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Abstract. An open problem in reliability is comparison of expected system lifetimes. In this paper, 
using transmuted-G distributions (Nofaly et al. [5]), we can represent large k-out-of-m and series-
parallel/parallel-series systems. We study the asymptotic behavior of the order statistics of these type 
of systems, along with stochastic ordering, namely likelihood ratio order. An example is provided.   
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1. INTRODUCTION 

Coherent systems are characterized by parallel-series (a parallel system with series subsystems as 
components) or series-parallel systems (a series system with parallel subsystems as components). In this 
work, using transmuted-G distributions introduced in 2016 by Nofaly et al. [5], we construct new classes of 
distributions. These new classes of distributions are obtained by the multiple application of the method 
mentioned. The advantage of the new distributions is that they can represent the lifetime distribution function 
of large k-out-of-m and series-parallel/parallel-series systems. 

An open problem in reliability and stochastic processes [10] is comparison of systems. This can be 
done in many ways and considering different types of comparisons. The simpler and most commonly used 
metric for system performance is the expected system lifetime [7]. Boland and Samaniego [2] discussed this 
problem, but they only provided conditions for ordering the expected system lifetimes for a particular group 
of small coherent systems. This paper discusses the stochastic ordering of some particular types of systems 
which are used in characterizing coherent systems [7]. We also provide some examples. 

Finding the asymptotic distribution of a series-parallel/parallel-series system can be quite difficult. In 
this work, we study the asymptotic behavior of the order statistics of these type of systems, and we show that 
they are not dependent on all parameters. 

This paper is organized as follows. In Section 2, we introduce the class of transmuted-G distributions 
of order n, along with motivation and interpretation. Section 3 deals with the asymptotic behavior of the 
order statistics, while Section 4 discusses the stochastic ordering. 

2. METHOD OF CONSTRUCTION  

Let F  be an arbitrary continuous cumulative distribution function (CDF) with corresponding density 
function (PDF) f .  

Let, for all 1>n  
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The corresponding PDFs of nF,,FF "21 ,  are defined recursively as follows  
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where 0>ia , 0>ib  for 01 ≤≤− iλ , while for 10 i ≤≤ λ  we have 0>b+a ii , ii ba ≥ . 
 

Fig. 1 – GT.T2(F, 3, 1, 1, 3, 1, 1) and GT.T1(F, 4, 4, 1). 

 

Fig. 2 – GT.T1(F, 4, 1, 1) and GT.T2(F, 4, 1, 1, 3, 1, 1).  

We denote by 
)(
)(

)(
xF
xf

=xh
i

i
i the corresponding hazard rate functions, where )(1)( xF=xF ii −  are 

the survival functions, for all ni ,1= . Also, we denote by ),,,(. 0001 λbaFTGT  the class of distributions 

defined by 1F , by ),,,,,,(. 1110002 λλ babaFTGT  the class of distributions defined by 2F , and so no, 
denoting by ),,,,,,,(. 111000 −−− nnnn babaFTGT λλ …  the class of distributions defined by nF . 

2.1. Motivation and interpretation 

The nTGT .  classes of distributions can represent k-out-of-m and series-parallel/parallel-series systems. 
For 10 =b , 10 =λ  and 0a  integer, 1F  represents the lifetime function of a complex system with 0a  
components linked in series: 10 −a  components have F  as their lifetime distribution function, while the 
last component is a parallel system with two components, each component having F  as their lifetime 
distribution function. For 10 −=λ  and 0a , 0b  integers, 1F  represents the lifetime distribution function of a 
series system with 00 ba +  components. For 00 ba = , 0a , 0b , integers and 10 −=λ , 1F  represents the 
lifetime distribution function of a system with 02a  components linked in series. For 00 ba = , 0a , 0b  
integers and 10 =λ  the distribution function 1F  represents the lifetime function of a system with two series 
subsystems with 0a  components, linked in parallel. For 100 == ba  and 10 =λ , 1F  represents the lifetime 
distribution function of a parallel system with two components. In Figs. 1 and 2, we have displayed some 
possible types of systems that can be represented by the nTGT .  models. The empty square represents a 

system’s component that has F  as its lifetime distribution function. For 1=b=a ii , 1,0 −= ni , we get the 

nT  models [9]. 
Other classes of distributions that model series-parallel/parallel-series systems are the generalized 

exponentiated distributions (2013) [3] and the generalized exponentiated transmuted distributions (2016) [6]. 
Many other distribution families are used in reliability and insurance models, [12] introduced the generalized 
exponential-Poisson distribution with increasing or decreasing failure rate function. [13] studied several 
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optimization problems, under risk measure constraints and applied the results for insurance models, 
involving the generalized Pareto distribution. 

3. CHARACTERISTICS OF THE TRANSMUTED-G OF ORDER N MODELS 

In this section, we discuss the asymptotic behavior of order statistics of the transmuted-G of order n 
classes of distributions. We prove that the asymptotic distributions of order statistics are not dependent on all 
parameters. Let 
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THEOREM 1. If 1CF ∈ , then it follows that also 11 CF ∈ . 
Proof. We have 
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Remark 1. Theorem 1 shows that the limit of 1F  from 1C  is dependent only of 0a , so invariant to 0λ  

and 0b . 
THEOREM 2. If 2CF ∈ , then it follows that also 21 CF ∈ . 
Proof. Using l’Hospital rule, we obtain  
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parameters 00 >b .  
Remark 2. Theorem 2 shows that the limit of 1F from 2C  is invariant with respect to 0a , 0b and 0λ .  
THEOREM 3. If 3CF ∈ , then it follows that also 31 CF ∈ . 
Proof. We have 
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where 
( )

( ) !1
1)1(

0

0

iia
ai

i −+Γ
+Γ−

=γ  and 
( )

( ) !1
1)1(

'
0

0

iib
bi

i −+Γ
+Γ−

=γ . Hence,  

( ) ( )0 0

1 1
0

1 1 1
1 211 0 0 0 0 0

( ) ( ) ' ( ) 1 ( )
d 1 d ( ) ( ),
d ( ) d ( ) ( ) 1 ( )

i i i
i i i

i i i

F x F x F x F x

T x T x
x h x x f x F x a a b F xa b

− −

≥ ≥ ≥
−

⎛ ⎞⎡ ⎤⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥− γ +λ γ + γ
⎜ ⎟⎜ ⎟⎢ ⎥⎛ ⎞ ⎝ ⎠⎣ ⎦⎜ ⎟= = +⎜ ⎟ ⎡ ⎤⎜ ⎟⎝ ⎠ +λ −λ +⎢ ⎥⎜ ⎟⎣ ⎦
⎜ ⎟
⎝ ⎠

∑ ∑ ∑
 

where  

( ) ( )0 0

1 1
0

1 1 1
1 1

0 0 0 0 0

( ) ' ( ) 1 ( )
d ( )( ) ,
d ( )( ) 1 ( )

i i i
i i i

i i i

F x F x F x
F xT x

x f xF x a a b F xa b

− −

≥ ≥ ≥
−

⎛ ⎞
⎜ ⎟− γ + λ γ + γ
⎜ ⎟ ⎛ ⎞⎝ ⎠= ⎜ ⎟⎡ ⎤ ⎝ ⎠+ λ − λ +⎢ ⎥⎣ ⎦

∑ ∑ ∑
 

and 

( ) ( )0 0

1 1
0

1 1 1
2 1

0 0 0 0 0

( ) ' ( ) 1 ( )
( ) d( ) .
( ) d ( ) 1 ( )

i i i
i i i

i i i

F x F x F x
F xT x
f x x F x a a b F xa b

− −

≥ ≥ ≥
−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− γ + λ γ + γ
⎜ ⎜ ⎟ ⎟

⎝ ⎠⎜ ⎟=
⎡ ⎤⎜ ⎟+ λ − λ +⎢ ⎥⎜ ⎟⎣ ⎦

⎜ ⎟
⎝ ⎠

∑ ∑ ∑
 

Because 

1 1
0

1 1 1

1 1
1 0 1 1 0 1

2 2 1

lim ( ) ' ( ) 1 ( )

lim ( ) ' ' ( ) 1 ( ) ' ,

i i i
i i i

x
i i i

i i i
i i i

x
i i i

F x F x F x

F x F x F x

− −
→∞

≥ ≥ ≥

− −
→∞

≥ ≥ ≥

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥− γ + λ γ + γ =
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥= −γ − γ + λ γ + γ + γ = −γ + λ γ
⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
 

and ( ) ( )[ ] ( ) ( )0000000000
1 1)(1)(lim 00 baa=bxFbaaaxF

x
+−++−+−

∞→
λλλλ  equals 000 ba λ−  for 

000 ba λ≠  and 0, otherwise, and because 3CF ∈ , the first term of the equation, ( )xT1  is 0 for ∞→x . For 
the second term, ( )xT2 , we have 

1 1 2
0

1 1 1 1

2 1 1
0 0

1 1 1 1

d ( ) ( ) 1 ' ( ) ( ) ( 1) ( )
d

( 1) ( ) 1 ' ( ) ( ) ' ( ) ( ) ( ),

i i i i
i i i i

i i i i

i i i i
i i i i

i i i i

F x F x F x f x i F x
x

i F x F x F x i F x f x A x

− − −

≥ ≥ ≥ ≥

− − −

≥ ≥ ≥ ≥

⎡ ⎤⎛ ⎞ ⎡
⎜ ⎟⎢ ⎥ ⎢− γ + λ γ + γ = − − γ +
⎜ ⎟⎢ ⎥ ⎢⎝ ⎠ ⎣⎣ ⎦

⎤⎛ ⎞
⎜ ⎟ ⎥+λ − γ + γ + λ γ γ = −
⎜ ⎟ ⎥⎝ ⎠ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

and  

( ) ( ){ }
( ) ( ) ( ) ( ){ }

0 0

0 0 0 0

1
0 0 0 0 0

2 2
0 0 0 0 0 0 0 0 0 0

d ( ) 1 ( ) ( )
d

1 ( ) 1 ( ) ( ) ( ) ( ),

F x a a b F x f x
x

a F x a a b F x b a b F x f x B x

a b

a b a b

−

− + −

⎡ ⎤+ λ − λ + = − ×⎢ ⎥⎣ ⎦
⎡ ⎤× − + λ − λ + − λ + = −⎢ ⎥⎣ ⎦

 

where  

( ) ( )2 2 1 1,0 0
1 1 1 1 1

( ) 1 ( ) 1 ( ) 1 ' ( ) ( ) ' ( )i i i i i
i i i i i

i i i i i
A x i F x i F x F x F x i F x

⎛ ⎞
− − − −⎜ ⎟

⎜ ⎟
≥ ≥ ⎝ ≥ ⎠ ≥ ≥

= − γ +λ − γ + γ +λ γ γ∑ ∑ ∑ ∑ ∑  



5 Irina Băncescu  325
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Similar results regarding the asymptotic behavior of the order statistics of the nTGT .  models we obtain 
using mathematical induction. 
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THEOREM 5. If 2CF ∈ , then also 2CFn ∈ . 

Remark 4. We have 
( )
( ) xxl
tF

xtF
tF

xtF
t

n

n

t
∀=

−
+−

=
−

+−
∞→∞→

),(
1

1lim
)(1

)(1
lim . The limit is invariant of all 

parameters. 
THEOREM 6. If 3CF ∈ , then also 3CFn ∈ . 

3.1. Extreme order statistics 

In this subsection, we give the asymptotic distributions of the extreme order statistics based on 
characteristics of the nTGT .  classes of distributions discussed in the previous section. 
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where mA , mB , mA' , mB' , mC , mD  are normalizing constants [1].  
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Proof. For (1) we apply  Theorem 8.3.3 from [1] and Theorem 4, and for (2), Theorem 1.6.2 from [4] 
and Theorem 5. The last part, (3), follows from Theorem 8.3.3 [1] and Theorem 6. 

The form of the normalizing constants can be determined following Corollary 1.6.3 from [4] and the 
results from [1].  

THEOREM 8. Let mmmm X,,X,X ::2:1 …  be the order statistics of a random sample mX,XX ,, 21 …  
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where mA , mB , mC , mD  are normalizing constants [1]. 
Proof. The conclusion follows from Eqs. (8.4.2) and (8.4.3) of [1], Theorem 4 and Theorem 6. 

4. STOCHASTIC ORDERING 

Using stochastic ordering, we can compare the expected system lifetimes of different systems. 
Definition 1 [8]. Let 1X  and 2X be two random variables with probability density functions 1f  and 

2f , respectively. Then: 
a) 1X  is said to be smaller than 2X  in the likelihood ratio order (denoted by 21 XX LR≤ ), if 
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 is non-decreasing over the union of the supports of 1X  and 2X . 

b) 1X  is said to be stochastically smaller than 2X  (denoted by 21 XX ST≤ ), if )()( 21 xFxF ≥  for all 

x , where 1F  and 2F  are the CDFs of 1X  and 2X , respectively. 
c) 1X  is said to be smaller than 2X  in the hazard rate order (denoted by 21 XX HR≤ ), if 

)()( 21 xhxh ≤  for all x , where 1h  and 2h  are the hazard rate functions of 1X  and 2X , 
respectively.  

Remark 5 [8]. It is well-known that the likelihood ratio order is stronger than the hazard rate order and 
the stochastic order, 2.12121 XXXXXX STHRLR ≤⇒≤⇒≤ . Also, we have that 21 XX ST≤  implies 
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THEOREM 9. Let X  and Y  be two random variables with F  and G , as CDFs, respectively. Let 1X  

and 1Y  be two random variables with CDFs of the form 1.TGT , 1F  and 1G , respectively. If 10 ≤0a< , 
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1'0 ≥a , 00 >b , 0'0 >b , 10 0 ≤≤ λ , 0'1 0 ≤≤− λ  and YX LR≤ , then 11 YX LR≤ . 
Proof. We have 
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It is easy to see that 10 ≤0a< , 1'0 ≥a , 00 >b , 0'0 >b , 10 0 ≤≤ λ , 0'1 0 ≤≤− λ  and YX LR≤  

imply 1

1

d ( )log 0
d ( )

g x
x f x
⎛ ⎞ ≥⎜ ⎟
⎝ ⎠

for all x , and the result holds. 

COROLLARY 1. Let 1X  and 1Y  be two random variables with densities of the form 1.TGT , 1f  and 

1g , respectively, having a common baseline CDF, F . If 00 'a=a , 0', 00 >bb , 10 0 ≤≤ λ  and 
0'1 0 ≤≤− λ , then 11 YX LR≤ . 

A more general result of Theorem 9 is the next theorem. 
THEOREM 10. Let nXXXX ,,,, 21 "  be random variables with nF,,FFF, "21 ,  as CDFs of forms 

(1). Let nY,,Y,YY, "21  be random variables with n1 G,,GG, "  as CDFs of forms (4). If 10 ≤ia< , 1' ≥ia , 

0>bi , 0' >b i , 10 ≤≤ iλ , 0'1 ≤≤− iλ  and YX LR≤ , then iLRi YX ≤  for all n=i 1, . 

Example. Let F  be a Weibull CDF of parameters 0>μ  and 0>ρ , ( ) ))/(exp(1 μρxxF −−=  [11]. 
Let X  and Y  be random variables having 3F  and 3G  as their CDFs obtained using the method described in 
Section 1 as follows: 3F  is the CDF of the ( )1,1,1,13,1,1,1,1,. 3 F,TGT  model, while 3G  is the CDF of the 

( )11,1,2,3,1,1,1,1,. 3 −F,TGT  model. In Fig. 3, we have displayed the series-parallel/parallel-series systems 
that these random variables X  and Y  represent. Using Theorems 9 and 10 and Remark 5, we have that 

YX LR≤ , and therefore the expected system lifetime of X  is smaller than the expected system lifetime of 
Y . Generating values from these two random variables, we have calculated the expected system lifetimes of 
them. These values are displayed in Table 1.  

Table 1 

The expected system lifetimes of X  and Y  

Parameters 
(μ, ρ) 

E(X) E(Y) 

(10,20) 18.94729 20.70291 

(9,10) 18.94575 20.81047 

(8,32) 29.87808 33.44599 

(4,32) 32.89666 39.62359 

(2,32) 28.71142 43.55383 
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Fig. 3 – The systems represented by X and Y. 
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