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Abstract. The optimal spacing between diamond-shaped tubes cooled by free convection is studied 
numerically. A row of isothermal diamond-shaped tubes is installed in a fixed volume and the spacing 
between them is selected according to the constructal theory (Bejan's theory). In this theory, the 
spacing between the tubes is chosen such that the heat transfer density is maximized. A finite volume 
method is employed to solve the governing equations; SIMPLE algorithm with collocated grid is 
utilized for coupling between velocity and pressure. The range of Rayleigh number is (103 ≤ Ra ≤ 105), the 
range of the axis ratio of the tubes is (0 ≤ e ≤ 0.5), and the working fluid is air (Pr = 0.71). The results 
show that the optimal spacing decreases as Rayleigh number increases for all axis ratios, and the 
maximum density of heat transfer increases as the Raleigh number increases for all axis ratios and the 
highest value occurs at axis ratio (e = 0, flat plate) while the lowest value occurs at (e =0.5) (rhombic 
tube). The results also show that the optimal spacing is unchanged with the axis ratio at constant 
Rayleigh number. 
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1. INTRODUCTION  

According to the constructal theory, the optimal spacing between a heat generating devices (plates, fins, 
cylinders, etc.) is defined as the spacing that provides easier access of heat flow from these devices to the 
coolant streams. The quest of easier heat flow motivates the designers to find the optimal spacing between 
parallel plates in forced, free, and mixed convection [1–3], the optimal spacing between circular cylinders in 
forced and free convection [4–5], and the optimal spacing between circular rotating cylinders in forced and 
free convection [6–7]. Free convection from square cylinders can be found in many devices, heat 
exchangers, and heat sinks with square pin fins [8]. Free convection from a single square cylinder was 
studied previously, for example [9–11]. The optimal spacing between horizontal square cylinders (rotated 
with 45o, diamond-shaped) is not addressed yet. In this paper, evolutionary design is employed to find the 
optimal spacing between square cylinders installed in a fixed volume and cooled by free convection.  

2. MATHEMATICAL MODEL 

Consider a row of diamond-shaped tubes installed in a fixed volume per unit depth (h L) as shown in 
Fig. 1. The major axis of the diamond tube is (h/2) and the minor axis of the tube is (b). The axis ratio is 
defined as (e = b/h). The tubes are maintained at constant wall (hot) temperature of (Tw), the ambient fluid is 
maintained at constant temperature of (T∞). The objective is to find the number of tubes or the tube – to – 
tube spacing (s) for different axis ratio (e) in order to maximize the heat transfer density. In this geometry 
there are two degrees of freedom, the first is the spacing (s) and the second is the axis ratio (e). The 
dimensionless governing equations for steady, laminar, and incompressible flow with Boussinesq 
approximation for the density in the buoyancy term can be written as [12] 
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The non-dimensionalised variables and groups used are 
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Since the flow is symmetrical between the tubes, only half of the flow channel between two tubes can 

be used to find the spacing in the numerical solution. Half of the flow channel is shown in Fig. 2. The total 
dimensionless height of the channel is (Hu + H + Hd), the dimensionless upstream height (Hu) and the 
dimensionless downstream (Hd) are added to avoid the applying of incorrect velocity and temperature at the 
inlet and outlet of the channel. The flow and thermal dimensionless boundary conditions on the channel are 
shown in Fig. 2. 

 
 

Fig. 1 – Physical geometry. Fig. 2 – Dimensionless boundary conditions. 

The right side of the downstream boundary condition is applied to permit fluid to enter the domain 
horizontally in order to avoid the vertical acceleration, which generated by chimney effects. 

The spacing between the tubes is to be chosen such that the heat transfer density (objective function) is 
maximized. The heat transfer density is the heat transfer rate per unit volume and given as  

  
′ ′ ′ q = ′ q 

(s +2b)h
, (6)

where q′ is the total heat transfer rate from one tube per unit width. The heat transfer density can be written 
in non-dimensional form as 
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3. NUMERICAL PROCEDURE, GRID INDEPENDENCE TEST, AND VALIDATION 

A FORTRAN program is written to solve the algebraic equations, which obtained from the finite 
volume discretization. The general transport equation is firstly transformed to curvilinear coordinates and the 
convective term is discretized by hybrid scheme while the diffusion term is discretized by second order 
central scheme. For coupling between the pressure and velocity SIMPLE algorithm is employed. To prevent 
the oscillation in the pressure field the interpolation method of Rhie and Chow [13] is used. The convergence 
criterion of iteration is that the total imbalance in the source term in the pressure correction equation 
becomes less than 10-4. Further computational details can be found in Rhie and Chow [13]. The grid 
independence test is performed for three grids for configuration at which (Ra = 104, e = 0.1, and S = 0.3). 
The grid independence test showed that the increasing of the grid size reduces the error percentage in the 
heat transfer density, and the minimum error is at (50×50) control volumes in the region ((e+S/2)×H). So this 
grid size is used and adopted in all results, gird independence test is illustrated in table (1). The upstream 
extension of (Hu = 0.5) and downstream extension of (Hd = 2) are used in the computational domain because 
it is observed that after double these extensions the variation in transfer density is less than 2.5%. The 
numerical results are validated by comparing the result of the optimal spacing with the result from the 
intersection of asymptotes of Bejan [14] for natural convection between vertical isothermal plates (e = 0) and 
(Ra =105). For this case, the optimal spacing in this study is (Sopt = 0.13) and the optimal spacing found in 
Bejan [14] was (Sopt = 0.129). 

 
Table 1 

 

 Grid Independence Test for the Case (Ra = 104, e =0.1, and S =0.3) 
 

Number of control volumes in the region ((e +S/2)xH) Q Error% 
30×30 30.629 – 
40×40 31.244 2 
50×50 31.713 1.5 

 

4. RESULTS AND DISSCUSION 

The numerical results are presented in this section for, temperature contours, optimal spacing, and 
density of heat transfer for different values of tube axis ratio (0 ≤ e ≤ 0.5). The range of Rayleigh number is 
(103 ≤ Ra ≤ 105) and the working fluid is air with (Pr = 0.71). Figure 3 shows the temperature contour as a 
function of the dimensionless spacing between the tubes (S) for (Ra = 103) and axis ratio (e = 0.1). For small 
spacing (S ≤ 0.3) the downstream region is occupied by hot fluid at temperature same as the wall temperature 
(red region), this is due to that the small spacing between the tubes prevents the cold air to flow downstream 
and the air there still hot (overworked fluid). As the spacing between the tubes increases (S ≥ 0.3) the 
downstream temperature begins to decrease and become less than the wall temperature and this is clear from 
the appearance of the (orange, yellow and green) regions. At some spacing the thermal boundary layers from 
both sides are merged at the downstream region (the channel is fitted with the convective flow body), at this 
spacing the heat transfer density becomes maximum, and the spacing represents the optimal spacing, in this 
case (Sopt = 0.35). Further increasing in spacing between the tubes leads to a cold fluid region to appear in the 
downstream as seen in the blue region near the centerline (underworked fluid) for (S ≥ 1), this large spacing 
permits the ambient (cold) fluid to flow downstream and leads to reduce the thermal conductance between 
the tubes and the surrounding fluid. Figure 4 illustrates the temperature contour for (Ra = 105) and (e = 0.1). 
The behavior of the temperature contour is similar to that of (Ra = 103) except that the spacing between the 
tubes here becomes smaller, note that at (Ra = 103) the hot (red) downstream region can be observed for (S ≤ 0.3) 
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while this region can be observed for (S ≤ 0.05) at Ra = 105, the spacing decreases because the thermal 
boundary layer thickness decreases as Rayleigh number increases. 

  
Fig. 3 – Temperature contour with various spacing between the 

tube for (Ra = 103, Pr = 0.7, and axis ratio e = 0.1). 
Fig. 4 – Temperature contour with various spacing between 

the tube for (Ra = 105, Pr = 0.7, and axis ratio e = 0.1). 

As the axis ratio of the tube increases to (e = 0.5) (rhombic tube) for (Ra = 103), the thermal boundary 
layer on the upper surface becomes thicker than the thermal boundary layer on the upper surface of the tube 
of (e = 0.1) as shown in Fig. 5 for (S ≥ 0.3). This thick thermal boundary layer reduces the heat transfer rate 
from the upper surface. For (Ra = 105) and as the axis ratio of the tube increases to (e = 0.5), a plume-like 
appears in temperature contours on the upper surface of the tube as shown in Fig. 6 for (S ≤ 0.06). This 
plume-like region reduces the temperature gradient (i.e., heat transfer rate) on the upper surface of the tube. 
Figure 7 shows the dimensionless heat transfer density as a function of the spacing at different Rayleigh numbers 
for (e = 0.1). This figure shows that there is an optimal spacing for each Rayleigh number. At this spacing the 
heat transfer density reaches its maximum value (tops of the curves). It is interesting to note that the optimal 
spacing decreases as Rayleigh number increases due to the decreasing of thermal boundary layer thickness. 

  
Fig. 5 – Temperature contour with various spacing 

between the tube for Ra = 103, Pr = 0.7, and axis ratio e = 0.5. 
Fig. 6 – Temperature contour with various spacing 

between the tube for (Ra = 105, Pr = 0.7, and axis ratio e = 0.5.

 
Fig. 7 – Heat transfer density with spacing at different Rayleigh numbers for axis ratio (e = 0.1). 
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Figure 8 shows the optimal spacing (Sopt) versus Rayleigh number for various axis ratios (e = 0, 0.1, 0.25, 
and 0.5), it is noted that the optimal spacing decreases as Rayleigh number increases for all values of (e). At 
constant Rayleigh number, the optimal spacing is almost unchanged for the range axis ratio (0.1 ≤ e ≤ 0.5). Since 
the optimal spacing is nearly unchanged with the axis ratio in the range (0.1 ≤ e ≤ 0.5), the number of tubes that 
installed in the same volume must be reduced as the axis ratio increases. Figure (9) shows the maximum heat 
transfer density versus Rayleigh number at various axis ratio (e), it can be noted that the maximum heat transfer 
density increases as Rayleigh number increases for all values of (e), the increasing of Rayleigh number leads to 
increase the buoyancy force and thus increase the maximum heat transfer density. It also can be seen that at each 
Rayleigh number the highest value of the maximum heat transfer density occurs at (e = 0, flat plate) and the 
lowest value occurs at (e = 0.5, rhombic tube). This can be explained as the geometry changes from flat plate to 
diamond-shaped tube, a plume-like is formed on the upper surface of the tube and the temperature gradient on the 
upper surface deceases and thus the maximum heat transfer density decreases. 

 
Fig. 8 – Maximum heat transfer density 

with Rayleigh number for different axis ratios. 
Fig. 9 – Maximum heat transfer density 

with Rayleigh number for different axis ratios. 

5. CONCLUSIONS 

The conclusions for optimal spacing between diamond-shaped tubes cooled by free convection can be 
summarized as: 

1 – The optimal spacing decreases as Rayleigh number increases for all axis ratios. 
2 – The maximum heat transfer increases as Rayleigh number increases for all axis ratios. 
3 – The highest value of the maximum heat transfer density occurs at axis ratio (e = 0, flat plate) and 

lowest value occurs at axis ratio (e = 0.5, rhombic tube) for all Rayleigh numbers. 
4 – The optimal spacing remains almost constant in the range (0.1 ≤ e ≤ 0.5) at constant Rayleigh 

number.  
5 – The number of tubes installed in the same volume must be reduced as the axis ratio increases.  
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