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Abstract. In this work, new aspects of the fractional calculus (FC) are examined for a model of 
spring pendulum in fractional sense. First, we obtain the classical Lagrangian of the model, and as a 
result, we derive the classical Euler-Lagrange equations of the motion. Second, we generalize the 
classical Lagrangian to fractional case and derive the fractional Euler-Lagrange equations in terms of 
fractional derivatives with singular and nonsingular kernels, respectively. Finally, we provide the 
numerical solution of these equations within two fractional operators for some fractional orders and 
initial conditions. Numerical simulations verify that taking into account the recently features of the 
FC provides more realistic models demonstrating hidden aspects of the real-world phenomena. 
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1. INTRODUCTION 

It is well known from the literature that the equation of motion can be obtained from an energy based 
approach. This method (i.e. Lagrangian) depends on knowing how to write the kinetic energy of a system as 
well as its potential energy. As many interesting systems include springs, one has to know how to determine 
the above-mentioned energies associated to the systems with springs. For more details about such examples, 
one may refer to some textbooks in classical mechanics [1, 2]. The equation of motion obtained by 
Lagrangian method contains derivatives of generalized coordinates, and these equations are then solved by 
using differential equations rules. Some initial conditions are then applied to the solution to determine some 
constants. 

The history of fractional calculus (FC) refers back to the year 1695. In recent years, considerable 
interest in FC has been stimulated due to its wide applications in different branches of applied sciences like 
physics and engineering [3–12]. Recently, the FC plays an important rule to solve fractional differential 
equations (FDEs). Many papers have been published on this topic; see for example [13–16]. The FDEs 
involve left and right fractional derivatives, so one should have a solid background on the FC. 

As it is known, using the Lagrangian technique yields some differential equations, called Euler-
Lagrange equations, which need to be solved by applying some initial conditions. In our case, we generalize 
the classical Lagrangian by using the fractional derivatives. As a result, we obtain the FDEs rather than the 
classical ones. These equations, namely the fractional Euler-Lagrange equations (FELEs), cannot be solved 
analytically so easily; hence, numerical techniques are used to solve them [17–21]. However, the numerical 
solution of FELEs for the spring pendulum problem will exhibit new hidden features of this system. From 
mathematical and practical points of view, the FELEs are new, and their solutions include more information 
than their integer counterparts. Hence, by modelling the classical Lagrangian of the spring pendulum system 
with fractional derivatives, we can prepare a realistic model describing the spring pendulum corresponding to 
the new FELEs. This point can be considered as one of the main utilities of the FC against the classical one, 
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because using the fractional differential operators enables us to build a new real-world phenomenon, without 
breaking any existing rules of the classical calculus approach. 

The outline of this paper follows here. Section 2 discusses the fractional derivatives definitions. In 
Sec. 3, the classical and fractional studies are carried out for the spring pendulum model. Section 4 provides 
the numerical solution of the derived FELEs for different values of fractional order and initial conditions. 
Finally, we close the paper by a conclusion in Section 5. 

2. DEFINITIONS 

In this Section, we give some basic definitions of the fractional derivatives in the sense of classic 
Caputo [5] and a new one with Mittag-Leffler nonsingular kernel (ABC) [22]. 

Definition 2.1 [22]. Let : [ , ]f a b R→  be a time-dependent function and 0 1α< ≤ . Then, the left and 
right Caputo fractional derivatives are defined as 
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respectively, where ( )Γ ⋅  denotes the Euler’s Gamma function. 

Definition 2.2 [22]. For 1( , )f H a b∈  and 0 1α< ≤ , the left and right ABC fractional derivatives are 
defined as 
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respectively, where ( )B α  denotes the normalization function satisfying (0) (1) 1B B= =  and Eα  is the 
Mittag-Leffler function given by 
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For more details on the Caputo and ABC fractional operators, the interested reader can refer to [5] and [22], 
respectively. 

3. CLASSICAL AND FRACTIONAL DESCRIPTIONS OF PHYSICAL MODEL 

In this Section, we give a full description of spring pendulum, which is discussed in many textbooks 
[1, 2]. The system under consideration is illustrated in Fig. 1. As it is shown in this figure, we have a spring 
with constant k, which swings in a vertical plane. Also, a mass m is attached to the spring. The length of 
pendulum at equilibrium is l and l+r(t) is its length at any time t, while ( )tθ  is the angle of pendulum with 
the vertical line. 
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Fig. 1 – The spring pendulum. 

The kinetic energy of the spring pendulum (T) as well as its potential one (U) are respectively described by 

             2 2 21
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T m r l r θ= + + �� , (6) 
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U kr mg l r mgrθ= + + − − . (7) 

For the physical model under consideration, the classical Lagrangian, defined as CL T U= − , reads 
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which results the classical Euler-Lagrange equations (CELEs) in the form 
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where r k mω =  is the pendulum frequency along its length and ( )g l rθω = +  is the pendulum 
frequency of oscillations. The classical system described by Eqs. (9)–(10) can be solved numerically for 
specified boundary conditions to investigate the trajectory/position of the spring pendulum. 

Below, a fractional study is carried out, which reveals new aspects of physical system under 
consideration. First, we can fractionalize Eq. (8) as 
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where a tDα  denotes the left Caputo or ABC fractional operator. Then, the fractional Euler-Lagrange 
equations (FELEs) can be obtained from 
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in which t bDα  denotes the right fractional operator in the Caputo or ABC sense. Using Eq. (12) for ,iq r θ= , 
one gets the FELEs in the form 
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              2 2( ) ( )( ) cost b a t a t rD D r l r D g rα α αθ θ ω= − + − + , (13)

                   2(( ) ) ( )sint b a tD l r D g l rα αθ θ+ = + . (14)

As 1α → , the FELEs (13)–(14) reduce to the CELEs previously given by Eqs. (9)–(10). Our aim now is to 
obtain the numerical solution of Eqs. (13)–(14) for different values of α  while considering two different 
fractional operators namely the Caputo and ABC. 

4. NUMERICAL METHOD 

In this Section, we develop an efficient numerical technique to solve the FELEs (13)–(14) within the 
Caputo and ABC fractional operators. Starting with the ABC fractional derivative, we first reformulate Eqs. 
(13)-(14) in the following way. Let us define the new variables 1r r= , 2

ABC
a tr D rα= , 1θ θ=  and 

2
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Using the definition of ABC fractional integral [22] and assuming that 0ABC ABC
a b a bD r Dα αθ= = , Eq. (15) can 

be rewritten as the following system of fractional integral equations 
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Now, we consider a uniform mesh on [ , ]a b  and label the nodes 0,1, , N… , where N  is an arbitrary positive 

integer and N

b a
h

N
−

=  is the time step size. We denote ,i jr  and ,i jθ  as the numerical approximations of 

( )i jr t  and ( )i jtθ , respectively, where 1, 2i =  and j Nt a jh= +  is the time at node j  for 0 j N≤ ≤ . 

Discretizing the convolution integrals in Eq. (16) by using the fractional Euler method [23], the following 
system of nonlinear algebraic equations is derived 
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and the binomial coefficient ( )
j
αω  can be calculated by using the recursive formula ( )
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= , 1, 2,j = … . Note that, the aforementioned results can be used in the Caputo sense by 

using the Caputo fractional integral [5] instead of its ABC counterpart in Eq. (16) and following the same 
discretizing procedure as above. 

4.1. SIMULATION RESULTS 

In the following simulations we take the parameters as 9.81g = , 10 N mk = , 2 ml =  and 1kgm = . 
Also, the initial values are selected to be (0) 1r =  and (0) 0.1θ = . Figures 2–5 show the plots of ( )r t  and 
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( )tθ  for 0.85, 0.9, 0.95, 0.99α = . In these figures, we consider the Caputo and ABC fractional operators for 
the FELEs (13)–(14), respectively. These figures indicate that the numerical solution of FELEs (13)-(14) 
exhibits different behaviours for different fractional operators. Thus, taking into account the new fractional 
derivatives provides more flexible models which help us to adjust better the dynamical behaviours of the 
real-world phenomena. 

  
Fig. 2 – The plots of r(t) and θ(t) within the Caputo and ABC fractional operators for 0.85α = . 

  

Fig. 3 – The plots of r(t) and θ(t) within the Caputo and ABC fractional operators for 0.9α = . 

  

Fig. 4 – The plots of r(t) and θ(t) within the Caputo and ABC fractional operators for 0.95α = . 
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Fig. 5 – The plots of r(t) and θ(t) within the Caputo and ABC fractional operators for 0.99α = . 
 

5. CONCLUSION 

In this study, we have investigated the model of spring pendulum by using the fractional Lagrangian. 
For this aim, we generalized the classical Lagrangian to the fractional case and derived the FELEs in the 
Caputo and ABC sense. Then, we solved the proposed models within these two fractional operators by using 
a numerical method based on the discretization of convolution integral by the Euler convolution quadrature 
rule. The results reported in Figs. 2–5 indicate that the behaviours of the FELEs depend on the fractional 
operators. Thus, the recently features of the FC provide more realistic models, which help us to adjust better 
the dynamical behaviours of the real-world phenomena. 
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