
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 15, Number 3/2014, pp. 310–314

EFFICIENT COMPUTATION OF THE NUMBER OF SOLUTIONS OF THE LINEAR
DIOPHANTINE EQUATION OF FROBENIUS WITH SMALL COEFFICIENTS

Mugurel Ionuţ ANDREICA, Nicolae ŢĂPUŞ

“Politehnica” University of Bucharest, Computer Science Department
Splaiul Independenţei 313, 060042, Bucharest, Romania

E-mail: mugurel.andreica@cs.pub.ro

In this paper we present a novel approach for computing the number of solutions of the linear
diophantine equation of Frobenius a1·x1 + ... + aN·xN = T when the coefficients a1, ..., aN are small.
The proposed algorithm has a time complexity of the order of O(N·S·log(T)), where S=a1+...+aN. The
algorithm can also be implemented to run in O(S·log(S)·log(T)+N·S) time, which is more efficient
when log(S)<N. Note that an elementary operation in these cases consists of an arithmetic operation
(e.g. addition, multiplication) applied on numbers of the order of magnitude of the result, which may
be exponential in both N and S. A common situation consists of computing the result modulo a given
number P, in which case the arithmetic operation is applied on numbers of the same order of
magnitude as P.

Key words: Frobenius equation, knapsack, convolution, discrete Fourier transform.

1. INTRODUCTION

The linear diophantine equation of Frobenius is defined as

a1·x1 + ... + aN·xN = T , (1)

where a1, ..., aN and T are positive integer numbers. The unknowns are x1, ..., xN, which must also be non-
negative integer numbers. Computing the number of solutions of the equation (1) (i.e. the number of
different tuples (x1, ..., xN) which satisfy the equation) is important in several areas of Mathematics. For
instance, [14] discusses their applications to the theory of invariant cubature formulas. Applications of linear
Diophantine equations in cryptography are discussed in [3, 9]. Computing the number of solutions of
equation (1) also has applications in solving a related problem, that of computing the so-called Frobenius
number, defined as the largest number T for which equation (1) has no solutions [8, 12].

In this paper we present a novel algorithm for computing the number of solutions of equation (1) in the
case when the sum of the coefficients a1, …, aN is not too large. T, however, can be as large as we want,
because our algorithm’s dependency on T is only logarithmic. In Chapter 2 we present the first version of our
algorithm, which uses a knapsack-like approach for each bit of the number T. The algorithm presented there
performs O(N·S·log(T)) elementary operations. In Chapter 3 we improve the algorithm for the case when
N>log(S), achieving O(S·log(S)·log(T)+N·S) elementary operations. Note that in this case we trade-off the
knapsack-like simplicity of the core routine of the algorithm presented in Chapter 2 for a more complicated,
yet well studied, discrete convolution routine. In Chapter 4 we discuss related work and in Chapter 5 we
conclude.

2. A KNAPSACK-BASED ALGORITHM FOR COMPUTING THE NUMBER OF SOLUTIONS

We will represent each unknown xi (1 ≤ I ≤ N) by introducing K+1 independent unknowns, as follows:

xi = xi,0·20 + xi,1·21 + ... + xi,K·2K. (2)

2 Number of solutions of the linear diophantine equqtion of Frobenius with small coefficients 311

We choose K = log2(T), rounded down to the nearest integer. The unknowns xi,j (1 ≤ i ≤ N, 0 ≤ j ≤ K)
can be either 0 or 1 and are independent from one another. xi,j can be imagined as the bit from position j of xi.
It is obvious that no xi will have more than K+1 bits, as that is the number of bits in the binary representation
of T. The algorithm for computing the number of solutions of the Frobenius equation will take advantage of
this independence, in the sense that the value of each unknown xi,j (0 or 1) can be considered independently
of other unknowns xi,j’ (for j’≠j).

Let’s denote the bits of T by t0, t1, ..., tK, i.e.

T = t0·20 + t1·21 + ... + tK·2K. (3)

The proposed algorithm will compute the following values:
CNT(j,C) = the number of ways of choosing the values xi,p (1 ≤ i ≤ N, 0 ≤ p ≤ j), such that the result of

the equation matches the bits 0, ..., j of the number T and we have a „carry” equal to C (i.e. C is a number
which influences the result for the next bits, starting from j+1). To be more precise, CNT(j,C) = the number
of ways of choosing the values xi,p (1 ≤ i ≤ N, 0 ≤ p ≤ j), such that the obtained number is t0·20 + t1·21 + ... +
tj·2j + C·2j+1.

C will never exceed S = a1 + ... + aN.
Initially we will have CNT(–1,0)=1 and CNT(–1,1≤C≤S)= 0.
Let’s assume that we computed all the values CNT(j,C) (0≤C≤S) and we will see how to compute the

values CNT(j+1,C) (0 ≤ C ≤ S). We will use an auxiliary (multidimensional) array CNTAUX, where
CNTAUX(i,C)= the number of ways of obtaining a „sum” equal to C (0 ≤ C ≤ 2·S) if we started from the
values CNT(j,*) and we considered only the unknowns xp,j+1 so far (1 ≤ p ≤ i).

We will initialize CNTAUX(0,C)=CNT(j,C) for 0 ≤ C ≤ S and CNTAUX(0,C) = 0 for S+1≤ C ≤ 2·S.
Then, we will consider the unknowns xi,j+1, in increasing order of i (1≤i≤N). We have:

CNTAUX(i,0 ≤ C ≤ai –1)=CNTAUX(i–1,C). (4)

For ai ≤ C≤ 2·S we have:

CNTAUX(i,C) = CNTAUX(i–1,C) + CNTAUX(i–1, C–ai). (5)

The right-hand side terms from equation (5) correspond to the following two cases: xi,j+1=0 and xi,j+1=1.
Note how equation (5) is similar to the equations used in 0-1 knapsack dynamic programming algorithms
[15].

Finally, we will compute the values CNT(j+1,*) from the values CNTAUX(N,*). We have:

CNT(j+1,0≤C≤S) = CNTAUX(N,2·C+tj+1). (6)

We consider CNTAUX(N,C) = 0 for C > 2·S.
The justification of equation (6) is as follows. So far we matched the bits t0, ..., tj of T and now we must

match the bit tj+1. Thus, we can only consider values CNTAUX(N,C) where the least significant bit of C is
equal to tj+1. After matching the bit j+1 of T with a number C, the remaining „carry” (for the bits j+2, …, K)
is equal to C/2 (integer division). Thus, we have CNT(j+1,C/2)=CNTAUX(N,C), where bit 0 of C is equal to
tj+1.

The final result can be found in CNT(K,0).
In order to analyze the time complexity of our algorithm, let’s notice that a knapsack-like algorithm is

run for each bit j. The knapsack-like algorithm takes O(N·S) time. Since there are log2(T) bits, we obtain a
time complexity of O(N·S·log(T)). An elementary operation in our time complexity analysis consists of
adding together two numbers which are of the order of magnitude of the final result. When we care about the
exact number of solutions, then these numbers can be exponential in N and S. However, adding together two
such numbers is proportional to the number of their digits, which is polynomial in N and S. There are cases
when the numbers always remain small, such as when we want to compute the number of solutions modulo a
given number P. In these cases the numbers involved are always of the order of magnitude of P (because the
additions are performed modulo P). If we can consider the number of digits of P to be a constant value, then
an elementary operation truly takes O(1) time.

A trivial implementation of the presented algorithm would use O(K·S) memory. However, we can
easily notice that the recurrences for the values CNT(j,C) and CNTAUX(j,C) never need values of the form
CNT(j’,*) and CNTAUX(j’,*) with j’<j–1. Thus, it is always sufficient to maintain the last two rows of these
two 2D arrays, reducing the required memory to O(S).

 Mugurel Ionuţ Andreica, Nicolae Ţăpuş 3 312

3. OPTIMIZING THE ALGORITHM TO O(S·LOG(S)·LOG(T)+N·S)

The algorithm proposed in Chapter 2 can be optimized for the situation when N>log2(S). We will
compute the same values. The values CNT(0,*) and CNT(1,*) will be computed as before. When computing
the values CNTAUX(N,*) (j ≥ 1) we will use a different approach. Let’s notice that

CNTAUX(N,C) = CNT(j,0)·CNT(1,C) + CNT(j,1)·CNT(1,C–1) + ... + CNT(j,C)·CNT(1,0) =

0

(,) (1,)
C

x

CNT j x CNT C x
=

⋅ −∑ , (7)

where we consider CNT(*, S+1 ≤ C ≤ 2·S)=0.
Equation (7) defines a discrete convolution between the sequences CNT(j,*) and CNT(1,*).

CNTAUX(N,*) is computed by applying the convolution operation on these two sequences of size S+1. The
convolution of two sequences of size O(S) can be computed efficiently, by using the Discrete Fourier
Transform, in O(S·log(S)) time [23]. After computing the values CNTAUX(N,*) we obtain the values
CNT(j+1,*) from them as before. Note that in this case we do not need to compute the values CNTAUX(i,*)
for i<N, because we can compute CNTAUX(N,*) directly by using the discrete convolution.

Thus, instead of using a knapsack-like algorithm for computing the values CNTAUX(N,*) at each step,
we use an algorithm for computing the convolution of two sequences. The overall time complexity of the
modified algorithm is O(S·log(S)·log(T)+N·S) (the O(N·S) term comes from computing the values CNT(1,*)).
The amount of memory used by the algorithm can be as low as O(S), by using the same argument presented
in the previous chapter.

When computing the convolution of two discrete sequences we will need to add and multiply numbers
which are of the same order of magnitude as the final result (which we will call „large” numbers), or
multiply and divide such numbers with „small” numbers (of the order of magnitude of N). We consider the
addition of two „large” numbers or the multiplication and division of a „large” number with a „small”
number to be equally complex and we will denote them as „simple” operations. The multiplication of two
„large” numbers is more complex than the other operations and, thus, we will denote it as a „complex”
operation. In the DFT-based discrete convolution algorithm applied for two sequences of length O(S), there
are O(S·log(S)) „simple” operations performed and only O(S) „complex” operations. Because of this, we can
conclude that an elementary operation in this second version of the algorithm is equivalent to an elementary
operation in the first version of the algorithm.

4. RELATED WORK

The problem of computing the number of solutions for the Frobenius equation has been studied before
in several papers. A common approach [4, 20, 22] is to find a closed-form function which computes the
number of solutions of the equation when given the argument T. This approach uses the fact that this
function is the sum of a polynomial of degree N–1 and a periodic function with period equal to LCM(a1, ...,
aN) (LCM = lowest common multiple). The coefficients of the polynomial are rational numbers, but the
periodic part has a more complicated structure. The theory of generating functions is usually employed in
order to explicitly find the function. In [6] the authors tackle only the polynomial part of the function, which
can be computed in time exponential in N. The general case (both the polynomial and periodic parts) has
been considered in [16], where an exact representation of the „number of solutions” function is given, which
can be computed in a reasonable amount of time for moderately large values of the numbers ai (1 ≤ i ≤ N) and N.

Even assuming that the “number of solutions” function is fully known, computing the exact number of
solutions is not always easy, because computations involving real numbers will be performed. By
comparison, our algorithm uses only integer numbers (at least in the first version of the algorithm).

Easily computable closed-form expressions of the „number of solutions” function for simple cases (e.g.
N=2) have also been derived [19].

A very simple, yet inefficient, algorithm for computing the number of solutions of equation (1) is
presented in [18]. The algorithm tries every possible value for x1, ..., xN–1 (the value of xN is then uniquely
determined, if it exists). Obviously, this algorithm is exponential in T, while our algorithm’s dependency on
T is only logarithmic.

4 Number of solutions of the linear diophantine equqtion of Frobenius with small coefficients 313

A more popular version of the problem studied in this paper [20] is to compute the so-called Frobenius
number, i.e. the largest number T for which the Frobenius equation (1) does not have any solutions. Several
algorithms have been proposed for this problem [7, 8, 12]. Reference[6] connects the Frobenius number
problem and the problem of computing the number of solutions of equation (1) in a natural manner: the
authors are interested in computing the largest number T for which equation (1) has a given number of
solutions. Extensions to other types of equations have also been considered [11], as well as extensions to
multiple dimensions [2].

Because of its popularity, the problem of finding the Frobenius number has also been considered as a
useful educational tool in teaching discrete mathematics (particulary for the well studied case N=2) [5].
Moreover, generalizations of this problem have also been considered [10].

The convolution operation is a very useful tool in a wide variety of domains, both continuous and
discrete [1, 17, 24]. A common method of efficiently computing the convolution of two discrete sequences is
to apply the Discrete Fourier Transform on each sequence, multiply the obtained coefficients together
(position by position), and then apply the Inverse Discrete Fourier Transform in order to obtain the result.
Other fast convolution algorithms use the Discrete Fourier transform in other spaces than the space of
complex numbers (e.g. in rings) [21].

5. CONCLUSIONS

In this paper we presented a novel algorithm for computing the number of solutions of the Frobenius
equation a1·x1 + ... + aN·xN = T when the coefficients a1, ..., aN are small (so that their sum is not too large).
Our algorithm works even when T is very large. N can also be moderately large, as long as the sum S of the
coefficients is not too large and the product N·S is also not too large. An elementary operation in our
algorithm consists of an arithmetic operation applied on two numbers which are of the same order of
magnitude as the final result. When computing the result modulo a given number P, the numbers involved in
the computations are of the same order of magnitude as P. However, in this case, the standard Discrete
Fourier Transform cannot be used. Instead, the number-theoretic transform must be used, which imposes
some constraints on the value of P; of course, these constraints can be overcome, at the expense of more
complex implementations [13, 17].

REFERENCES

1. F. ABTAHI, R. N. ISFAHANI, A. REJALI, Convolution on Weighted Lp-spaces of Locally Compact Groups, Proceedings of the
Romanian Academy, Series A, 13, 2, pp. 97–102, 2012.

2. J. AMOS, I. PASCU, V. PONOMARENKO, E. TREVINO, Y. ZHANG, The Multidimensional Frobenius Problem, Involve – a
Journal of Mathematics, 4, 2, 2011.

3. M. R. K. ARIFFIN, N. A. ABU, Linear Diophantine Equation Discrete Log Problem, Matrix Decomposition Problem and the
AAβ-Cryptosystem, IACR Cryptology ePrint Archive, 2011.

4. A. BADRA, Frobenius Number of a Linear Diophantine Equation, Lecture Notes in Pure and Applied Mathematics, 231, pp. 23–36,
2003.

5. M. BECK, How to Change Coins, M&M’s, or Chicken Nuggets: The Linear Diophantine Problem of Frobenius, in Resources for
Teaching Discrete Mathematics: Classroom Projects, History Modules, and Articles (B. Hopkins, ed.), pp. 65–74.
Mathematical Association of America, 2009.

6. M. BECK, I. M. GESSEL, T. KOMATSU, The Polynomial Part of a Restricted Partition Function related to the Frobenius
Problem, The Electronic Journal of Combinatorics, 8, 1, 2001.

7. M. BECK, S. ROBBINS, Computing the Continuous Discretely, Springer, 2009.
8. D. BEIHOFFER, J. HENDRY, A. NIJENHUIS, S. WAGON, Faster Algorithms for Frobenius Numbers, The Electronic Journal

of Combinatorics, 12, 2005.
9. D. BISHOP, Introduction to Cryptography with Java Applets, Jones and Bartlett Publishers, 2003.
10. A. BROWN, E. DANNENBERG, J. FOX, J. HANNA, K. KECK, A. MOORE, Z. ROBBINS, B. SAMPLES, J. STANKEWICZ,

On a Generalization of the Frobenius Number, Journal of Integer Sequences, 13, 2010.
11. M. DELGADO, J. C. ROSALES, On the Frobenius Number of a Proportionally Modular Diophantine Inequality, Portugaliae

Mathematica - Nova Serie, 63, 4, pp. 415–425, 2006.
12. D. EINSTEIN, D. LICHTBLAU, A. STRZEBONSKI, S. WAGON, Frobenius Numbers by Lattice Point Enumeration, Integers,

7, 1, 2007.

 Mugurel Ionuţ Andreica, Nicolae Ţăpuş 5 314

13. W. B. HART, G. TORNARIA, M. WATKINS, Congruent Number Theta Coefficients to 1012, Algorithmic Number Theory: 9th
International Symposium ANTS-IX, Springer-Verlag, 2010, pp. 186–200.

14. M. I. ISRAILOV, Numbers of Solutions of Linear Diophantine Equations and Their Applications in the Theory of Invariant
Cubature Formulas, Siberian Mathematical Journal, 22, 2, pp. 260–273, 1981.

15. H. KELLERER, U. PFERSCHY, D. PISINGER, Knapsack Problems, Springer-Verlag, 2004.
16. T. KOMATSU, On the Number of Solutions of the Diophantine Equation of Frobenius – General Case, Mathematical

Communications, 8, pp. 195-206, 2003.
17. L. M. LEIBOWITZ, Fast Convolution by Number Theoretic Transforms, Naval Research Laboratory, Washington D.C., 1975.
18. R. MAHMOUDVAND, H. HASSANI, A. FARZANEH, G. HOWELL, The Exact Number of Nonnegative Integer Solutions for

a Linear Diophantine Inequality, IAENG International Journal of Applied Mathematics, 40, 1, 2010.
19. T. POPOVICIU, Asupra unei Probleme de Partiţie a Numerelor, Studii şi Cercetări Ştiinţifice, 4, pp. 7–58, 1953.
20. J. L. RAMIREZ ALFONSIN, The Diophantine Frobenius Problem, Oxford Lecture Series in Math. and its Appl., 30, Oxford

Univ. Press, Oxford, 2005.
21. A. SCHÖNHAGE, V. STRASSEN, Schnelle Multiplikation großer Zahlen, Computing, 7, pp. 281–292, 1971.
22. S. SERTÖZ, On the Number of Solutions of a Diophantine Equation of Frobenius, Discrete Mathematics and Applications, 8, 2,

pp. 153–162, 1998.
23. D. SUNDARARAJAN, The Discrete Fourier Transform: Theory, Algorithms and Applications, World Scientific Publishing,

2001.
24. G. ZBĂGANU, On Infinite Bernoulli Convolutions, Proceedings of the Romanian Academy, Series A, 7, 3, 2006.

Received May 20, 2013

	ProceedingsA3-2014 PDF-final.pdf

