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Abstract. A bogie subsystem is an essential component of a train car. During bogie lifetime several 
external forces, both exceptional and normal service loads, act on the bogie frame, coming from the 
wheel-rail contact points and from the interfaces with the carbody. This paper presents the validation 
of the bogie frame type CO-CO numerical model (finite element model). This type of bogies is used 
for asynchrony electric locomotive type LEMA 5100kW (under construction in Softronic Craiova-
Romania). The finite element model validation is based, in according to EN 15227/2010, on 
experimental modal analyses [2]. 
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1. INTRODUCTION 

Bogie subsystems are complex equipments with a vital role in the railway vehicle operation. This bogie 
subsystem is designed to carrying the carbody, ensuring the traction and braking forces transmission and 
taking transported loads, as well as of vibratory isolation of the carbody [1]. 

During bogie lifetime (approximately 30 years), several external forces, both exceptional and normal 
service loads, act on the bogie frame, coming from the wheel-rail contact points and from the interfaces with 
the carbody. 

These forces are generated from: double sprung masses, including payload; track irregularities; lateral 
accelerations caused by curve riding; longitudinal accelerations caused by traction and braking [1] as well as 
other typically exceptional events: exceptional payloads; buffer impacts; minor derailments. 

Because the bogie has a very important role in road safety rail (all loads and mechanical stresses from 
the track are transmitted to the carbody through the bogie and act in the bogie frame), the European 
standardization body CEN give a special attention to design and assessment procedures of the new railway 
bogie frames.  

The actual European standard EN 13749/2011 [3, 4], specifies the methods to be followed to achieve a 
satisfactory design of bogie frames including the design procedures and assessment methods. According to 
EN 13749/2011, the aim of the acceptance program is to show that the behavior of the bogie frame will give 
satisfactory service without the occurrence of defects such as catastrophic rupture, permanent deformations 
and fatigue cracks. 

The acceptance program shall demonstrate that there is no adverse influence on the associated bogie 
components or subassemblies. 

The procedure for acceptance of the mechanical strength shall be established on the basis of: 
calculations; static tests; fatigue tests; on-track tests. 

 For a new design of bogie frame destined for a new type of application, all four-validation stages shall 
be used. A reduced programmer could be accepted. 

Manufacturers of railway material must line up to the normative requirements, so that at the present the 
realization of a railway bogie involves: 
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− Computer aided design, using dedicated programs when are established the bogie frame physical 
model, geometric and execution details;  

− Structural analysis, using dedicated programs when it is validated physical model in terms of 
structural strength and are highlighted the high mechanical stressed areas, that need to be carefully 
monitored during the tests; 

− Static and fatigue tests, with priority monitoring of the mechanical stress in areas indicated by 
structural analysis; 

− Validate structural analysis by calibrating numerical model with experimental data; 
− Include the numerical model of the bogie into the general numerical model of the railway vehicle; 
− Validate the railway vehicle numerical model for the traffic (including the crashworthiness 

requirements). 
The EN 13749/2011 normative highlights, but don’t imposes, taking into account the effects of 

flexibility on the bogie frame dynamics. It is left to the manufacturer to consider the dynamics of bogie 
frame and their influence on the ride quality of railway vehicle as a whole [3, 4].  

Given that a significant percentage of the weight of railway vehicle is concentrated in the bogie 
structure and its associated devices, a detailed bogie dynamic structural analysis is needed to assess the 
railway vehicle to crash, according to European standard EN 15227/2010 [1].  

In terms of structural dynamics, the bogie frame can be characterized by a set of modal parameters: 
modal frequency, modal damping and mode shape. This set of modal parameters completely characterizes 
the dynamic properties of a structure and also are refereed as a modal model of the structure. When a 
structure is subjected to extern vibration state, from the frequency spectrum, the structure absorbs energy 
mainly of their eigenfrequency and in the structure vibration state will be found mainly vibrations 
corresponding to eigenmodes [5, 7].  

The railway vehicle carbody receives vibrations and mechanical shocks from four major sources: 
engines, bogie, irregularities in the track, and train slack movement. Slight imbalances in reciprocating 
engines, rotating drive shafts, motors, and generators create vibrations which are transferred to the carbody. 
Bogie gears can create vibrations, particularly during dynamic braking. Track which is not perfectly level 
vertically and laterally creates vehicle body accelerations that results in vibration. Engine loading and vehicle 
speed cause the vibrations to vary in intensity. Shunting and slack run-ins and run-outs are common sources 
of mechanical shock. A proper locomotive design can significant reduce the vibration level on the structure 
and can increase the dynamic performance and vehicle ride quality [1]. 

From the above it follows that comprehensive process of design and assessment of railway bogies 
involves the dynamic structural analysis using specialized software. A good theoretical model permits the 
numerical simulation of all the tests in real operating conditions of the equipment. If it uses only numerical 
analysis cannot determine the equipment real response under dynamic conditions even if the theoretical 
model is known as geometric data and the material characteristics are known approximately and introduce 
significant errors in the results of numerical simulation. A good numerical simulation requires calibration of 
the numerical model by experimental tests. The validation program is therefore a combination of the 
experimental tests and numerical simulations [4, 5]. 

The combined analysis consists in calibration of numerical model based on experimental data obtained 
by measurements of the variables which characterize the system evolution in known condition tests. The 
system is excited in well-defined conditions and by determining the evolution of the system response for the 
know excitation evolution law it will be identified a minimal set of parameters which are the intrinsic 
characteristics of equipment, independent of external conditions.  

Finite element analysis (FEA) is commonly used in the development of the most new machines, 
structures and products of all kinds. Once a finite element model was validated, it can be used for numerical 
simulations, calculating stresses and strains, and for investigating the effects of structural modifications on 
the vibration properties of a structure. Since both experimental modal analysis (EMA) and finite element 
analysis (FEA) yield a similar set of modes for a structure, modal parameters are used to compare 
experimental and analytical results and for calibration of FEA model by experimental EMA model [5]. 



50 Ion MANEA, Mihai Gabriel POPA, Gheorghe GHIŢĂ, Gabriel PRENTA 3 

The paper presents an application of combined analysis, experimental and numerical, on a bogie frame 
type CO-CO for asynchrony electric locomotive LEMA 5 100 kW, under production in SC Softronic 
Craiova – Romania. The numerical model, validated by experimental data, constitutes support for crash 
certification of LEMA 5100kW locomotive, according to EN 15227/2010 standard. 

2. FE ANALYSIS OF LEMA 5 100 kW BOGIE FRAME 

The main technical characteristics of LEMA 5100kW bogie: 
Axle formula CO – CO 

Maximum speed 
120 km/h (gearbox ratio 1:3,65) 
160 km/h (gearbox ratio 1:2,66) 
200 km/h (gearbox ratio 1:2,108) 

Distance between the 
extreme axles of a bogie 4350 mm 

Wheel diameter 1250 mm (new state) 
1210 mm (semi-used state) 

Bogie total weight with 
traction motor 28449 kg 

Axle load 
21t±2% (120 km/h – with ballast)
20t±2% (160 km/h and 200 km/h 
          – version – without ballast)

Bogie total weight 
without traction motor 19449 kg 

Bogie maximum length 8384 mm Bogie maximum width 3000 mm 

The finite element analysis of bogie frame was performed to evaluate the mechanical stresses 
distribution on the structure to the loads applied during the homologation tests, according to EN 13749/2011 
and the bogie frame response to a crash scenario, according to EN 15227/2010. 

In the first step it was applied a static structural analysis in view to determine the stresses and strains, 
on the bogie frame structure during the static and fatigue homologation tests, covering the service and 
exceptional loads. In the second step it was made a modal analysis to determine the vibration characteristics, 
natural frequencies and mode shapes of the bogie structure according to EN 15227/2010. 

 
Fig. 1 – Finite element model of the LEMA 5 100 kW bogie frame. 

The static and dynamic analysis was made with ANSYS using static structural module for statically 
analysis and modal module for dynamic analysis. Validation of analytical model for dynamic analysis was 
performed by comparison with experimental data obtained through experimental modal analysis. The bogie is 
modeled using shell and solid elements and the finite element model is shown in Fig. 1. 

The bogie frame is meshed to have 2253246 nodes and 1129051 elements (rectangular shell and 
hexagonal solid elements). The material used in the bogie frame is the non-alloy structural welded steel 
type S355J2G3-STD01W03 (EN10025:1990). The material properties in according with EN10025:part 2: 
2004, are [6]: 

 Tensile Yielding Strength 355 MPa  Poisson`s Ratio 0.3 
 Compressive Yield Strength 255 MPa  Bulk Modulus 170833MPa
 Tensile Ultimate Strength 522MPa  Shear Modulus 78846MPa 
 Young`s Modulus 205000MPa    
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Modal analysis was performed to determine the eigenmodes in the frequency range of 1 ÷ 100 Hz.  
The modal analysis was performed considered that the bogie frame structure is an undamped system, any 

nonlinearities in material behavior are ignored. Stiffness was specified using isotropic and orthotropic elastic 
material models (for example, Young's modulus and Poisson's ratio). Mass derive from material density. 

3. EMA ANALYSIS OF LEMA 5 100 kW BOGIE FRAME 

3.1. THEORETICAL BACKGROUND 

Any mechanical system can be modeled by a system consisting of n  concentrated mass points, km  
joints by elastic elements with kk  stiffness and damping elements with kc  damping coefficient. For this 
damped system with n  degrees of freedom, loaded by external excitation ( )tF , the motion equations are 
given by the following relation [7–10]: 

    [ ] ( ) [ ] ( ) [ ] ( ) ( )t t t t⋅ + ⋅ + ⋅ =M x C x K x F , (1)

[ ] [ ] [ ]KCM  , ,  – mass, damping and stiffness matrices; ( ) ( ) ( ), , t t tx x x  – acceleration, velocity and 
displacement vectors and ( )tF  –  force vector. 

The system response to the external excitation is presented as a sum of n  modal contributions due to 
each separated degree of freedom: 
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For a good approximation of the real system through the discrete system, it must have ∞→n bat this is 
not possible. In practical, the frequencies domain is limited to a reasonable width determined by the major 
resonances of the analyzed equipment and the frequency domain of the application goal. The contributions of 
inferior and superior modes are included in two correction factors known as “inferior modal admittance” 
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So, an eigenmode can be defined by a set of 24 +n  parameters: .S
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The global response of the system can be viewed as a sum of contributions of individual modes of 
vibration. The current approach in experimental modal identification involves using of numerical techniques to 
separate the contributions of individual modes in measurements such as frequency response functions. The 
concept involves estimating the individual single degree of freedom (SDOF) contributions to the multiple degree 
of freedom (MDOF) measurements. Equations (5) are nonlinear in terms of the unknown modal parameters.  

In this approach the system dynamic is described [9, 12, 13] in terms of complex – valued modal 
frequencies kλ , modal participation matrices [ ]L , mode shapes matrices [ ]ψ  and residue matrices [ ]kA . In these 
terms the equations (5) can be found in the following forms: 
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The combination of the modal participation vectors kL  and the modal vectors kψ  for a given mode 

k gives the residue matrices [ ]kA  with elements given by relation: k k k
ij i jA L ψ= ⋅ . 

Another important concept in modal parameter estimation originates in unique relationship between 
the time and frequency domains of the same system. Knowing that time impulse response function is inverse 
Fourier Transform of frequency response function, the frequency defined equations (5–7) can be transposed 
in the time domain by the following relation: 

            ( ) [ ] [ ]Ttt .λ⎡ ⎤ = ⋅ ⋅⎡ ⎤⎣ ⎦⎣ ⎦h ψ e L  (8)

Based on relations (5) ÷ (8), were implemented several algorithms to identify modal parameters based 
on data measured in either time or frequency domain. The actually available methods help us to calculate the 
system modal parameters (modal damping, frequency, mode shape, etc.,) as well as modal participation 
vectors and residue vectors. 

3.2. MODAL IDENTIFICATION METHODS 

The most common methods in worldwide for modal identification are [8–10]:  
• Polyreference Frequency (MDOF method): A low order method where the iterations (successive 

solutions) are based upon increasing spatial dimension. The more DOFs (FRFs) that has been measured the 
more iterations will be available for the Stability Diagram 

• Polyreference Time (MDOF method): A high order method, where the iterations are based upon 
increasing order of the underlying polynomial equation 

• Rational Fraction Polynomial-Z (Advanced MDOF method): A high order method, where the iterations 
are based upon increasing order of the underlying polynomial equation 

• Eigensystem Realisation (Advanced MDOF method): A low order method where the iterations are 
based upon increasing spatial dimension. The more DOFs (FRFs) that has been measured the more iterations 
will be available for the Stability Diagram 

• Least Squares Global Partial Fraction (SDOF method): Modes are identified from peaks or the valleys 
in the selected modal indicator function (or FRF) and modal parameters fitted over the specified number of 
frequency lines around each identified mode 
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• Quadrature (SDOF method): Extracts the imaginary part of the accelerance FRF’s at the selected 
frequencies. This corresponds to the traditional “Quadrature Picking” technique where the peak of the 
imaginary part is extracted 

• Alias-Free Polyreference (Advanced MDOF method): A frequency domain Laplace method that uses 
orthogonal polynomials and accounts for out-of-band poles. 

For bogie frame presented in this paper, after experimental measurements, the validation of the 
numerical model parameters was performed using Rational Fraction Polynomial-Z method 

4. EMA APPLICATION 

4.1. TEST PROCEDURE 

Modal identification tests were performed in SC Softronic Craiova, on the LEMA 5 100 kW bogie 
frame in the finite state, before the mounting stage. Bogie frame was placed in the normal operating position 
on elastic suspension consists of four helicoidally springs, each with elastic characteristic k = 519 N/mm.  

 
Fig. 2 – EM analysis of LEMA 5 100 kW bogie frame. 

Bogie frame geometry created under Ansys, for finite element analysis, was imported in Pulse Reflex 
[15] and decimated in order to achieve an acceptable geometry for testing and processing [14]. Structure 
excitation was made by impact method using an impact hammer of 25 kN. Impact was succesively applied in 
points 1 ÷ 10, according to Fig. 2, on vertical and horizontal – transverse directions. The acceleration response 
was measured in the same points and in the same directions. Tests were automatically conducted by LabShop, 
after each force impact visualizing the signals time evolution and frequency response functions.  

4.2. DATA PROCESSING 

Data processing was made under Pulse Reflex, Advanced Modal Analysis Package. In Fig. 3 is 
presented the Pulse Reflex-Advanced Modal Analysis Package screen [15]. 
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Fig. 3 – Stability diagram for EM analysis, the corresponding mode table, mode shape graphs 

(in figure is illustrated the first mode) and synthesis diagram. 

5. COMPARATIVE FE-EM ANALYSIS 

Table 1 presents the overall eigenfrequencyes obtained by both EM and FE analysis. Table shows the 
mode direction and frequency error between the damped eigenfrequency, determined by EMA and 
undamped eigenfrequency evaluated by FEA. Except the 3rd eigenmode at frequency of 49.09 Hz by EMA 
and 44.14 Hz determined by FEA, it can be considered that frequency error is fewer than 5%, which is a very 
good result for task proposal.  

Figures 4 ÷ 6 comparative shows the bogie frame in the vibration eigenmodes determined by both 
methods, experimentally, by EMA, in the left side and numerically, by FEA, in the right side. From the 
examples presented in figures it can be observed a very good correspondence between the analytical and 
experimental determined vibration eigenmodes.  

Table 1  

Comparative eigenfrequencyes of the LEMA 5100 kW bogie frame obtained both from EMA and (FEA) 

Mode Mode 
Direction 

EMA FEA Error 
[%] Damped 

Frequency (Hz) 
Damping 

(%) Complexity Undamped 
Frequency (Hz) 

1 OZ 30.20 0.25 0.010 29.30 2.98 
2 OZ 36.01 0.28 0.120 37.89 -5.22 
3 OY 49.09 0.18 0.003 44.14 10.08 
4 OY 61.86 0.14 0.001 61.04 1.33 
5 OZ 65.66 0.13 0.003 66.43 -1.17 
8 OZ – OY 81.04 0.24 0.256 83.41 -2.92 
10 OY 89.92 0.11 0.001 88.86 1.18 

 
Fig. 4 – The 1st eigenmode, OZ direction, Fq = 30.20Hz by EMA, Fq = 29.30Hz by FEA. 
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Fig. 5 – The 4th eigenmode, OY direction, Fq = 61.86Hz by EMA, Fq = 61.04Hz by FEA. 

 
Fig. 6 – The 10th eigenmode, OY direction, Fq = 89.92Hz by EMA, Fq = 88.86Hz by FEA. 

6. CONCLUSIONS 

The goal of the work presented in this paper is focused on develop a methodology for calibration and 
validation of a FEM for complex structures using EMA. For the EM analysis the tests were automatically 
conducted by LabShop and the measurement data validation and analysis was performed automatically by the 
Pulse Reflex platform. 

This methodology has resulted in a significant reduction in person number employed in performing the 
tests and in the time required for measured data processing. 

In this paper the experimental modal analysis (EMA) was used to calibrate and validate the railway 
bogie frame FE model (and bogie frame design). 

Analyzing data from the Table 1, modal shapes presented in Figs. 4 ÷ 6 and general data obtained from 
the two EM and FE analysis (data that for reasons of space could not be presented in article) it can be 
considered that overall error in eigenfrequencyes determination by the two EMA and FEA methods is fewer 
than 5%. This is a good result for the task proposal of analytical FE model calibration by experimental 
determined data. Modal shape in eigenmodes is the same in the two type of analysis.  

Given the foregoing it can be concluded that the analytical model, developed under ANSYS, is correct and 
can be used in both applications, to evaluate the mechanical stresses distribution on the structure to loads applied 
during the homologation tests, according to EN 13749/2011 and to evaluate the bogie crashworthiness to a crash 
scenario, according to EN 15227/2010. 

The calibrate bogie frame FE model will be used for a locomotive FE model. 
With the FE model of the locomotive the virtual tests will be performed both to study the behavior and to 

evaluate the locomotive crashworthiness to a different crash scenarios. 
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