
      THE PUBLISHING HOUSE  PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, 
      OF THE ROMANIAN ACADEMY  Volume 19, Number 1 /2018, pp. 11–17 

A NONSTANDARD APPROACH OF HELLY’ SELECTION PRINCIPLE 
IN COMPLETE METRIC SPACES 

Grigore CIUREA  

Bucharest University of Economic Studies, Department of Applied Mathematics 
Piaţa Romană 6, Bucharest 010374, Romania 
E-mail: grigore.ciurea@gmail.com 

Abstract. The classical Helly’ selection theorem asserts that any infinite set of real functions of one 
variable {f(x): x∈[a, b]}, satisfying the condition |f(a)| + Var (f : [a, b]) ≤ C , contains a pointwise 
convergent subsequence to a function of bounded variation on [a, b]. We generalize this principle to 
functions with values in complete metric spaces and obtain a similar result to Arzela-Ascoli theorem. 
Then, we introduce an equivalence relation on the space of bounded functions and equip the quotient 
space with a metric, which turns it out in a complete metric space. We establish a sufficient condition 
such that a subset of this complete metric space is compact. To prove these results, we use methods 
and techniques of nonstandard analysis. 
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1. INTRODUCTION 

It is well known that the classical Helly’s theorem [16] can fail if we drop the uniformly bounded 
variation condition. The role played by this condition in the proof is similar to the equicontinuous role in 
Arzela-Ascoli theorem. The proof is based on Jordan’s decomposition theorem and the fact that [10] any 
bounded sequence of monotone real functions contains a pointwise convergent subsequence. 

Fuchino and Plewik [6] extended this theorem in terms of monotone functions on linearly ordered sets. 
Using the splitting number, they obtain a positive answer to a problem of S. Saks [19]: for an arbitrary 
sequence N∈nnf )(  of real functions, do there exist an infinite N⊆I  and an uncountable R⊂Y  such that, 

for each Yx∈ , the sequence of real numbers Inn xf ∈))((  has a finite or infinite limit? 
Generally, under the Continuum Hypothesis, a negative answer is given to this question in [19]. If the 

splitting number is greater than the first uncountable cardinal, a positive answer is given in [6]. 
For functions of several variables, there are many approaches to the notion of variation. Several 

authors, including Adams [1], Hahn [8], Hobson [11], Hardy [9], Vitushkin [21], suggested different 
definitions to the concept of variation for functions of several variables. Namely, they characterized these 
functions by a series of variations of different dimensions. Even if such an approach is a fruitful one in some 
constructions (see [13] or [21]), there are significant properties in the one dimensional case that can not be 
transferred automatically to the multidimensional one. In particular, this is the true for the well-known Helly’ 
selection principle. However, there are some statements essentially close to Helly’s principle (see [2] or [3]), 
but these statements refer to “essential convergence” instead of the pointwise convergence. 

To remove this lack, Leonov [14] has introduced a notion of the total variation for functions of several 
variables, which allows to state a multidimensional analog for this principle and some important 
applications (see [15]). 

In the present paper, we give a generalized version for functions of bounded variation from a closed 
interval I  of R  to a complete metric space )( ρ,X . To do that, we start with a list of definitions and 
elementary facts needed for further developments. We also consider the variation for functions from an 
arbitrary subset A  of R  to a metric space X , which is useful in our construction. 
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Section 2 is devoted to the study of Helly’s general theorem. Our core result which enable us to extend 
this theorem will be proved by nonstandard methods. Thereafter, we can easily find an extended version of 
Helly’ selection theorem with the same conclusion, provided by a similar assumption. It can be seen that this 
result is fairly close to Arzela-Ascoli’s theorem. 

The last section focuses on the applications of this principle. We introduce an equivalence relation with 
respect to a filter F , on the space of all bounded −X valued functions  defined on I , denoted by 

)( X,Il∞ . The quotient space FX,Il )(∞  will be equipped with a complete metric. The result of this section, 
which is a consequence of Helly’s general theorem, yields information on compactness in FX,Il )(∞ . 

In a forthcoming paper, using results from [4], we intend to give other applications of this principle in 
measure theory. 

2. PRELIMINARIES AND NOTATIONS 

Let N⊆J  be an infinite subset. For a sequence Jnnx ∈)(  its convergence to a point x  is denoted by 

xxnJn
=

∈
lim . A sequence Jnnf ∈)(  of functions from a closed interval I  of R  to a metric space X , 

converges pointwise to XIf →: , if )()(lim xfxfnJn
=

∈
 holds for every Ix∈ . We say that Jnnf ∈)(  is 

pointwise convergent if there is some function f  to which the sequence converges pointwise. If Jnnx ∈)(  is a 

sequence of real numbers, we denote by n
Jnkn

Jn
xx

k∈∈
= supinfsuplim , respectively nJnk

n
Jn

xx
k∈∈

= infsupinflim  , 

where }:{ knJnJ k ≥∈= . 
We shall assume throughout this paper that )( ρ,X  is a complete metric space, I a compact interval of 

R  and Δ  a dense countable subset in I . 
Now, we present a more general formalism for the concept of the total variation of a function. 
Definition 1. Let A  be an arbitrary subset of I . By a partition of A , denoted by }...{ 0 nxx <<=π , 

is meant a finite ordered subset of A . For XAf →: , the variation of f  over π  is 

( )∑
−

=
+=

1

0
1 )(),():var(

n

i
ii xfxff ρπ . 

The total  variation of f on A  is the number 

): var(sup):Var( πfAf = , 

where the supremum  is taken over all possible partitions, π , of A . 
Functions that satisfy 

∞<):Var( Af  

are called of bounded variation on A  and the class of such functions  is denoted by ),BV( XA . 
An infinite family of functions of ),BV( XI  has uniformly bounded variation, if there exists a 

positive constant M such that MIf ≤):Var(  for all functions f from this family. The below properties of 
bounded variation are straightforward or well known, so we omit their proofs [16]. 

LEMMA 1. A function f of bounded variation on the set ∆ has, at each interior point x of the 
interval I , a  right-hand limit f ( x  +  0 )  and a left-hand limit f ( x  –  0 ) . Moreover, f ( a  +  0 )  and 
f ( b  –  0 )  exist, where a  and b  are the ends of I . 

LEMMA 2. If )(lim)( xfxf nJn∈
=  in A , then ):Var(inflim):Var( AfAf n

Jn∈
≤ . 
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LEMMA 3. Let (fn)n∊N be a sequence of functions which has uniformly bounded variation on I, and for 
all x∊∆, the set Fx = { fn(x) : n ∊ N} is compact. Then there exists an infinite subset I ⊆ N such that the 
sequence (fn)n∊I converges pointwise in ∆  to a function from BV(∆, X). 

Further, we assume that the reader is familiar with the elements of nonstandard analysis as 
treated, for example, in [5, 12 or 20]. For an axiomatic viewpoint see [17]. We take a structure 
including X  and the set R  of the reals, and one considers N-saturated models for this structure 
[12]. 

Let X*  be the nonstandard extension of X  in an N-saturated model. If T  is the system of open 
sets, for any Xx∈  we call 

∩ }:{)( T∈∈= T,TxTxm *  

the monad of x . If Xy *∈  and )(xmy∈  for some Xx∈ , we write xy =D  and say that x  is the 
standard part of y . As X  is a metric space, the standard part D  is uniquely determined, if it exists. 
Any element having a standard part is called nearstandard. 

By ∞N  we denote the set NN \*  , where N*  is the extension of N  in our model. The next two 
results can be found in [20]. 

LEMMA 4. Let XA⊆ . A point Xx∈  belongs to the closure of A  if and only if there is some 
Ay *∈  with )(xmy∈ . 

LEMMA 5. For any bounded real sequence N∈nnx )(   we have  

}:sup{suplim ∞
∈

∈= N
N

hxx hn
n

D . 

3. GENERALIZED HELLY’S THEOREM 

At this point we can formulate and prove the Helly’ selection principle for functions with values in 
complete metric spaces. It is interesting to compare the following proof with the classical ones [16], [18]. 
The next lemma is the core of the generalization of Helly’s theorem. 

LEMMA 6. Let N∈nnf )(  be a sequence of functions which has uniformly bounded variation on I  and 
assume that for all Δ∈x , the set }:)({ N∈= nxfF nx  is compact. Then, there exists a function f  from I  
to X  with the following property: for all positive numbers ε  there exists an infinite subset N⊆εJ  and an 
at most finite subset IH ⊆ε  such that εH\Ix∈  and εJn∈  implies ( ) ερ <)(),( xfxfn . 

Proof. Let M  be a positive constant such that MIfn ≤):Var(  for all N∈n . By applying Lemma 3 
we may assume that N∈nnf )(  converges pointwise in Δ  to a function Δf  from )BV(Δ X, . We first notice 

from Lemma 4 that for each x  in I  we can choose y  in Δ*  with )(xmy∈ . Based on Lemma 1 applied to 
the function Δf , there exists )(

Δ
yf D  in X , and denote this point by )(xf . Then the formula  

)()(
Δ

yfxf D=  (1)

defines a map from I  to X . We check at once that )()( Δ xfxf =  for every x  in Δ . Given a positive real 
number ε  and p  in ∞N  let  

( )
⎭
⎬
⎫

⎩
⎨
⎧ ≥∈=

2
)(),(: ερ xfxfIxA pp . 
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If pA  is empty for all p  in ∞N , by Lemma 5, we have 

( ) ερ <
∈

)(),(suplim xfxfn
n N

 

for all x  in I , and it is easily seen that this is our assertion. Otherwise, there would be some p  in ∞N  such 
that pA  is nonempty. Since our model is -N saturated, it is sufficient to show that pA  is finite. 

Suppose, contrary to our claim, that pA  is infinite and let N∈m  such that 
ε
Mm 4

> . Since pA  is 

infinite, it follows that there are mx,...,x1  in pA  such that 

( )
2

)(),( ερ ≥kkp xfxf  (2)

for m,...,k 1= . Using the fact that ∅=∩ΔpA  we deduce that Δ∉kx  for m,...,k 1= . Since Δ  is a 

dense subset in I , we have that there exists ky  in *Δ  such that )( kk xmy ∈  and )()(
Δ

kk yfxf D=  for 

m,...,k 1= . The definition of f  introduced in formula (1) implies that for any kk xy >  there is Δ∈
D

kx  

such that kk xx >
D

 and 

8
)(),( ερ <⎟
⎠
⎞

⎜
⎝
⎛ D

kk xfxf . (3)

The same conclusion can be drawn for kk xy < . Without loss of generality, we may assume that the intervals 

with the ends 
D

kk xx ,  are disjoint. Moreover, the sequence ( ) N∈nn xf )(  converges to )(Δ xf  provided that 
Δ∈x , which gives 

8
)(),( ερ <⎟
⎠
⎞

⎜
⎝
⎛ DD

kkp xfxf  (4)

for m,...,k 1= . As a consequence of the triangle inequality, we have from (2), (3) and (4) the following 
estimate: 

4
)(),( ερ >⎟
⎠
⎞

⎜
⎝
⎛ D

kpkp xfxf . (5)

It then follows from (5) that 

Mmxfxf
m

k
kpkp >>⎟
⎠
⎞

⎜
⎝
⎛∑

= 4
)(),(

1

ερ
D

 (6)

and we have MIf p >):Var( . This contradicts the fact that MIf p ≤):Var( , which is obtained by the 

transfer principle, and pA  is finite as required. 
Using the previous lemma, we establish the following result which in our view is the Helly’ selection 
theorem for functions with values in complete metric spaces. 

THEOREM 1. Let X  be a metric space as above. Let F  be an infinite family of −X valued functions 
defined on I , which satisfies the following conditions: 

i) F  has uniformly bounded variation; 
ii) The closure of the set }:)({ FfxfFx ∈=  is compact in X  for each Ix∈ .  
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Then every sequence Ff nn ⊆∈N)(  contains a pointwise convergent subsequence on I  to a function of 
bounded variation. 

Proof. By Lemma 6, we are able to obtain an infinite family N∈kkJ )(  of subsets of N , a function f  

from I  to X , and at most infinite subsets N∈kkH )(  of I  with the following property: 

( )
k

xfxfn
Jn k

1)(),(suplim <
∈

ρ  on kH\I . 

Moreover, we may assume that ...J...J k ⊇⊇⊇1 . Choosing kk Jn ∈  such that 1+< kk nn  and setting  

}:{ N∈= knJ k , the sequence Jppf ∈)(  satisfies 

( )
k

xfxf p
Jp

1)(),(suplim <
∈

ρ  on kH\I , 

where ∪
∞

=

=
1k

kHH .Therefore, the sequence Jppf ∈)(  is uniformly convergent on H\I  to f .   

By Lemma 3, there exists an infinite subset JL ⊆  such that the sequence Lppf ∈)(  converges 

pointwise on H  to f . But Lppf ∈)( , as a subsequence of  Jppf ∈)( , is pointwise convergent on H\I  to f , 

so it is convergent to f  on the whole I . Lemma 2 leads now to the fact that f  is a function of bounded 
variation, which was our claim. 

4. COMPACTNESS IN FX,Il )(∞  

In this section we introduce the set-theoretic framework, some definitions and elementary facts which 
we use to define a compacity criteria in metric spaces of functions. We start with the space )( X,Il∞  of all 
functions which satisfy 

( ) ( ) ∞<=
∈

)(),(sup)( yfxfIf
Xy,x
ρδ . 

Clearly, )( X,Il∞  endowed with the uniform metric 

( ) ( ))(),(sup; xgxfgfd
Xx
ρ

∈
=  

is a complete metric space. 
Next, let F  be the family of all IA ⊆  such that CA  (the complement of A  in I ) is at most 

countable. Since F  is a filter we can introduce the following notion (see also [7]). 

Definition 2. The functions g,f  of )( X,Il∞  are called equivalent with respect to the filter F if 

FxgxfIx ∈=∈ )}()(:{ . 

Thus, two functions g,f  are equivalent if they coincide except on a countable set of points. It is easily 
seen that this induces an equivalence relation on )( X,Il∞ . 

Definition 3. The set of all equivalence classes of )( X,Il∞  with respect to the filter F  is denoted by 

FX,Il )(∞ . For an element f  in )( X,Il∞ , the corresponding equivalence class in the quotient space 

FX,Il )(∞  is denoted by f
�

. 
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Having introduced the quotient space FX,Il )(∞ , we shall now pass to another important notion: the 
distance from our classes. In order to do this, we note that the uniform metric can be weakened, by means of 
the metric ρ  and the filter F , in the following notion. 

Definition 4. The following formula defines a pseudometric on )( X,Il∞ : 

( ) ( ))(),(supinf, xgxfgf
AxFA
ρμ

∈∈
= . 

Now, we can equip the space FX,Il )(∞  with a distance. 

Definition 5. If g,f �
�

 are two elements of FX,Il )(∞ , we define the metric 

( ) ( )gfg,fd ,μ=�
�

. 

Remark 1. This definition verifies the metric axioms and is independent of the special choice of 
representatives. Furthermore, it can be shown that FX,Il )(∞  endowed with this metric is complete. 
Moreover, we have a canonical isometric embedding of )( X,Il∞  into its quotient space FX,Il )(∞ , defined 

by ff
�

=)(θ . 
The best way to understand the significance of these definitions is to see how Lemma 6 works to prove 

the main theorem. It should now be clear how to obtain the filter F  and the complete metric Fd . This 
metric induces a topology O  on FX,Il )(∞  in a canonical way. Our main interest in the reminder of this 
section is devoted to finding out the sufficient conditions under which a subset K  of FX,Il )(∞  is 
−O compact. Helly’s general theorem enables us to do that. 

THEOREM 2. Let FX,Il )(∞  be endowed with the O-topology. If a subset K  of FX,Il )(∞  has the 
following properties: 

i) the closure of the set )}(:)({ 1 Kfxf −∈θ  is compact in X , for each Ix∈ ; 

ii) the set )(1 K−θ  has uniformly bounded variation on I ,then K  is O-compact. 

Proof. Let N∈nnf )(
�

 be a sequence of elements from K . It follows from the proof of Theorem 1 applied 

to the sequence N∈nnf )(  that there exists an infinite subset J  of N  and a function f  from I  to X  such 

that ( ) 0,lim =
∈

ffnJn
μ . Again by Theorem 1 and Lemma 2 we give that f  is of bounded variation and 

Kf ∈
�

. Now it is clear that ( ) 0,lim =
∈

ffd nJn

��
. Thus we have shown that K  is −O compact and the proof is 

complete. 

REFERENCES 

1. ADAMS, C., CLARKSON, J., On definitions of bounded variation for functions of two variables, Trans. Amer. Math., 35, 4, 
pp. 824–854, 1993. 

2. BILLINGSLEY, P., Convergence of probability measures, John Wiley & Sons, Inc., New York, London, Sydney, 1968. 
3. BOCHNER, S., Lectures on Fourier integrals. With an author’s supplement on monotonic functions, Stieltjes integrals, and 

harmonic analysis, Ann. of Math., 42, 1959. 
4. CIUREA, G., Nonstandard methods in measure theory, Abstr. Appl. Anal., Art. ID 851080, 2014. 
5. DAVIS, M., Applied nonstandard analysis, Pure and Applied Mathematics, John Wiley & Sons, New York, London, Sydney, 

1977. 
6. FUCHINO, S., PLEWIK, S., On a theorem of E. Helly, Proc. Amer. Math. Soc., 127, 2, pp. 491–497, 1999. 



7 A nonstandard approach of Helly’selection principle in complete metric spaces  
 

17

7. GOLDBLATT, R., Lectures on the hyperreals. An introduction to nonstandard analysis, Graduate Texts in Mathematics, 188, 
Springer-Verlag, New York, 1998. 

8. HAHN, H., Theorie der reellen Functionen. I, Springer, Berlin, 1921. 
9. HARDY, G.H., On double Fourier series, and especially those which represent the double zeta-functions with real and 

incommensurable parameters, Quart. J. Math. (Oxford), 37, pp. 53–79, 1905. 
10. HELLY, E., Über lineare Funktionalop erationen, Sitzungsberichte der Naturwiss, Klasse Kais. Akad. Wiss. (Wien), 121, 

pp. 265–295, 1921. 
11. HOBSON, E.W., The theory of functions of a real variable and the theory of Fourier’s series. Vol. I. Dover Publications, Inc., 

New York, 1958. 
12. HURD, A.E., LOEB, P.A., An introduction to nonstandard real analysis, Pure and Applied Mathematics, 118 (Academic Press, 

Inc., Orlando, FL), 1985. 
13. IVANOV, L.D., Variations of sets and functions (in Russian), Nauka, Moscow, 1975. 
14. LEONOV, A.S., Remarks on the total variation of functions of several variables and on a multidimensional analogue of Helly’s 

choice principle, Math. Notes, 63, 1–2, pp. 61–71, 1998. 
15. LEONOV, A.S., Tikhonov, A.N., Yagola, A.G., Nonlinear  ill-posed problems (in Russian), Nauka, Moscow, 1995. 
16. NATANSON, I.P., Theory of functions of a real variable, Nauka, Moscow, 1974. 
17. NELSON, E., Internal set theory: a new approach to nonstandard analysis, Bull. Amer. Math. Soc., 83, 6, pp. 1165–1198, 1977. 
18. SCHRAMM, M., Functions of-bounded variation and Riemann-Stieltjes integration, Trans. Amer. Math. Soc., 287, 1, pp. 49–63, 

1985. 
19. SIERPI´NSKI, W., Remarque sur les suites infinies de fonctions, Fund. Math., XVIII, pp. 110–113, 1932. 
20. VÄTH, M., Nonstandard analysis, Birkhäuser Verlag, Basel, 2007. 
21. VITUSHKIN, A.G., On multidimensional variations (in Russian), Moscow, 1955. 

 

Received August 21, 2017 


