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In this paper we have experimentally determined, using some known methods, the equivalent 
elasticity modulus for new types of sandwich bars characterized by: polypropylene honeycomb core, 
with a thickness of 20 mm, having the exterior layers made of epoxy resin reinforced (on the upper 
and lower sides) with 5 and 10 layers of steel wire mesh. We have considered as a reference method 
for elasticity modulus determination the modal analysis. We have determined the first three 
eigenmodes and used them to determine the elasticity modulus. The obtained results were checked 
with another experimental method characterized by bending loading of the bars in three points. In the 
last part of the paper, we have made a comparative study between the flexural rigidity values obtained 
from different sandwich structures with polypropylene honeycomb core that have thickness of 20 
mm. The bars have different face sheets: bar 1 has one layer of fiber-glass with epoxy resin, bar 2 has 
two layers of fiber-glass with epoxy resin, bar 3 has five layers of steel wire mesh with epoxy resin 
and bar 10 has ten layers of steel wire mesh with epoxy resin. Starting from the first two eigenmodes 
of the bars, it is established a method used to determine the bars flexural rigidity. The results are 
validated by using an approximate experimental method. 

Key words: sandwich bars; eigenmodes; elasticity modulus; flexural rigidity; eigenfrequencies.  

1. INTRODUCTION 

The sandwich bars and plates can be studied by various methods that mostly differ by the inclusions or 
neglecting the effects of angular deformation and respectively, the rotational inertia. A first theory, named as 
FSDT (First-Order Shear Deformation Theory), was presented in [1] and further developed in [2]. According 
to this theory, a straight line normal on the median plane before deformation remains straight without 
keeping the perpendicularity during deformation (on the median surface). The refined theories rely on a non-
linear distribution of shear stresses along the thickness of the plate or bar. The inclusion of high order terms 
implies the inclusion of supplementary unknowns. Moreover, when fulfilling both the distribution of shear 
stresses in thickness are parabolic and if the limit conditions are accomplished on external surfaces, a 
correction factor is not necessary. Based on these assumptions, a HSDT (High-Order Shear Deformation 
Theory) theory was presented in [3]. According to this theory, the stresses and strains normal to the median 
plane are null. In [4] it was developed a theory that considers the stresses normal to the median plane. This 
theory removes a series of contradictions that appear in previous theories by accepting non linear factors of 
shear stresses in thickness. It is not neglected a part of the normal stresses obtained by the loading of the 
composite structure. A better characterization of sandwich bars can be obtained by using LWM (Layer-Wise 
Models) models. In [5, 6], it is considered each layer in a sandwich structure as a separate bar. The damped, 
forced and nonlinear vibrations for simply supported rectangular plates with viscoelastic core were studied in 
[7]. The core was modelled like a Voigt-Kelvin solid. There was also studied the influence of the layers 
thicknesses and material properties over the nonlinear plates response. There have also been made some 
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studies on the damped vibrations of Euler-Bernoulli and Timoshenko beams. The material was assumed to 
be incompressible, whereby the same viscoelastic operators could be both used for the flexural and shear 
deformations. This permitted the use of the normal modes and their orthogonally conditions to solve this 
viscoelastic forced vibration problem. Relevant to these studies are the papers [8, 9]. In [10] the linear 
vibrations of Timoshenko beams are studied. It is detailed that if the ratio of length and thickness of a bar is 
greater than ten, then the difference between Timoshenko and Euler-Bernoulli theories for the bending 
moment, shear force and the medium fiber deformation, are smaller than 5%. There is shown that the 
damping influence of rotational motion of the bar section can be neglected (for the first eigenmodes of 
vibration). In [11] it was investigated the mechanical behaviour and failure mechanism (such as compressive 
and shear deformation or strengths) of honeycomb composite consisting of Nomex honeycomb and 2024Al 
alloy face sheets, at different temperatures ranged between 25–3000C. The average elastic and strength 
characteristics of Nomex honeycomb were also investigated in [12]. The static and fatigue behaviour of 
aluminum hexagonal honeycomb cores were analyzed in [13]. The out-of-plane compressive properties of 
thermoplastic hexagonal honeycombs using the finite element analysis were investigated in [14]. The 
equivalent transverse shear and in-plane moduli of honeycomb cellular structures were evaluated in [15] and 
it was discussed about the structural efficiency of honeycombs. Using honeycomb test specimens made of 
Nomex, aluminum alloy and paper, in [16] there were explored the crushing phenomena of the cells. In [17] 
there was made an experimental investigation on low-velocity impact responses and damage modes of 
sandwich composites (aluminum honeycomb core and glass/epoxy face sheets) because of the impact 
loading changing location and wall partition angle of the honeycomb core. Numerical and experimental 
methods were used in [18] to examine the crashworthiness and rollover characteristics of a low- floor bus 
vehicle made of sandwich composites (aluminum honeycomb core and WR580/NF 4000 glass-fabric/ epoxy 
laminate face sheets). Further studies regarding the mechanical parameters determination (like free 
vibrations, natural frequencies, elasticity modulus, decoupling effects and so on) for various composite bars 
are presented in [19, 20, 21,22, 23].  

In this paper, some mechanical properties for new types of composite sandwich bars, with the core 
made of polypropylene honeycomb, were determined. The materials used for the sandwich bars (polypropylene 
honeycomb, steel wire mesh, fiber-glass and epoxy resin) are classical, but their combination is original. 

2. THE EQUIVALENT ELASTICITY MODULUS DETERMINATION 

2.1 Equivalent elasticity modulus determination using the modal analysis 

There are analyzed new types of composite bars marked in this way: model 1 – sandwich bar with 
rectangular section (25×23,4 mm) with polypropylene honeycomb core (with a thickness of 20 mm), having 
the exterior layers made up with epoxy resin reinforced with each 5 layers (upper and lower) of steel wire 
mesh; model 2 – sandwich bar with rectangular section (25×26 mm) with polypropylene honeycomb core 
(with a thickness of 20 mm), having the exterior layers made up with epoxy resin reinforced with each 10 
layers (upper and lower) of steel wire mesh. The epoxy resin is RESOLTECH 1050 type and its hardener is 
RESOLTECH 1058 type (having a mixed density of 1.11 g/cm3, mixed viscosity of 633 MPa·s at 230C, 5% 
elongation to break and 6% flexion to break). The polypropylene honeycomb is NIDATECH 20 made by 
NIDAPLAST firm (having a cell size of 20 mm, compressive strength of 0.5 MPa and compressive modulus 
of 0.01 MPa). The model 1 of sandwich bar type is presented in Fig. 1. For similar structures, in [24] the 
damping factor was determined. The methodology for the equivalent elasticity modulus (between the 
transversal and longitudinal one) calculus is according to [25].  

The experimental montage is similar to the one presented in [25]. The bars are rigidly fixed at one end 
and at the other end, at a 10 mm distance it is placed an accelerometer Bruel&Kjaer with 0.004 pC/ms-2 
sensitivity. The excitation of the bar was made by using an impact Bruel&Kjaer hammer with 1.020 pC/ms-2 
sensitivity. The scheme of the experimental montage is presented in Fig. 2a. 

We will consider this method as the reference one for the equivalent elasticity modulus value. We will 
obtain the vibration eigenmodes according to the considered experimental montage and to the procedure 
from [25]. The steps for the modal identification are according to the study from [26]. We determine the 



 Cristian Oliviu Burada, Cosmin Mihai Miriţoiu, Marius Marinel Stănescu, Dumitru Bolcu  3 72 

vibratory response (with the accelerometer) and the excitation force (with the impact hammer) for both 
models. These experimental recordings for model 1 are presented in Fig. 2b. As in the paper [26], we first 
determine the frequency response function in cartesian and polar coordinates and then, by the usage of this 
function, we determine the modal parameters (Fig. 3 and Fig. 4). 

 

 
 

 

 
Fig. 1 – a. General view; b. a detail with the steel wire mesh 
distribution; c. A detail with the polypropylene honeycomb.  

Fig. 2 – a. The experimental scheme; b. experimental 
recordings (model 1).  

  
 

Fig. 3 – The final panel of modal parameters (model 1). Fig. 4 – The final panel of modal parameters (model 2). 

From Figs. 4 and 5 we withhold the values from the niu column (niu-ν is the eigenfrequency of each 
modal parameters). We have for model 1: ν1 = 22.762; ν2 = 177.145; ν3 = 424.913; and for model 2:  
ν1 = 29.291; ν2 = 179.284; ν3 = 379.771. According to [25], the elasticity modulus for each eigenmode is: 
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In relation (1) we have the next parameters: k – is the number of the eigenmode; E – the elasticity 
modulus (MPa); L = 509·10-3m – the free length of the bar; ρ is the material density and is 424.861 for model 
1 and 654.22 kg/m3 for model 2; A – the transversal section area and is 5.85·10-4 for model 1 and 6.5·10-4 m2 

for model 2; Iy – the inertia moment of the bar and is 2.669·10-8 for model 1 and 3.662·10-8 m4 for model 2;  
β – the solutions of the equation chβ·cosβ + 1 = 0; ν – the eigenfrequency of each eigenmode [Hz]. We made 
the next simplifying assumptions: we have considered the section of the bars being rectangular; the solutions 
βk were approximated. For the models 1 and 2, we have obtained three equivalent elasticity moduli (between 
the longitudinal and transversal ones) that correspond to each eigenmode: 

E1= 1 232 MPa,   E2= 1 616 MPa,   E3= 1 217 MPa (model 1), (2)
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E1= 2 161 MPa,   E2= 2 062 MPa,   E3= 1 870 MPa (model 2). 

According to [25], in order to obtain the final value of the equivalent elasticity modulus, we make the 
arithmetic mean of the data obtained for each model. According to [25], the equivalent elasticity modulus is 
the same across the bar length. So, we have obtained the relations (3) 

Emodel 1= 1 355 MPa (model 1),   Emodel 2= 2 031 MPa (model 2). (3)

2.1. Results validation for the equivalent elasticity modulus 

We shall validate the elasticity modulus by using the three points bending of the bar. We will 
determine the pairs stress and strain obtained from this loading. The accuracy of the results obtained with the 
used device for bending is presented in [27]. The bending loading scheme is presented in Fig. 5. According 
to the loading scheme, the stress is (the value of M is in N⋅mm and the value of W is in mm3): 

1

90 260
260 440 0.02331 .

2281.5mark

FM V F
W W

⋅
⋅⋅

σ = = = = ⋅  (4)

In (4) we have marked with M [N·mm] the bending moment obtained from the loading scheme, with W 
[mm3] the axial strength modulus and with V1 the reaction force from the left simple support. To obtain the 
stress, the signal of the force (recorded with the force transducer S9 –Fig. 4) will be amplified with 0.02331 
(the stress from relation (4) is determined in the point where the active strain gauge is glued, in a point at 260 
mm from the left simple support – Fig. 5, depending on the force value measured with the force transducer). 
We have determined the stress value from the force signal in order to obtain the elasticity modulus as a ratio 
between the stress and the strain. In order to obtain the strain (marked as εmesured in the next relations), we 
have bounded four strain gauges on the two models in a half-bridge connection. The strain values are 
obtained directly with the strain gauges. In order to obtain the elasticity modulus, we have used the Hooke 
law, by considering that the loadings are very small and are produced in the elastic domain. 

610 mesured
mesured

mesured
E −

σ
⋅ =

ε
. (5)

  
Fig. 5 – The bending loading scheme and device (model 1).  Fig. 6 – The stress and strain at a chosen point from the 

experimental data.  

The experiment is characterized by loading the bars with a force (with a small value) and by recording 
the obtained experimental data. From the experimental graphic, we have chosen some points for which we 
have determined the stress and strain values. In Fig. 6 it is presented a chosen point from the experimental 
graphic (that corresponds to the point 4 from the Table 1) given by the pointer position (represented with 
dash line), for which the parameters σmesured and εmesured were determined. All the chosen points and the 
experimental data for the stress and strain are written in Table 1. Also we have determined the errors that 
appear compared to the values obtained with the modal analysis and we have written them in Table 1. We 
have done the same thing for the model 2, and we have written the results in Table 2. 

From the two tables, we can see that the errors compared with the modal analysis method are small 
(under 10 %). The modal identification method, used in this research, is an accurate one, fact proven by the 
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small errors obtained between the two experimental methods. This method was also used in [25] for 
elasticity modulus determination for composite materials with random distribution of reinforcement, and the 
results were compared to the ones obtained from the tensile test on an universal testing machine and the 
errors were under 4%.  

Table 1 

Stress, strain, elasticity modulus and errors obtained in each chosen point (model 1) 

Point σmark [MPa] εmesured [μm/m] E [MPa] Error [%] 
1 0.27246 210.87 1292 4.644 
2 0.17187 140.33 1225 9.612 
3 0.71466 520.99 1372 1.22 
4 0.77932 566.33 1376 1.532 
5 0.99009 714.15 1382 2.264 

Table 2 

Stress, strain, elasticity modulus and errors obtained in each chosen point (model 2) 

Point σmark [MPa] εmesured [μm/m] E [MPa] Error [%] 
1 0.76527 345.14 2217 8.401 
2 0.83563 376.49 2220 8.494 
3 0.92944 418.29 2222 8.596 
4 1.0584 475.77 2225 8.703 
5 1.3516 606.39 2229 8.88 

3. EXPERIMENTAL DETERMINATION OF THE FLEXURAL RIGIDITY 

3.1. The usage of modal analysis for flexural rigidity calculus 

In [21] the equations of motion for transversal vibrations of viscoelastic bars that have constant section 
and external damping were presented. It was proved that, if the ratio of length and thickness of a bar is 
greater than ten, the difference between Timoshenko and Euler-Bernoulli theories for the bending moment, 
shear force and the deformation of medium fiber is smaller than 5%. For the first vibration eigenmodes, the 
damping influence of rotational motion of the bar section can be neglected. In order to determine the bars 
flexural rigidity (the product between the axial moment of inertia and the equivalent elasticity modulus), the 
relation (1) can be used. We have made bars from composite materials with polypropylene honeycomb core 
NIDATECH 20, having a 20 mm thickness. These bars have different exterior upper and lower layers:  
bar 1 – 1 layer of glass fabric with epoxy resin RESOLTECH 1050; bar 2 – 2 layers of glass fabric with 
epoxy resin RESOLTECH 1050; bar 3 – 5 layers of steel wire mesh with epoxy resin RESOLTECH 1050; 
bar 4 – 10 layers of steel wire mesh with epoxy resin RESOLTECH 1050. The fiber-glass fabric is  
E-GLASS type with the next basic characteristics: elastic limit – 2750 MPa, Young modulus – 72 GPa, 
tensile strength – 1950 MPa, Poisson ratio – 0.21. The width of all the bars is 30 mm. A general view with 
the bar samples is presented in Fig. 7.  

The bars are rigidly fixed at one end and at the other end, at a 10 mm distance is placed and 
accelerometer Bruel&Kjaer with 0.004 pc/ms-2 sensitivity. The excitation of the bars was made by using an 
impact hammer Bruel&Kjaer with 1.020 pc/ms-2 sensitivity. We have also considered two variants of the bar 
embedding, in this way (we will refer to the free parts of the bars – namely the parts where the accelerometer 
is located and where the measurements will be made): Variant 1: the free length is 350 mm; Variant 2: the 
free length is 320 mm. We have chosen these values for the free length of the bars to apply Bernoulli theory 
(where the ratio between the bar length and thickness must be higher than 15) valid in the case of this bars. 
The experimental scheme is presented in Fig. 8. 

There have been made experimental measurements, determining the eigenmodes in the considered 
measuring point. In order to avoid any possible errors, we have made each measurement twice. After 
obtaining the eigenfrequencies, we have determined the bars flexural rigidity with relation (1). We have 
presented in Figs. 9 and 10 the experimental recordings for the bar 2 in both 1 and 2 embedding considered 
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variants. In Figs. 11 and 12 we present the final panel with the modal parameters determined from the 
experimental scheme. 

 

 
Fig. 7 – A general view with the used samples.  Fig. 8 – Experimental scheme: a. variant 1; b. variant 2. 

 
Fig. 9 – Experimental recordings (bar 2 – Variant 1).  Fig. 10 – Experimental recordings (bar 2 – Variant 2). 

  

Fig. 11 – Experimental recordings (bar 2 – Variant 1).  Fig. 12 – Experimental recordings (bar 2 – Variant 2). 

Important mark. The eigenfrequency for each eigenmode can be found in the Figs. 11 and 12 on the 
column that corresponds to the niu (ν) notation. For example, in Fig. 12, from the niu (ν) column we can find 
the next values: ν1 = 48.18 Hz for the first eigenmode and ν2 = 342.232 Hz for the second eigenmode. All the 
results obtained from the experimental data and the bars flexural rigidity are written in Table 3, where we 
have marked with k the number of the eigenmode.  

In order to obtain the bars flexural rigidity we shall make the arithmetic mean of the EIk values 
obtained for each eigenmode. We shall determine the errors between the flexural rigidity values obtained for 
each eigenmode (the εs values from Table 4). 
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Table 3 

The results from the experimental data  
Bar No. m [kg] νk [Hz] Embedding variant k EIk [N·m2] EIk/m [N·m2/ kg] 

1 0,050 35,05 1 1 9,904 198,08 
1 0,050 260,7 1 2 11,788 235,76 
1 0,050 41,854 2 1 10,794 215,88 
1 0,050 307,834 2 2 12,561 251,22 
2 0,060 43,155 1 1 18,017 300,283 
2 0,060 306,827 1 2 19,593 326,55 
2 0,060 48,18 2 1 17,163 286,05 
2 0,060 342,232 2 2 18,63 310,5 
3 0,102 43,561 1 1 31,208 305,961 
3 0,102 286,048 1 2 28,95 283,824 
3 0,102 48,067 2 1 29,041 284,716 
3 0,102 325,282 2 2 28,611 280,5 
4 0,167 42,060 1 1 47,635 285,24 
4 0,167 276,180 1 2 44,185 264,581 
4 0,167 45,567 2 1 42,73 255,868 
4 0,167 318,290 2 2 44,852 268,575 

Table 4 

The bars flexural rigidity and errors between eigenmodes  
Bar No. Embedding variant EI [N·m2] EI/m [N·m2/ kg] εs [%] 

1 1 10,846 216,92 15,982 
1 2 11,678 233,55 14,067 
2 1 18,805 313,417 8,044 
2 2 17,896 298,275 7,874 
3 1 30,079 294,893 7,235 
3 2 28,826 282,608 1,481 
4 1 45,91 274,911 7,243 
4 2 43,791 262,221 4,731 

3.2. Experimental validation of the flexural rigidity values 

The flexural rigidity of a bar which is embedded at one end and loaded at the other end with a force  
F can be calculated with (6). In (6) we have marked with: EI – the bar flexural rigidity; F – the force that 
loads the bar; l – the free length of the bar; v – the bar displacement. We shall load the bars with a force  
F = 200 gf = 200·10-3 kgf ≈ 0.2 daN ≈ 2 N. The free lengths of the bars l correspond to the variants of the bar 
embedding presented at the modal analysis experiment (l= 350 and 320 mm). 

v
lFIE
⋅
⋅

=⋅
3

3

. (6)

The bars are loaded to bending, so the 
flexural rigidity will be determined in order to 
validate the results obtained at the Chaper 3.1. 
The displacement will be measured with a 
comparative device – a dial gauge with magnetic 
stand having a precision of 0.01 mm. The scheme 
of the experimental assemblage is presented in 
Fig. 13. All the experimental data is written in 
table 5. This is an approximate method because of 
the errors that may appear at the dial gauge 
displacement reading. We have marked with εm in 
Table 5 the errors for the flexural rigidity values 
that appear between the two nondestructive 
experimental methods. 

 
Fig. 13 – Experimental assemblage. 
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From Table 5 we can see that the errors between the experimental methods are quite small, bellow 10%. 

Table 5 

Experimental data 

Bar No. Embedding variant EI [N·m2] EI/m [N·m2/ kg] εm [%] v [mm] 

1 1 11.036 220.721 1.722 2.59 
1 2 11.209 224.183 4.016 2.55 
2 1 17.116 285.263 8.982 1.67 
2 2 19.056 317.593 6.087 1.5 
3 1 27.222 266.885 9.498 1.05 
3 2 29.167 285.948 1.169 0.98 
4 1 42.034 251.702 8.443 0.68 
4 2 43.308 259.33 1.103 0.66 

4. CONCLUSIONS 

We consider that the added value of the study presented in this paper is: 
– making some new original composites bars, with classical elements (like steel wire mesh, fiber-glass, 

epoxy resin, polypropylene honeycomb) combined in an original sandwich bar; 
– the number of the reinforcing layers (5 and 10 steel wire mesh layers, respectively 1 and 2 fiber-glass 

layers);  
– determining some mechanical characteristics for these composite bars, like: equivalent elasticity 

modulus, flexural rigidity, eigenmodes, eigenfrequencies (marked with niu – ν, in Figs. 3, 4, 11, 12), critical 
damping for each eigenmode (marked with zita – ζ, in Figs. 3, 4, 11, 12), damping factor for each eigenmode 
(marked with miu – μ, in Figs. 3, 4, 11, 12) – these values characterize the vibratory response of the studied 
sandwich bars;  

– proposing new structures with applications in practical engineering (in fields like civil constructions, 
mechanical engineering or materials engineering) for: planes floor building, ships floor building, walls of 
civil constructions or concrete forming. 

The hardening time of the epoxy resin used in this paper was of 24 hours at room temperature. The 
presented experimental methods have the advantage that are non-destructive and the samples can be used for 
further investigations. Also, the modal analysis has the advantage that it can be used in the case of complex 
systems built from composite materials. In the first part of the paper, the equivalent elasticity modulus was 
determined for two types of sandwich bars reinforced with different number of steel wire mesh layers. The 
elasticity modulus determination for this kind of sandwich bars is important in practical engineering for the 
next cases: 

– when we want to make comparisons between the stresses obtained from different loadings for this 
kind of bars and other known sandwich bars; 

– when we want to make a comparison between the stresses per unit mass between these sandwich bars 
and metallic beams of different sections; 

– when we want to make a finite element modeling of an equivalent bar, by inserting the elasticity 
modulus value, and so on. 

From Table 4, we can see the next tendencies:  
– the bar with 10 steel wire mesh layers has an increased flexural rigidity (around 33%) in comparison 

with the sandwich bars with 5 layers of steel wire mesh, fact that can be explained by the 5 aditional layers 
between the two bars; 

– the bars reinforced on the upper and lower face sheets with 1 layer of fiber glass and resin have the 
smallest flexural rigidity, therefore these composites can be used for structures building that are not heavily 
loaded; 

– for heavily loaded structures, we recommend using elements made in the same way as the bar 4; 
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– we have observed little errors between the flexural rigidity values obtained for each eigenmode 
(under 16% – value accepted in practical engineering); 

– we have observed little differences between the flexural rigidity values obtained at each embedding 
variant, for the same bar; 

– we can see that the eigenfrequency value, for all the bars, is higher (for all the eigenmodes) for the 
variant 2 of embedding in comparison with the variant 1. 

As a further research, we would consider the possibility of replacing the metallic beams that have a 
caisson section with these sandwich bars. Regarding this study, we aim to load the composite bars and the 
metallic beams in several variants and make comparisons from the mass per unit stress point of view. We 
wish to see if there are loading variants where the composite sandwich bars have an increased strength 
compared to the metallic ones. The results of the experimental determinations can be applied in the 
behaviour study of this composite materials type usable for structural and nonstructural walls at civil 
constructions, in order to improve their behaviour at extraordinary loadings like the seism but also at 
buildings shock loaded (for example: the explosions). In this sense, in a future paper there will be studied the 
stresses in composite planar lamellar and plates elements, including the application of these composite 
materials on the strength parts like beams, walls, platforms, columns, etc. 
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