimensional Gardner equation was proposed in the integro-differential form  
2 2 2 1 136 3 3 = 0,

2t x xxx x x yy x x yu uu u u u u u u− −+ β + − α + σ ∂ − ασ ∂  (4) 
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where 2 = 1σ ± , α  and β  are arbitrary constants, and 1
x
−∂  is the inverse of x∂  with 1 1= = 1x x x x

− −∂ ∂ ∂ ∂ . The 
(2+1)-dimensional Gardner equation (4) was examined in [2,3] by using the inverse scattering theorem and 
proved to be a completely integrable equation. In [4], the authors presented the Casorati and Grammian 
determinant solutions to the (2+1)-dimensional Gardner equation (4). In [1–3], it was stated that the (2+1)-
dimensional Gardner equation (4) has amazing properties that in appropriate limits it reduces to the KdV 
equation, mKdV equation, the Gardner equation, KP equation, and the modified KP (mKP) equation. For 
example for = 0α , this equation reduces to the KP equation. For = 0β , it reduces to the mKP equation. For 

= 0α  and = 0σ  it becomes the KdV equation [1–3]. For = 0β  and = 0σ  it becomes the mKdV equation. 
For = 0σ , the (2+1)-dimensional Gardner equation becomes the (1+1)-dimensional Gardner equation. We 
recall here that all the aforementioned equations are integrable. 

The Lax pair [1]–[3] for the (2+1)-dimensional Gardner equation (4) is given by  
= 0,y xx xu uσψ + ψ + α ψ + β ψ  (5) 

 
2 2 1

2 2 1

34 (3 6 3 )
2

3(3 3 ) = 0.
2

t xxx xx x x y x

x x y

u u u u u

u u u

−

−

ψ + ψ + α ψ + α + α + β − ασ∂ ψ +

+ β + α β + βσ∂ ψ
 (6) 

The compatibility condition [1] between (5) and (6) gives the (2+1)-dimensional Gardner equation (4). 
Many kinds of solitons occur for this equation, including pulse-type solitons, positive and negative solitons, 
and kinks and table-top solitons [1]. 

Studies of various physical structures of nonlinear equations had attracted much attention in connection 
with the important problems that arise in scientific applications [10–23]. Many powerful methods, such the 
Bäcklund transformation method, Darboux transformation, Pfaffian technique, the inverse scattering method, 
the Painlevé analysis, and the generalized symmetry method are commonly used to integrate nonlinear 
evolution equations. The Hirota’s bilinear method [10] and the simplified Hirota method [13], are rather 
heuristic and the most commonly used. These approaches possess powerful features that make them practical 
for the determination of multiple soliton solutions for a wide class of nonlinear evolution equations. The 
computer symbolic systems such as Maple and Mathematica allow us to perform complicated and tedious 
calculations. 

It is the aim of this work to focus on deriving multiple kink solitons and multiple singular kink 
solutions for the (2+1)-dimensional Gardner equation (4). The constraint condition for the existence of 
multiple kink solutions will be established. The simplified Hirota’s method, developed by Hereman-Nuseir 
[13] will be employed to achieve this goal. 

2. MULTIPLE KINK SOLUTIONS  

In this section, we will derive multiple kink solutions for the (2+1)-dimensional Gardner equation  
2 2 2 1 136 3 3 = 0,

2t x xxx x x yy x yu uu u u u u u− −+ β + − α + σ ∂ − ασ∂  (7) 

where 1
x
−∂  is the inverse of x∂  with 1 1= = 1x x x x

− −∂ ∂ ∂ ∂ , and  

1( )( ) = ( )d ,
x

x f x f t t−

−∞
∂ ∫  (8) 

under the decaying condition at infinity. 
To get rid of the inverse operator, we use the potential transformation  

( , , ) = ( , , ),xu x y t v x y t  (9) 

that carries (7) to the potential form  
2 2 236 3 3 = 0.

2xt x xx xxxx x xx yy xx yv v v v v v v v v+ β + − α + σ − ασ  (10)

To determine the dispersion relation ic , we substitute  



3 Multiple kink solutions for the (2+1)-dimensional integrable Gardner equations  243

( , , ) = e ,k x r y c ti i iv x y t + −  (11)

into the linear terms of (10); we obtain the dispersion relation 
2 2

3 3
= ,i

i i
i

r
c k

k
σ

+  (12)

and hence we set the dispersion variable as  
2 2

3 3
= ( ) .i

i i i i
i

r
k x r y k t

k
σ

θ + − +  (13)

The multi-kink solutions of (7), using the Cole-Hopf transformation, are assumed to be  

( )( , , ) = ln ( , , ) ,
x

u x y t R f x y t  (14)

and therefore  

( )( , , ) = ln ( , , ) .v x y t R f x y t  (15)

The simplified Hirota’s method admits the use of the auxiliary function ( , , )f x y t  for the single kink solution 
by  

2 23 13( )1 1 1
1( , , ) = 1 e .
r

k x r y k t
kf x y t
σ

+ − +

+  (16)

Substituting (15) into (10) and solving for R  we find  
2= ,R
α

 (17)

and the kink solutions exist if the coefficients ir  satisfy the constraint condition  
(2 )

= , = 1, 2, , .i i
i

k k
r i N

β − α
σα

 (18)

Based on this result, the dispersion relation (12) becomes  
2 2 2

2

4 ( 3 3 )
= , = 1, 2, , .i i i

i
k k k

c i N
α − αβ + β

α
 (19)

Using the potential (9) gives the single kink solution  
2 2 24 ( 3 3 )(2 ) 1 11 1

1 2

1
2 2 2(2 ) 4 ( 3 3 )1 1 1 1 1

1 2

2 e
( , , ) = .

1 e

k k kk k ik x y t

k k k k k
k x y t

k
u x y t

 α − αβ + ββ−α  + − σα  α 

 β−α α − αβ + β + − σα  α 

 
 α + 
 
 

 
(20)

For the two kink solutions we set  
1 2( , , ) = 1 e e .f x y t θ θ+ +  (21)

Substituting these results into (15) we find the two kink solutions given by  
2 2 2(2 ) 4 ( 3 3 )2

2

=1
2 2 2(2 ) 4 ( 3 3 )2

2

=1

2 e
( , , ) = .

1 e

k k k k ki i i i ik x y ti

i
i

k k k k ki i i i ik x y ti

i

k
u x y t

 β−α α − αβ + β + − σα  α 

 β−α α − αβ + β + − σα  α 

 
 

α + 
 
 

∑

∑

 (22)

For the three kink solutions, we set  
31 2( , , ) = 1 e e e .f x y t θθ θ+ + +  (23)
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Proceeding as before, we find the three kink solutions given by  
2 2 2(2 ) 4 ( 3 3 )3

2

=1
2 2 2(2 ) 4 ( 3 3 )3

2

=1

2 e
( , , ) = .

1 e

k k k k ki i i i ik x y ti

i
i

k k k k ki i i i ik x y ti

i

k
u x y t

 β−α α − αβ + β + − σα  α 

 β−α α − αβ + β + − σα  α 

 
 

α + 
 
 

∑

∑

 (24)

This shows that the (2+1)-dimensional Gardner equation (7) gives N-kink solutions for finite N , where 
1N ≥ . Based on the obtained results, the general N-kink solutions can be set in the form  

2 2 2(2 ) 4 ( 3 3 )
2

=1
2 2 2(2 ) 4 ( 3 3 )

2

=1

2 e
( , , ) = .

1 e

k k k k kN i i i i ik x y ti

i
i

k k k k kN i i i i ik x y ti

i

k
u x y t

 β−α α − αβ + β + − σα  α 

 β−α α − αβ + β + − σα  α 

 
 

α + 
 
 

∑

∑

 (25)

3. MULTIPLE SINGULAR KINK SOLUTIONS  

We will next derive multiple singular kink solutions for the (2+1)-dimensional Gardner equation  

2 2 2 1 136 3 3 = 0,
2t x xxx x x yy x yu uu u u u u u− −+ β + − α + σ ∂ − ασ∂  (26)

that becomes  

2 2 236 3 3 = 0,
2xt x xx xxxx x xx yy xx yv v v v v v v v v+ β + − α + σ − ασ  (27)

upon using the potential  

( , , ) = ( , , ).xu x y t v x y t  (28)

The dispersion relation ic , the dispersion variables, the coefficient R , and the constraint condition for 
the coefficients ir  remain the same, given by  

2 2
3 3

= ,i
i i

i

r
c k

k
σ

+  (29)

2 2
3 3

= ( ) ,i
i i i i

i

r
k x r y k t

k
σ

θ + − +  (30)

2= ,R
α

 (31)

and   
(2 )

= , = 1, 2, , .i i
i

k k
r i N

β − α
σα

 (32)

respectively. 
The simplified Hirota’s method admits the use of the auxiliary function ( , , )f x y t  for the singular kink 

solution by  

( , , ) = 1 e .f x y t θ−  (33)

Using the potential (28) gives the single singular kink solution by  
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2 2 24 ( 3 3 )(2 ) 1 11 1
1 2

1
2 2 2(2 ) 4 ( 3 3 )1 1 1 1 1

1 2

2 e
( , , ) = .

1 e

k k kk k ik x y t

k k k k k
k x y t

k
u x y t

 α − αβ + ββ−α  + − σα  α 

 β−α α − αβ + β + − σα  α 

−
 
 α − 
 
 

 
(34)

For the two kink solutions we set  
1 2( , , ) = 1 e e .f x y t θ θ− −  (35)

This in turn gives the two singular kink solutions given by  
2 2 2(2 ) 4 ( 3 3 )2

2

=1
2 2 2(2 ) 4 ( 3 3 )2

2

=1

2 e
( , , ) = .

1 e

k k k k ki i i i ik x y ti

i
i

k k k k ki i i i ik x y ti

i

k
u x y t

 β−α α − αβ + β + − σα  α 

 β−α α − αβ + β + − σα  α 

−
 
 

α − 
 
 

∑

∑

 (36)

For the three kink solutions, we set  
31 2( , , ) 1 e e ef x y t θθ θ= − − −  (37)

Proceeding as before, we find that the three kink solutions are given by  
2 2 2(2 ) 4 ( 3 3 )3

2

=1
2 2 2(2 ) 4 ( 3 3 )3

2

=1

2 e
( , , ) = .

1 e

k k k k ki i i i ik x y ti

i
i

k k k k ki i i i ik x y ti

i

k
u x y t

 β−α α − αβ + β + − σα  α 

 β−α α − αβ + β + − σα  α 

−
 
 

α − 
 
 

∑

∑

 (38)

This shows that the (2+1)-dimensional Gardner equation (26) gives N -kink solutions for finite N , 
where 1N ≥ . Based on the obtained results, the general singular N-kink solutions can be set in the form  

2 2 2(2 ) 4 ( 3 3 )
2

=1
2 2 2(2 ) 4 ( 3 3 )

2

=1

2 e
( , , ) = .

1 e

k k k k kN i i i i ik x y ti

i
i

k k k k kN i i i i ik x y ti

i

k
u x y t

 β−α α − αβ + β + − σα  α 

 β−α α − αβ + β + − σα  α 

−
 
 

α − 
 
 

∑

∑

 (39)

4. DISCUSSION  

We studied in this work the (2+1)-dimensional Gardner equation proposed by Konopelchenko and 
Dubrovsky in [2, 3]. We employed the simplified form of Hirota’s direct method to derive multiple kink 
solutions and multiple singular kink solutions. This equation is integrable and can be reduced to other 
integrable equations. 
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