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This paper describes the electro-mechanical (E/M) impedance method applied to structural health 
monitoring (SHM) of thin circular plates. The method allows us to identify the local dynamics of the 
structure directly through the E/M impedance signatures of piezoelectric wafer active sensors 
(PWAS) permanently mounted to the structure. An analytical model for 2-D thin-wall structures, 
which predicts the E/M impedance response at PWAS terminals, was developed and validated. The 
model accounts for axial and flexural vibrations of the structure and considers both the structural 
dynamics and the sensor dynamics. Calibration experiments performed on circular thin plates with 
centrally attached PWAS show that the presence of a damage modifies the high-frequency E/M 
impedance spectrum causing frequency shifts, peak splitting, and appearance of new harmonics. 
Comparisons between the analytical method, the finite element method, and experiments were 
performed, with a fabricated structural arc-shape defect. 
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1. INTRODUCTION 

The active SHM sensing techniques are based on two different approaches: transient guided waves and 
standing waves [1, 2]. In such SHM processes, a PWAS is required to generate elastic waves. These travel 
along the mechanical structure, are reflected by different structural abnormalities, or boundary edges, and 
then are recaptured by the same sensor in a pulse-echo configuration or by other sensors of same or different 
type, even passive sensors, in pitch-catch configuration [1]. If the structural damage or boundary edges are in 
the close vicinity of the active sensor, their reflections overlap the incident transient wave, making 
impossible the interpretation. This drawback can be overpassed by using the ultrasonic standing waves, in 
the so-called electromechanical impedance (E/M) method [1, 2]; by sweeping the frequency of the input 
signals to PWAS, some changes appear in the impedance, measured by an impedance analyzer connected to 
the PWAS terminals. By monitoring the changes in the real part of the impedance function, which is most 
sensitive to structural changes, one can evaluate the integrity of the host structure. 

It is worthy of note that the SHM, vibration and fatigue control, flutter suppression, gust load alleviation, 
maneuvers load alleviation and optimization of adaptive wing structures, all together compose an inventory of 
technologies, attentively evaluated in the framework of the ambitious EU project CleanSky SFWA (CleanSky – 
Smart Fixed Wing Aircraft, Integrated Technology Demonstrator – ITD, Seventh Framework Programme, see 
http://www.cleansky.eu), having INCAS Cluster as Associate Partner (see http://www.incas.ro and [3, 4]).  

This paper describes a unitary and self-contained mathematical modeling and analytical solution for the 
E/M impedance of a circular aluminum plate, PWAS instrumented.  This approach serves as a reference point for 
extending the method to other models with unusual geometries. Further, are presented, for comparison, the 
simulation of the analytical solution, followed by numerical solution based on finite element method. Finally, the 
two solutions, analytical and numerical, are compared with experimental results, measured on aluminum disks, 
with and without a laser fabricated defect. 
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2. ANALYTICAL SOLUTION OF E/M IMPEDANCE FOR A CIRCULAR PLATE 

The classical differential equation of motion for the transverse displacement w of a plate is [5]: 

( )
2 3

4
2 2

0,
12 1

w EhD w h D
t v

∂
∇ + ρ = =

∂ −
, (1)

where: D is the transverse (flexural) rigidity, E is Young’s modulus, h is the plate thickness, v is Poisson’s 
ratio, ρ  is mass density per unit area of the plate, t is time, and 4 2 2∇ =∇ ∇ , where 2∇  is the Laplace 
operator.  

2.1. General solution for flexural vibration of a circular plate 

The study of the flexural vibration of circular plates has a rich history comprising works and classical 
studies, e.g., [6]. Some of the main results in the field will be inventoried in the following. Assuming time 
harmonic vibrations and taking polar coordinates ( , )r θ , the space and time dependencies will be considered 
as separated and thus the displacement is expressed in the form:  

( ) ( ) iˆ, , , e tw r t w r ωθ = θ . (2)

The problem is to find the space-dependent solution ( )ˆ ,w r θ  such that it satisfies the differential equation (1) 
and certain boundary conditions. Equation (1) becomes, after factorization: 

( ) ( )2 2 2 2 ˆ 0w∇ + γ ∇ − γ = , 
2 2

4 2 2
2 2 2

1 1,h
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ρ ∂ ∂ ∂

γ = ω ∇ = + +
∂∂ ∂θ

. (3)

The complete solution to equation (3) is obtained by superposition of the solutions of the system: 

( )2 2
1ˆ 0w∇ + γ = , ( )2 2

2ˆ 0w∇ − γ = . (4)

The solution of equation (1) is searched in the general Fourier form: 

( ) ( ) ( )
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∞ ∞

∗

= =

θ = θ + θ∑ ∑ . (5)

The substitution of equation (5) into equations (4) gives: 
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and two other similar equations for nW ∗ . Equations (6) are Bessel equations [7] having solutions: 

( ) ( ) ( ) ( )1 2,
n nn n n n n n n nW A J r B Y r W F I r G K r= γ + γ = γ + γ , (7)

where nJ  and nY  are the Bessel functions of the first and second kind and order n, whereas nI  and nK  are 
the modified Bessel functions of the first and second kind and order n [7]. The coefficients , , ,n n n nA B C D  are 
found by the imposition of the boundary and initial conditions. The general solution of equation (3) is: 
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However, the Bessel functions ( )nY rγ  and ( )nK rγ  have infinite values at 0r =  and are discarded (unless 
the plate has a hole around 0r = , which is not the case considered here). This means, for solid plates without 
a central hole, the terms of equation (8) involving ( )nY rγ  and ( )nK rγ  are discarded because they become 
unbounded at 0r = . In addition, if the boundary conditions have some symmetry with respect to at least one 
diameter, then the terms in sin nθ  are not needed. Where these assumptions are employed, equation (8) 
simplifies to [5] ( 0,1,n = …  represents the number of nodal diameters): 

( ) ( ) cosn n n n nW A J r F I r n=  γ + γ  θ  . (9)

2. 2. Flexural vibration of free circular plates 

Consider the volume d d dV h r r= θ  of a differential element in cylindrical coordinates. Bending and 
twisting moments , , ,r r rM M M Mθ θ θ  are related to the flexural displacement w by [5]:  
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 (10)

Transverse shearing forces ,rQ Qθ  are related to the flexural displacement, w, in the form: 

( ) ( )2 21,rQ D w Q D w
r rθ θ
∂ ∂

= − ∇ = − ∇
∂ ∂

. (11)

The Kelvin-Kirchhoff edge reactions in polar coordinates are given by: 

1 ,r r
r r

M M
V Q V Q

r r
θ θ

θ θ

∂ ∂
= + = +

∂θ ∂
. (12)

The boundary conditions for a free circular plate of outer radius a are: 

( ) ( )0, 0r rM a V a= = . (13)

The substitution of boundary conditions (13) into equations (10), (12), with the use of Eq. (11) yields the 
characteristic equation [7, p. 10]: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )
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 (14)

where aλ = γ . Itao and Crandall [8] performed a comprehensive numerical solution of eigenvalue roots of 
the characteristic equation (14) and of the associated mode shapes. The eigenvalues of equation (14) were 
presented as ,j pλ , where 1, 2,j = …  is the number of nodal circles and 0,1,p = …  is the number of nodal 

diameters. (The case 0j =  yields a triple root at 0λ =  that corresponds to three rigid-body motion modes of 
a free plate). The mode shapes were presented in the form: 

( ) ( ) ( ), , , , ,, / / cosj p j p p j p j p p j pW r A J r a C I r a p θ = λ + λ θ  . (15)
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A sample of values for the eigenvalue ,j pλ , the mode shape parameter ,j pC , and amplitude ,j pA  are given 

in Itao and Crandall [8]. The mode shapes amplitudes ,j pA  [10] were found based on the mass-normalization 

formula and mode shapes orthogonality (m is the total mass of the plate and i jδ  is the Kronecker delta): 

( )
2 22 2

, , ,0 0 0 0
, d d , d d

a a

j p j p i q i j p qh W r r r a h m hW W r r m
π π

ρ θ θ = ρπ = ρ θ = δ δ∫ ∫ ∫ ∫ . (16)

2. 3. Circular plates: particular case of axisymmetric free flexural vibration  

Axisymmetric flexural vibration of a circular plate can be understood in terms of standing circular-
crested waves that propagate in a concentric circular pattern from the center of the plate and reflect at the 
plate circumference. The problem is θ-invariant, i.e. 0∂ ∂θ = . The general solution (2) is sought in the form: 

( ) ( ) iˆ, e tw r t w r= ω . (17)

By substitution in equation (1), the decomposition (3) is retrieved: 
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. (18)

Fourier form (5) is no longer present, given the absence of θ− dependence. This is equivalent to 0n =  in the 
equations (8) and thus the general solution for axisymmetric flexural vibration of circular plates has the form 

( ) ( ) ( )0 0, i tw r t AJ r FI r e ωγ γ=  +   , (19)

where ( )0J rγ  is the Bessel function of first kind and order zero, whereas ( )0I rγ  is the modified Bessel 
function of first kind and order zero. The constants are to be determined from the initial and boundary 
conditions. From the same reasons shown in Section 2.1, the functions ( )0Y rγ  and ( )0K rγ  were discarded. 
Closely following equations (10)-(14), one gets the characteristic transcendental equation: 

( ) ( ) ( )
( ) ( ) ( )

( )
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′ ′λ λ − − λ λ λ λ ρ
. (20)

That gives natural frequencies jω associated with each eigenvalue jλ  and mode shape. For each eigenvalue, 

one finds the corresponding mode shape by calculating the constants A  and F  in the equation (19). The 
general expression of the mode shape is written using an amplitude jA  and a mode shape parameter jC , i.e., 

( ) ( ) ( )0 0/ /j j j j jW r A J r a C I r a = λ + λ  . (21)

From the normalization relationships (16), one obtains [10]:  

( ) ( ) ( ) ( ){ }
1

2 2 2 2
0 0 0 0

1
2j j j j j j jA J C I J C I

−
     ′ ′= λ + λ − λ − λ     

. (22)

2.4. Forced axisymmetric flexural vibration of circular plates 

Consider the circular plate undergoing axisymmetric flexural vibration under the excitation of an 
externally applied time-dependent distributed moment ( ),em r t  (Fig. 2.1, left). The units of ( ),em r t  are 

moment per unit area (e. g., Nm/ 2m ). Let jω , ( )jW r  and jA  described by (20), (21), and (22), respectively. 
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Fig. 2.1 – Circular plate. Left: sketch for flexural vibration analysis; right: sketch for axial vibration analysis. 

PROPOSITION 2.1. The equation of motion for forced vibrations of the circular plate under 
axisymmetric flexural moment excitation and its solution are: 

4 ˆ ˆ /e eD w hw m m r′∇ + ρ = +�� . (23)

( ) ( )

( ) ( ) ( ) ( )
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2 2 2
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∞
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ρ −ω + + ζ ωω + ω

′= − =

∑

∫ …

 (24)

 Proof. For reasons of space, we only sketch the proof. Apply free-body analysis in the r-direction to 
an infinitesimal plate element d dr r θ . Equations for force and moments are obtained in the form 

( / )r rQ r Q r hr w+ ∂ ∂ = ρ �� , 2 2( / ) 2 ( / ) ( / ) ( / )r r e er M r M r M r m r m r hr wθ∂ ∂ + ∂ ∂ − ∂ ∂ + + ∂ ∂ = ρ �� ; substituting 
of those in (10) gives (23), and assuming both excitation and response are harmonic, we have:  

 ( ) ( ) ( ) ( )i i

1

ˆ, e , , e .t t
e e j j

j

m r t m r w r t W r
∞

ω ω

=

= = η∑  (25)

The constants jη  are the modal participation factors. Substitution of Eq. (25) into equation (23), division by 
ie tω , use of natural frequencies iω  described by the equation 4 2 0i i iD W hW∇ − ω ρ = , recalling (16) and 

deliberate introduction of modal damping jζ  lead to expressions (24), so completing the proof.   

2.5. General solution for the axisymmetric axial vibration of circular plates 

Consider the infinitesimal plate element in polar coordinates shown in Fig. 2.1 right. Under the 
axisymmetric assumption, the wave equation in polar coordinates is: 

( )2 2 2 20, / (1 )L r r Lc u u c E v∇ − = = ρ −�� , (26)

where Lc  is the longitudinal wave speed in plate. Stress-displacement relations of elasticity theory were 
used, followed by integration of stresses across the thickness and the free-body analysis applied to element 
Similarly to the approach at the beginning of paragraph 2.1, the displacement ru  is considered harmonic: 

( ) ( ) iˆ, e t
ru r t u r ω= . (27)

Substitution in (26) yields a Bessel equation. Introducing the wavenumber γ , the same considerations 
as those at the end of paragraph 2.1 lead to the solution: 
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( ) ( ) i
1, e ,t

r Lu r t AJ r cω= γ γ = ω . (28)

The constant A , the frequencyω , and the wavenumber γ  are determined from the boundary condition 

( ) 0,rN a = which means 0r r

r a

u u
r r =

∂ + ν = ∂ 
. Substituting (27) in the last equation and applying standard 

reasoning, we obtain the characteristic equation, the constant nA  and the mode shapes nU  : 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
0.52

0 1 1 0 2 11 0, , / ,n n n n n L n n nnzJ z J z A J z J z J z c a a U r A J r
−

− − ν = = − ω = γ = γ , (29)

where z a= γ , ( ) / /n L nnc a a z aγ = γ = . Mode shapes nU  are orthonormal, ( ) ( ) 2

0
d / 2

a

p q pqU r U r r r a= δ∫ ,  

with respect to weight function r  (as for flexural vibrations). Indeed, the afferent Bessel equation is related 

to a Sturm-Liouville problem: ( ) ( )2 1 0rU r r U−′′ + γ − = , ( ) ( ) 0, , .i iU a U a i p q′ + = =   

2.6. Forced axisymmetric axial vibration of circular plates 

Consider the circular plate undergoing axisymmetric axial vibration under the excitation of an 
externally applied time-dependent distributed axial force ( ),f r t  (Fig. 2.1, left). The units of ( ),f r t  are 

force per unit area (e. g., Nm/ 2m ). Consider ( )jU r , jω  described by (29). 

PROPOSITION 2.2. The equation of motion for forced axial vibrations of the circular plates under 
axisymmetric axial force excitation and its solution are, respectively: 

( )
( )

( ) ( )
i

2 2
2 2 2 0

1

e2 ˆ, , , d , 1, 2, 3,
2

t
aj j

L r r r j j
j j j j

f U rfc u u u r t f f r U r r r j
h ha i

ω∞

=

∇ − = − = = =
ρ ρ −ω + ζ ωω + ω∑ ∫�� …

 

(30)

Proof. A simple application of the free-body analysis in the r-direction to an infinitesimal plate element 
d dr r θ  gives the first equation in (30). Further, it is assumed that excitation and response are 

harmonic ( ) ( ) iˆ, e ,tf r t f r ω= ( ) ( ) i, e t
r ru r t u r ω= . The substitution of the modal form ( ) ( )j jj

u r U r= η∑� ,     

( jη are modal participation factors) in the equation of motion, the use of natural frequencies iω  and the 
deliberate introduction of modal damping jζ  lead to the other two expressions (30).                                      

2.7. The interaction between a circular PWAS and a circular plate. Electromechanical impedance 

The E/M method is exemplified in the case of a 2-D PWAS circular modal sensor bonded on a thin 
isotropic circular plate (Fig. 2.2). The basic concept of the method is to use high frequency structural 
excitations to monitor the local area of a structure for changes in structural impedance that would indicate 
imminent damage. This is possible using PWAS sensor/actuators whose electrical impedance is directly 
related to the structure mechanical impedance. The structural dynamics affects the PWAS response; it 
modifies the PWAS E/M impedance, measured by an impedance analyzer connected to the PWAS terminals. 

It is assumed that the circumferential boundary of the PWAS disc is conditioned by the structure 
through the dynamic stiffness ( )strk ω , which includes both axial and flexural vibration modes. The problem 
is formulated in terms of interaction line force, PWASF , and the corresponding displacement, PWASu , 
measured at the PWAS circumference. The units of PWASF  are force per unit length (e.g., N/m). The 
corresponding distributed excitation axial force and flexural moment are expressed as, respectively: 

( ) ( ) ( ) ( ) ( ) ( ) ( )i i iˆ ˆ ˆ, e e / , , e / 2t t t
e e PWAS a e e PWAS af r t f r F r r r m r t m r hF r r rω ω ω= = δ − = = δ − . (31)
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By dividing the Dirac function δ  with r , its total effect around a circular circumference does not change 
when radius changes. Consider 

uj
ω , ( )

uj aU r , 
wj

ω , ( )
wj aW r , described by (29), (20), (21), respectively.  

PROPOSITION 2.3. The dynamic structural stiffness ( )strk ω  constraining PWAS sensor is given by: 

( )
( ) ( )

12 222

2 2 2 2

ˆ

ˆ 2 22i 2i
u w

u wu u w w

j a j aPWAS
str

PWAS j jj ju j j j j

U r W rF ha hk
u

−
 ′ρ  ω = = +  −ω + ζ ωω + ω −ω + ζ ωω + ω   
∑ ∑  . (32)

Proof. Substitution of the first relation (31) into the last relation (30) gives the modal axial excitation 
ˆ ( )i PWAS j af F U r= , 1,2,...j = . Substitution of these expressions into the second equation (30) gives the axial 

vibration response ( ) i
2 2 2

( )2 ˆ, ( ) e
2i

u
u

u u u u

j a t
PWAS j

j j j j

U r
u r t F U r

ha
ω=

ρ −ω + ζ ωω + ω∑ (*). The substitution of the 2nd 

relation (31) into 2nd relation (24) gives the modal flexural excitation 'ˆ ( ) / 2i PWAS j af hF W r= − , 1,2,...j = . The 

substitution of these expressions into the first relation (24) gives finally the flexural vibration response to 

PWAS excitation ( )
'

i
2 2 2

( )2 ˆ, ( ) e
2 2i

w
w

w w w w

j a t
PWAS j

j j j j

W rhw r t F W r
ha

ω= −
ρ −ω + ζ ωω + ω∑ (**). The radial 

displacement at the edge of the PWAS is of the form ( , ) ( , ) ( , )PWAS a a au r t u r t hw r t′= −  [9]. Note that ( ),au r t  

and ( ),aw r t  are the displacements at the plate neutral plan, whereas ( ),PWAS au r t  is measured at the plate 

upper surface (Fig. 2.2). Discarding the time dependence ie tω , we rewrite this equation in the form 
ˆ ˆ ˆ( ) ( ) ( ) / 2PWAS a a au r u r hw r′= − . Now, herein substitution of the relations ( )* , ( )** leads to (32).                

Now we introduce the concepts and parameters that characterize a circular-shaped PWAS, starting 
from the piezoelectric constitutive equations in cylindrical coordinates [1, Ch. 7]: 

( )11 12 31 12 11 31 31 33, ,E E E E T
rr rr z rr z z rr zS s T s T d E S s T s T d E D d T T Eθθ θθ θθ θθ= + + = + + = + + ε ,  (33)

where rrS and Sθθ  are the mechanical strains, rrT and Tθθ  are the mechanical stresses, zE  is the electrical 

field, zD  is the electrical displacement, 11
Es  and 12

Es  are the mechanical compliances at zero electric field 

( 0)E = , 33
Tε  is the dielectric permittivity at zero mechanical stress ( 0)T = , and 31d  is the piezoelectric 

coupling between the electrical and mechanical variables. Hence, rr rS u r= ∂ ∂  and rS u rθθ = . Applying 
Newton law of motion, one recovers the wave equation, with a general solution in terms of Bessel function:  

( ) ( ) ( ) ( ) ( )2 2
stri

12 2 2 2 2
11

1 1 1, , , e ,
1

r atr r r r
P r rr aE

P ap a

k u ru u u u rc u r t AJ T r
r r c tr r c t s v

ω ω ∂ ∂ ∂ ω
+ − = = = = ∂∂ ∂ ρ −  

. (34)

Last equation (34) expresses the boundary condition. The first two equations (33) give: 

( )( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( )

31

11 12 11

/ 1 / / 1 ,

/ 1 , / , /
r a a r a a a r a a a z

E E
PWAS a a a str PWAS a

u r r v u r r v u r r v d E

k t r s k k s s

∂ ∂ = χ ω + − + +

= − ν χ ω = ω ν = −
. (35)

The notations refer to, successively: the static stiffness of the circular PWAS, the dynamic stiffness ratio, and 
the Poisson’s ratio of the piezoelectric material. Intermediary, we determine the coefficient A : 

( )
( ) ( ) ( ) ( ) ( )

31

0 1

1
,

1 1
a a z a

a
a a a a a P

r d E r
A

J J c
+ ν ω

= ϕ =
ϕ ϕ − − ν + + ν χ ω ϕ

. (36)
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The electrical admittance is calculated as the ratio between the current and the voltage amplitudes, i.e., 
ˆ ˆ/Y I V=  . The current is calculated by integrating the electric displacement zD  over the PWAS area to 

obtain the total charge, and then differentiating the result with respect to time, whereas the voltage is 
calculated by multiplying the electric field by the PWAS thickness at . Finally the impedance is expressed as:  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

12 2
02 2 31

0 1 1 11 11

1 2
i 1 ,

2 1 1 1
p a a

p p E E
a a a a a a a

k v J d
Z C k k

J v J v J s

−
  + ϕ ω = ω − + =  

ϕ ϕ − − ϕ − χ ω + ϕ − ν ε    
.  (37)

The complex compliance and dielectric constant expressions can be considered: 

( ) ( )
( ) ( ) ( ) ( )12

11 11 33 33
11 11

, , , 1 i , 1 i , 1 i
1

E
str a

PWAS a E
a aPWAS

k t s
k s s s C C

r sk s
ω

χ ω = = ν = − = − η ε = − δ = − µ
− ν

. (38)

  
Fig. 2.2 – Circular PWAS constrained by structural stiffness, ( )strk ω . 

The values of , ,η δ µ  vary with the piezoceramic formulation of the PWAS material, but are usually small 

(less than 5%). In this case, we obtain ( 1 iϕ = ϕ − η is also added): 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

12 2
02 2 31

0 1 1 11 11

1 2
i 1 ,

2 1 1 1
p a a

p p E E
a a a a a a a

k v J d
Z C k k

J v J v J s

−
  + ϕ ω = ω − + =  ϕ ϕ − − ϕ − χ ω + ϕ − ν ε    

   (39)

3. EXPERIMENTAL SETUP, NUMERICAL SIMULATION, AND RESULTS 

In the experimental setup, the HP 4194A impedance analyzer was used. The chosen geometry for 
analytical and experimental comparisons is a circular A2024 aluminum plate with a circular Noliac NCE51 
PWAS bonded on it (Fig.3.1); the PWAS material is equivalent to the standard PZT-5A material.  

 
  h 

r   
r   

r   a 

b 

 
a) 

 

R  
θ  

 
b) 

Laser fabricated crack 

 
c) 

Fig. 3.1 – a) Geometry of the thin plate with central hole and bonded PWAS; b), c) position of the arc-shape crack. 
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The simulated crack was laser fabricated, in the shape of a circular arc centered on the symmetry center 
of the plate. Two geometries of the A2024 plates were considered, in FEM simulations, without and with 
central hole. The central hole was initially used to correctly position the PWAS as centered as possible. 

The specimen A2024 with bonded PWAS has the geometry (Fig. 3.1.a,b): r  = 50.08mm, h  = 0.835mm, 
ar  = 4mm, br  = 1mm. The geometry of the simulated crack (0.15mm wide, and 10mm long) is the following 

(Fig. 3.1a,b): R =25mm, θ = 23°. The adhesive used to bond the PWAS to the A2024 aluminum plate was an 
electro-conductive epoxy ELPOX15. The thickness of the adhesive layer was measured with a comparator, 
and was found to be between 20 µm and 100 µm. 

The numerical model used in this paper is based on the FEM, and was implemented in the software 
Comsol 4.3 (Fig. 3.3). A coupled field frequency analysis based on piezoelectric constitutive equations that 
include structural losses has been taken into consideration, with the following symbol notation:  

0,E rc eE D e Eσ = ε − = ε + ε ε�� � � , (40)

in the stress-charge form; σ  is the stress matrix, ε denotes strains matrix, D denotes electric charge matrix, 
Ec� denotes the elasticity matrix, e� denotes the piezoelectric coupling matrix, rε�  the relative permittivity 

matrix, ~ denotes complex values where the imaginary part defines the dissipative function of the material.  
The material of the PWAS was taken PZT5A, that belong to the 6 mm class symmetry, which have 

compliance, piezoelectric coupling, and relative permittivity matrices in the stress-charge form [11]: 

11 22 120.35 GPaE Ec c= = ,   12 75.18 GPaEc = ,   13 23 75.09 GPaE Ec c= = ,   33 110.86 GPaEc = , 

 44 55 21.05 GPaE Ec c= = ,   66 22.57 GPaEc = ,   2
31 32 5.35116 C/me e= = − , 

2
33 15.7835 C/me = ,   2

15 12.2947 C/me = ,   11 22 919.1r rε ε= = ,   33 826.6rε = . 

(41)

The mechanical and piezoelectric structural losses for the PWAS were neglected. However the 
dielectric losses of 1.9% given by the manufacturer were taken into consideration. The mass density of the 
piezoceramic material was considered 37 750 kg/mρ = . The properties of the A2024 aluminum plates were: 

73.146 GPaE = , 32 780 kg/mρ = , 0.3312ν = . The adhesive layer being, as shown previously, have a 
thickness between 20 µm and 100 µm, and transmits most of the shear forces from the PWAS to the thin 
plate, and therefore was neglected in some cases and considered to be 100 µm in other cases.  
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a                                                                                b 

Fig. 3.2 – Real part of the E/M impedance in the case without defect and without central hole: 
a) in linear scale; b) in logarithmic scale. 

         
a                                                                                b 

Fig. 3.3 – a) Mesh used in the FEM analysis; b) mode shape of the thin plate with PWAS at 20 kHz,  
where antiresonance peeks appears, in the case of the defect. 
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Fig. 3.4 – Re( )Z  in the case of thin plate with central hole with bonded PWAS: a), b) without defects, in linear scale (LS),  
and in logarithmic scale (LogS); c), d) with defect (R  =  25mm, θ = 23°), LS and LogS. 

Graphics of Re( )Z  are presented in Figs. 3.2 and 3.4. It can be seen that the effect of the adhesive 
layer is not negligible. The FEM analysis shows that there are antiresonance peaks, and the differences are 
less than 1% in frequency, but larger in amplitude, in the presence of an adhesive layer of 100 µm, compared 
to the one without adhesive. Because of the axial symmetry, the numerical FEM analysis was done in the 2D 
axisymmetric mode. 

A comparison of the analytic and numerical (FEM) solutions with experiments is done in the frequency 
range [10kHz, 40kHz] and is given in Fig. 3.2. Analyical solution has input data the geometry and material 
properties of the A2024 aluminum plate and PWAS. The roots of the characteristic equations (20), (29) are 
found numerically. The key parameters 0.45%

uj
ζ =  0.9%

wj
ζ = , 2%η = , 2%δ = were chosen to match 

the theoretical results with the experimental data. 
Another comparison was made in the case of a plate with central hole, with a laser fabricated crack 

described above. The presence of central hole is not covered by the theory in this paper, and so the next 
comparisons were made between experimental data, and FEM analysis with and without adhesive layer. The 
FEM analyses were done in the 3D mode with XZ symmetry plane; a finer mesh has been taken around the 
central hole and PWAS, and around the crack (Fig. 3.3.a). Displacements, mode shape of the thin plate with 
bonded PWAS and with the considered defect at 20 kHz can be seen in Fig. 3.3.b.  

It no defect is present, only one antiresonance peek is present. When the defect is present, many 
antiresonance peeks, appear (Fig. 3.4), visible on the linear scale. From the logarithmic scale, it can be seen 
that FEM computations follow, also, the smaller peeks that are not easy to observe on the linear scale. It can 
be seen that an ideal adhesive layer of 100µm, with parallel faces, taken in FEM computations change 
significantly the shape of the E/M signature. But in real cases, the position of the PWAS is not perfectly 
parallel to the plate surface, nor perfectly centred, the adhesive layer is not perfect (some delaminations or 
voids can be present, which can overlap the bonding area etc.), and so significant alteration of the Re( )Z  can 
occur, as it can be seen experimentally and in FEM computations.  

4. CONCLUSIONS 

The article presents a self-contained study about E/M impedance method for SHM thin circular plates. 
Comparisons between the analytical method, the finite element method, and experiments were performed, 
with fabricated structural arc-shape defects. Changes in the E/M impedance spectrum due to presence of a 
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crack were investigated. It is certified that the E/M impedance method presents the following advantages: 
small size of the permanently attached or embedded piezoelectric sensors, ultrasonic frequency range 
application, and ability to be used for on-line and in service SHM. 
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