# SPECTRAL AND AMPLITUDE SENSITIVITIES OF THE HE<sub>11</sub> MODE IN A HOLLOW-CORE BRAGG FIBER WITH A GOLD LAYER

Vasile POPESCU

"Politehnica"University of Bucharest, Department of Physics, Splaiul Independentei 313, Bucharest, RO-060042, Romania E-mail: vapopescu@yahoo.com

**Abstract.** The spectral and amplitude sensitivities of the  $HE_{11}$  mode in a hollow-core Bragg fiber with or without gold layer are investigated by using an analytical method. This method is applied for different structures without or with a gold layer made from 11, 9, 8, and 5 layers. The amplitude sensitivity at the minimum-loss wavelength increases when the number *N* of the layers increases from N = 5 to N = 11. When a high index material just before the outermost region of a hollow-core Bragg fiber is replaced by a gold layer, the optical confinement for the  $HE_{11}$  mode in the core increases about two times.

*Key words*: sensors, hollow core fibers, Bragg fiber, metal coating, photonic band gap.

#### **1. INTRODUCTION**

The transfer matrix method has been used for the analysis of planar waveguides [1], optical fibers [2–5], fiber gratings [6, 7], fiber based plasmonic sensors [8–11], and hollow core Bragg fiber [12].

In recently-published papers [8–10], a transfer matrix method was applied to an optical fiber with four (or five) layers made by SiO<sub>2</sub> core surrounded by a GaP layer, a gold layer and by a water layer, which can be considered infinite for the numerical model. In this case, the radial solutions of the Maxwell equations are written as a combination of Bessel functions of the first kind (*J*) in the core layer, Bessel functions of the first and second kinds (*J* and *Y*) in the dielectric interior clad layers, a linear combination of the Hankel functions  $H_1$  and  $H_2$  in the gold region just before the outermost sensing region, and modified Bessel function of the second kind (*K*) in the outermost region.

In a very recent paper [12] a new transfer matrix method is applied to a hollow-core Bragg fiber with a gold layer. In this method, the radial solutions of the Maxwell equations are represented by a Bessel function of the first kind (*J*) in the core region, a linear combination of Bessel functions of the first and second kinds (*J* and *Y*) in the dielectric interior layers, a linear combination of the Hankel functions (*H*<sub>1</sub> and *H*<sub>2</sub>) in the gold region, and a Hankel function of the first kind *H*<sub>1</sub> in the external infinite medium. When a high index material just before the outermost region of a hollow core Bragg fiber ( $r_c = r_1 = 13.02 \,\mu\text{m}$ ,  $n_c = n_1 = 1$ ,  $d_H = 0.086303 \,\mu\text{m}$ ,  $d_L = 0.310248 \,\mu\text{m}$ ,  $n_2 = n_4 = ... = n_{N-3} = 4.6$ ,  $n_{N-1} = n_{\text{gold}}$ ,  $n_3 = n_5 \dots = n_N = 1.6$ ), with large refractive-index contrast in periodic layers of the reflector cladding, is replaced by a gold layer, the optical confinement for the TE<sub>01</sub> mode in the core increases about ten times. Our method is in good agreement with the data known from the literature in the case of a hollow-core Bragg fiber without a gold layer. Thus for a hollow-core Bragg fiber with N = 34 layers (32 reflector layers, 16 pairs),  $r_c = 1.3278 \,\mu\text{m}$ ,  $n_c = n_1 = 1$ ,  $d_H = 0.2133 \,\mu\text{m}$ ,  $d_L = 0.346 \,\mu\text{m}$ ,  $n_2 = n_4 = ... = n_{34} = 1.49$ ,  $n_3 = n_5 \dots = n_{33} = 1.17$ ,  $\lambda = 1 \,\mu\text{m}$ , our effective index for the TE<sub>01</sub> mode  $\beta/k = 0.8910672175 + 1.4226046712 \times 10^{-8}$  i is very close to the calculated value in Ref. [13],  $\beta/k = 0.891067 + 1.4226 \,10^{-8}$  i.

In this paper we extend the research to the  $HE_{11}$  mode and our transfer matrix method is applied to a hollow-core Bragg optical fiber with a relatively small index contrast between the refractive indices  $n_{\rm H}$  and  $n_{\rm L}$  in the cladding region and the refractive index of the core is larger than 1. The optical confinement for the  $HE_{11}$  mode in the core increases about two times when the high index material just before the outermost region of a hollow-core Bragg fiber is replaced by a gold layer.

## 2. HOLLOW-CORE BRAGG FIBER WITHOUT AND WITH A GOLD LAYER

For a hollow-core Bragg fiber (see Fig. 1) with five layers (N = 5) and without a gold layer, the fiber parameters are  $r_c = 25.0 \text{ }\mu\text{m}$ ,  $d_H = 0.14297157 \text{ }\mu\text{m}$ ,  $d_L = 0.30828976 \text{ }\mu\text{m}$ ,  $n_1 = 1.34$ ,  $n_2 = n_4 = n_H = 1.6$ ,  $n_3 = n_5 =$  $= n_L = 1.4$ . If we replace the fourth dielectric layer with a gold layer, then  $n_4 = n_g = 0.578555 - 2.190515i$  for  $\lambda = 0.5321 \text{ }\mu\text{m}$  (the wavelength of lowest propagation loss for the HE<sub>11</sub> two-fold degenerate mode). In general, when N is odd (N = 5, 9, 11),  $n_1 = 1.34$ ,  $n_2 = n_4 = \dots n_{N-1} = n_H = 1.6$ ,  $n_3 = n_5 = \dots = n_N = n_L = 1.4$  for a fiber without a gold layer and  $n_1 = 1.34$ ,  $n_2 = n_4 = \dots n_{N-3} = n_H = 1.6$ ,  $n_3 = n_5 = \dots = n_N = 1.4$  and  $n_{N-1} = n_g$  for a fiber with a gold layer. When N is even (N = 8),  $n_1 = 1.34$ ,  $n_2 = n_4 = \dots n_N = 1.6$ ,  $n_3 = n_5 = \dots = n_N = 1.4$  and  $n_{N-1} = n_g$  for a fiber without a gold layer and  $n_1 = 1.34$ ,  $n_2 = n_4 = \dots n_N = 1.6$ ,  $n_3 = n_5 = \dots = n_N = 1.4$  and  $n_{N-1} = n_g$  for a fiber without a gold layer and  $n_1 = 1.34$ ,  $n_2 = n_4 = \dots n_N = 1.6$ ,  $n_3 = n_5 = \dots = n_{N-3} = 1.4$  and  $n_{N-1} = n_g$  for a fiber without a gold layer and  $n_1 = 1.34$ ,  $n_2 = n_4 = \dots n_N = 1.6$ ,  $n_3 = n_5 = \dots = n_{N-3} = 1.4$  and  $n_{N-1} = n_g$  for a fiber without a gold layer and  $n_1 = 1.34$ ,  $n_2 = n_4 = \dots n_N = 1.6$ ,  $n_3 = n_5 = \dots = n_{N-3} = 1.4$  and  $n_{N-1} = n_g$  for a fiber without a gold layer and  $n_1 = 1.34$ ,  $n_2 = n_4 = \dots n_N = 1.6$ ,  $n_3 = n_5 = \dots = n_{N-3} = 1.4$  and  $n_{N-1} = n_g$  for a fiber without a gold layer.



Fig. 1 – A cross section of a hollow-core Bragg fiber with five layers (N = 5) and a contour plot of the *z*-component of the Poynting vector at  $\lambda = 0.4629 \mu m$  for  $n_4 = 1.6$  (a) and at  $\lambda = 0.5321 \mu m$  when  $n_4 = 0.578555 - 2.190515i$  (b) of the fiber lowest loss for the HE<sub>11</sub> two-fold degenerate mode. The arrow shows the orientation of the main electric field *E*.

The thicknesses  $d_{\rm H}$  and  $d_{\rm L}$  are determined by using the usual quarter wave condition [14]:

$$d_{H} = \frac{\lambda_{0}}{4\sqrt{n_{H}^{2} - n_{c}^{2}}}, \ d_{L} = \frac{\lambda_{0}}{4\sqrt{n_{L}^{2} - n_{c}^{2}}}.$$
(1)

where  $\lambda_0 = 0.5 \ \mu m$  is the wavelength of assumed initial bandgap.

The theoretical spectral sensitivity  $S_{\lambda}$  [15]

$$S_{\lambda} = 2n_c \left(\frac{d_H}{\sqrt{n_H^2 - n_c^2}} + \frac{d_L}{\sqrt{n_L^2 - n_c^2}}\right)$$
(2)

increases for high values of the refractive index  $n_c = n_1 = n_a$  of the analyte. In our example,  $d_{\rm H}$ = 142.972 nm,  $d_{\rm L}$  = 308.290 nm, and  $S_{\lambda}$  = 2476 nm/RIU.

For the same wavelength, the real parts of the effective indices  $\beta/k$  for the hollow-core Bragg fiber with or without gold layer are the same and for large number of layers can be approximated with the theoretical value given by the relation [16]:

$$\operatorname{Re}(\beta/k)_{T} \approx \sqrt{n_{c}^{2} - \left(\frac{J_{1}\lambda}{2\pi r_{c}}\right)^{2}}$$
(3)

where  $J'_1 = 1.84118378134065$  is the first root of the derivative of Bessel function  $J_1(x)$ . For  $\lambda = 0.4866 \,\mu\text{m}$ , Re $(\beta/k)_T = 1.33998786$  is close to the simulated value Re $(\beta/k) = 1.33997931$  (Table 1) when N = 8. The refractive index of the gold layer is calculated by the Drude model [17].

### **3. NUMERICAL RESULTS AND DISCUSSION**

Figure 1 shows a cross section of a hollow-core Bragg fiber with five layers (N = 5) and a contour plot of the *z*-component  $S_z(x, y)$  of the Poynting vector at  $\lambda = 0.4629 \mu m$  for  $n_4 = 1.6$  and at  $\lambda = 0.5321 \mu m$  when  $n_4 = 0.578555 - 2.190515i$  of the fiber lowest loss for the  $HE_{11}$  two-fold degenerate mode.



Fig. 2 – The real part of the effective index *versus* wavelength for the leaky core mode  $HE_{11}$  near the lowest loss point ( $\lambda = 0.4866$  µm) for  $n_a = 1.34$  (a) and near the lowest loss point ( $\lambda = 0.4842$  µm) for  $n_a = 1.341$  (b) for a hollow-core Bragg fiber with N = 8 layers.

Table 1 shows the values of the effective index  $\beta/k$ , loss  $\alpha$  and wavelength  $\lambda$  for a hollow-core Bragg fiber with 5, 8, 9, and 11 layers. The real part of the effective index shows a slow decrease (Fig. 2) with the wavelength for the leaky core mode HE<sub>11</sub> near the lowest loss point ( $\lambda = 0.4866 \mu m$ ) for  $n_a = 1.34$ and near the lowest loss point ( $\lambda = 0.4842 \mu m$ ) for  $n_a = 1.341$  for a hollow-core Bragg fiber with N = 8layers. The imaginary part of the effective index  $\beta/k$  is very sensitive to the number of the layers and if the structure is with or without a gold layer.

The minimum-loss wavelength  $\lambda_{\min}$  and the corresponding propagation length shift toward a short wavelength (Fig. 3) as the refractive index of the core layer  $n_c$  increases from  $n_a = 1.34$  to  $n_a = 1.341$ . The spectral sensitivity ( $S_{\lambda} = 2400 \text{ nm/RIU}$ ) for a fiber with N = 8 layers is very close to the theoretical value ( $S_{\lambda} = 2475.97 \text{ nm/RIU}$ ) for the HE<sub>11</sub> mode, in contradiction with the published value [14] for a similar fiber structure where  $S_{\lambda} = 5300 \text{ nm/RIU}$ .



Fig. 3 – The loss spectra (a) and propagation length (b) for the leaky core mode  $HE_{11}$  near the lowest loss point ( $\lambda = 0.4866 \ \mu m$ ) for  $n_a = 1.34$  and near the lowest loss point ( $\lambda = 0.4842 \ \mu m$ ) for  $n_a = 1.341$ for a hollow-core Bragg fiber with N = 8 layers.

#### Table 1

| Values of the effective index $\beta/k$ , loss $\alpha$ , and wavelength | λ |
|--------------------------------------------------------------------------|---|
| for a hollow-core Bragg fiber with 5, 8, 9, and 11 layers                |   |

| Mode; $n_1$             | $\beta / k$                                 | $\alpha$ [dB/cm]            | λ[μm]  |
|-------------------------|---------------------------------------------|-----------------------------|--------|
| 1;N = 5;1.34            | 1.33998130 + 2.83019228×10 <sup>-8</sup> i  | 3.33674437×10 <sup>-2</sup> | 0.4629 |
| 1'; <i>N</i> = 5;1.341  | 1.34098146 + 2.74122775×10 <sup>-8</sup> i  | 3.24517685×10 <sup>-2</sup> | 0.4610 |
| 2g;N = 5;1.34           | 1.33997518 - 1.396966851×10 <sup>-8</sup> i | 1.43280477×10 <sup>-2</sup> | 0.5321 |
| 2g'; N = 5; 1.341       | 1.34097530 - 1.391769821×10 <sup>-8</sup> i | 1.43043151×10 <sup>-2</sup> | 0.5310 |
| 3; <i>N</i> = 8;1.34    | 1.33997931 + 6.05712768×10 <sup>-9</sup> i  | 6.79342522×10 <sup>-3</sup> | 0.4866 |
| 3'; <i>N</i> = 8;1.341  | 1.34097953 + 5.73952019×10 <sup>-9</sup> i  | 6.46911659×10 <sup>-3</sup> | 0.4842 |
| 4g;N = 8;1.34           | 1.33997661 - 1.26375622×10 <sup>-8</sup> i  | 1.33403413×10 <sup>-2</sup> | 0.5170 |
| 4g'; N = 8; 1.341       | 1.34097678 - 1.25029560×10 <sup>-8</sup> i  | 1.32417912×10 <sup>-2</sup> | 0.5153 |
| 5; <i>N</i> = 9;1.34    | 1.33997909 + 3.60227051×10 <sup>-9</sup> i  | 4.01868578×10 <sup>-3</sup> | 0.4892 |
| 5'; <i>N</i> = 9;1.341  | 1.34097930 + 3.39312369×10 <sup>-9</sup> i  | 3.80324316×10 <sup>-3</sup> | 0.4869 |
| 6g; <i>N</i> = 9;1.34   | 1.33997766 - 1.75192309×10 <sup>-9</sup> i  | 1.89179457×10 <sup>-3</sup> | 0.5054 |
| 6g'; N = 9; 1.341       | 1.34097785 - 1.70502101×10 <sup>-9</sup> i  | 1.84846274×10 <sup>-3</sup> | 0.5034 |
| 7; <i>N</i> = 11;1.34   | 1.33997881 + 1.28543289×10 <sup>-9</sup> i  | 1.42470694×10 <sup>-3</sup> | 0.4924 |
| 7'; <i>N</i> = 11;1.341 | 1.34097903 + 1.19481749×10 <sup>-9</sup> i  | 1.33075978×10 <sup>-3</sup> | 0.4900 |
| 8g;N = 11;1.34          | 1.33997785 - 6.29559007×10 <sup>-10</sup> i | 6.82658790×10 <sup>-4</sup> | 0.5033 |
| 8g';N = 11;1.341        | 1.34097806 - 6.04755772×10 <sup>-10</sup> i | 6.58642466×10 <sup>-4</sup> | 0.5011 |

Figure 4 shows the amplitude sensitivity for the leaky core mode  $HE_{11}$  of a hollow core Bragg fiber with N = 8 layers versus wavelength near the lowest loss point ( $\lambda = 0.4866 \mu$ m). The amplitude sensitivity at the minimum-loss wavelength is  $S_A = 46.82 \text{ RIU}^{-1}$ , which is comparable with the calculated value in [14] at the same wavelength.

Figue 5 shows the loss spectra for the leaky core mode  $HE_{11}$  near the lowest loss points for a hollowcore fiber without and with a gold layer for two values of N (N = 9 and N = 11) and for two values of the refractive index of the analyte ( $n_a = n_c = 1.34$  and  $n_a = 1.341$ ). Note that the loss is decreasing with the increase of N and  $n_a$ , and also when the high index material just before the outermost region of the hollowcore Bragg fiber is replaced by a gold layer.

The amplitude sensitivity for the leaky core mode  $HE_{11}$  near the lowest loss point for the hollow-core Brag fiber without and with a gold layer increases when the number of the layers increases from N = 5 to N = 11 (Fig. 6).

4



Fig. 4 – The amplitude sensitivity for the leaky-core mode  $HE_{11}$  of a hollow-core Bragg fiber with N = 8 layers *versus* wavelength near the lowest loss point ( $\lambda = 0.4866 \mu m$ ) where the amplitude sensitivity is  $S_A = 46.82 \text{ RIU}^{-1}$ .



Fig. 5 – The loss spectra for the leaky core mode  $HE_{11}$  near the lowest loss points ( $\lambda = 0.4892 \ \mu m, N = 9, n_a = 1.34, n_8 = 1.6$ ), ( $\lambda = 0.4869 \ \mu m, N = 9, n_a = 1.341, n_8 = 1.6$ ), ( $\lambda = 0.5054 \ \mu m, N = 9, n_a = 1.341, n_8 = n_g$ ), ( $\lambda = 0.5034 \ \mu m, N = 9, n_a = 1.341, n_8 = n_g$ ), ( $\lambda = 0.4924 \ \mu m, N = 11, n_a = 1.34, n_{10} = 1.6$ ), ( $\lambda = 0.4900 \ \mu m, N = 9, n_a = 1.341, n_{10} = 1.6$ ), ( $\lambda = 0.5033 \ \mu m, N = 11, n_a = 1.34, n_{10} = n_g$ ), ( $\lambda = 0.5011 \ \mu m, N = 9, n_a = 1.341, n_{10} = n_g$ ).



Fig. 6 – The amplitude sensitivity for the leaky core mode  $HE_{11}$  versus wavelength near the lowest loss point for a hollow- core Brag fiber without (a) and with (b) a gold layer. The arrow shows the increase of the amplitude sensitivity at the minimum-loss wavelength when the number of the layers is increased from N = 5 to N = 11.

Table 2 shows the values of the shift  $\delta\lambda_{res}$  towards longer wavelengths of the phase matching point or loss matching point for an increase  $\Delta n_a$  of the analyte refractive index by 0.001 RIU, the spectral sensitivity  $S_{\lambda}$ , the spectral resolution  $SR_{\lambda}$ , the amplitude sensitivity  $S_A$  at the minimum-loss wavelength and the corresponding resolution  $SR_A$ , the transmission loss  $\alpha$ , the propagation length *L*, and the minimum-loss wavelength  $\lambda$ .

|                                                                           | 1, //L            | 1, HE 1,                        | 71 t 3, t                    | 37 61 37                                    |        |
|---------------------------------------------------------------------------|-------------------|---------------------------------|------------------------------|---------------------------------------------|--------|
| Mode HE <sub>11</sub><br>$(r_{c};N; n_{H}; n_{L}; n_{a}; n_{N-1}; n_{N})$ | δλ <sub>res</sub> | $S_{\lambda}$<br>$SR_{\lambda}$ | $\frac{S_A}{SR_A}$           | α<br>L                                      | λ      |
| 1<br>(25;5;1.6;1.4;1.34;1.6; 1.4)                                         | 1.9               | 1900<br>5.3×10 <sup>-5</sup>    | 27.2<br>3.7×10 <sup>-4</sup> | $3.3 \times 10^{-2}$<br>$1.3 \times 10^{6}$ | 0.4629 |
| $2g$ (25;5;1.6;1.4;1.34; $n_{g}$ ; 1.4)                                   | 1.1               | 1100<br>9.1×10 <sup>-5</sup>    | 1.6<br>6.4×10 <sup>-3</sup>  | 1.4×10 <sup>-2</sup><br>3.0×10 <sup>6</sup> | 0.5321 |
| 3<br>(25;8;1.6;1.4;1.34; 1.4;1.6)                                         | 2.4               | 2400<br>4.2×10 <sup>-5</sup>    | 46.8<br>2.1×10 <sup>-4</sup> | $6.8 \times 10^{-3}$<br>$6.4 \times 10^{6}$ | 0.4866 |
| $4g$ (25;8;1.6;1.4;1.34; $n_{g}$ ; 1.6)                                   | 1.7               | 1700<br>5.9×10 <sup>-5</sup>    | 4.8<br>2.1×10 <sup>-3</sup>  | $1.3 \times 10^{-2}$<br>$3.3 \times 10^{6}$ | 0.5170 |
| 5<br>(25;9;1.6;1.4;1.34; 1.6; 1.4)                                        | 2.3               | 2300<br>4.3×10 <sup>-5</sup>    | 52.6<br>1.9×10 <sup>-4</sup> | 4.0×10 <sup>-3</sup><br>1.1×10 <sup>7</sup> | 0.4892 |
| $6g$ (25;9;1.6;1.4;1.34; $n_{g}$ ; 1.4)                                   | 2.0               | 2000<br>5.0×10 <sup>-5</sup>    | 22.1<br>4.5×10 <sup>-4</sup> | $1.9 \times 10^{-3}$<br>$2.3 \times 10^{7}$ | 0.5054 |
| 7 (25;11;1.6;1.4;1.34;1.6; 1.4)                                           | 2.4               | 2400<br>4.2×10 <sup>-5</sup>    | 64.4<br>1.6×10 <sup>-4</sup> | 1.4×10 <sup>-3</sup><br>3.0×10 <sup>7</sup> | 0.4924 |
| $8g$ (25;11;1.6;1.4;1.34; $n_{o}$ ; 1.4)                                  | 2.2               | 2200<br>4.5×10 <sup>-5</sup>    | 33.9<br>2.9×10 <sup>-4</sup> | $6.8 \times 10^{-4}$<br>$6.4 \times 10^{7}$ | 0.5033 |

*Table 2* Values of  $\delta\lambda_{res}$  [nm],  $S_{\lambda}$  [nmRIU<sup>-1</sup>],  $SR_{\lambda}$  [RIU],  $S_{A}$  [RIU],  $\alpha$  [dB/cm], L [ $\mu$ m], and  $\lambda$  [ $\mu$ m]

### **4. CONCLUSIONS**

The spectral sensitivity ( $S_{\lambda} = 2\,400$  nm/RIU) for a fiber without a gold layer with N = 8 layers is very close to the theoretical value ( $S_{\lambda} = 2\,475.97$  nm/RIU) for the  $HE_{11}$  mode, in contradiction with the published value [14] for a similar fiber structure where  $S_{\lambda} = 5\,300$  nm/RIU. When a high index material

just before the outermost region of a hollow-core Bragg fiber is replaced by a gold layer, the optical confinement for the  $HE_{11}$  mode in the core is increased about two times for any number of layers, namely 2.33 for N = 5, 2.12 for N = 9, and 2.09 for N = 11. As in the case of  $TE_{01}$  mode [12], the light of a high power laser can be transmitted with very low loss due to the large confinement in the core of the fiber.

### REFERENCES

- 1. J. CHILWELL, I. HODGKINSON, *Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides*, J. Opt. Soc. Am. A, **1**, pp. 742–753, 1984.
- C. YEH, G. LINDGREN, Computing the propagation characteristics of radially stratified fibers: an efficient method, Appl. Opt., 16, pp. 483–493, 1977.
- 3. C. Y. H. TSAO, Modal characteristics of three-layered optical fiber waveguides: a modified approach, J. Opt. Soc. Am. A, 6, pp. 555–563, 1989.
- 4. S. R. A. DODS, *Fiber vector modesolver–Improvements to the efficient 4x4 matrix method*, Integrated Photonics Research and Applications, IPRA 2006. Uncasville, CT, Apr. 2006.
- V. A. POPESCU, Absorption Efficiency of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides, J. Supercond. Nov. Magn., 25, pp. 1413–1419, 2012.
- Z. ZANG, All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating, Appl. Opt., 52, pp. 5701–5706, 2013.
- 7. Z. ZANG, Y. ZHANG, Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation, Appl. Opt., **51**, pp. 3424–3430, 2012.
- 8. V. A. POPESCU, N. N. PUSCAS, G. PERRONE, Application of a new vector mode solver to optical fiber-based plasmonic sensors, Mod. Phys. Lett. B, **30**, 1650075, 2016.
- 9. V. A. POPESCU, N. N. PUSCAS, G. PERRONE, Sensing Performance of the Bragg Fiber-Based Plasmonic Sensors with Four Layers, Plasmonics, **11**, pp. 1183–1189, 2016.
- V. A. POPESCU, N. N. PUSCAS, Propagation characteristics in a new photonic fiber-based plasmonic sensor, Rom. Rep. Phys., 67, pp. 500–507, 2015.
- 11. V. A. POPESCU, Comparison between propagation characteristics of some photonic fiber-based plasmonic sensors, Rom. J. Phys., **62**, 204, 2017.
- 12. V. A. POPESCU, Application of a transfer matrix method to hollow core Bragg fiber with a gold layer, Rom. Rep. Phys., **70**, 404, 2018.
- 13. I. M. BASSETT, A. ARGYROS, *Elimination of polarization degeneracy in round waveguides*, Opt. Express, **10**, pp. 1342–1346, 2002.
- 14. M. SKOROBOGATIY, Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors, J. Sens., 2009, 524237, 2009.
- 15. H. QU, M. SKOROBOGATIY, Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers, Sens. Actuators B, 161, pp. 261–268, 2012.
- 16. A. ARGYROS, Guided modes and loss in Bragg fibres, Opt. Express, 10, pp. 1411-1417, 2002.
- 17. A. D. RAKIĆ, A. B. DJURIŠIĆ, J. M. ELAZAR, M. L. MAJEWSKI, Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt., 37, pp. 5271–5283, 1998

Received October 3, 2017