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 Abstract. This paper evaluates the ground fault current distribution in an effectively grounded power 

network. The methods described here provide useful results for ground fault at any tower along the 

single and double circuit 3-phase transmission lines, with one ground wire, non-uniform span lengths 

and non-uniform tower resistances. The ground fault current distribution in an effectively grounded 

power network is affected by various factors. The effects of some of these factors on the ground fault 

current distribution are carefully analyzed. There are presented some useful qualitative and 

quantitative results obtained through a dedicated developed MATLAB 7.0 program. 
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1. INTRODUCTION 

When a ground fault occurs on an overhead transmission line in a power network with grounded 

neutral, the fault current returns to the grounded neutral through the ground wires, towers and ground return 

paths. The estimation of the ground fault current distribution is an important step to design a safe substation 

grounding grid and the associated line's grounding systems and – especially in a single circuit transmission 

line case – had been undertaken by many researches, and numerous analytical methods have been published 

[2, 3, 5–9]. In our previous works there were presented analytical methods in order to determine the ground 

fault current distribution in effectively grounded power networks, for a ground fault located anywhere along 

the transmission line [10–12]. In all these cases it was assumed uniform spans lengths and towers resistances. 

But usually these parameters are not the same on the entirely transmission line. Sebo [8] developed an 

approach which could be used to compute the ground fault current distribution in ground return circuits for a 

single circuit transmission line, considering non-uniform span lengths and non-uniform tower resistances. In 

this paper, the method introduced by Sebo [8] has been generalized in order to consider the case of a double 

circuit transmission line with one ground wire, considering non-uniform spans lengths and non-uniform 

towers resistances. Also a complex MATLAB computer program based on this extended method has been 

developed. The effects of towers footing resistances, type and material of the overhead ground wires, number 

of spans of power lines, soil resistivity on the ground fault current distribution is analyzed through this 

software. The calculation method is based on the following assumptions: the impedances are lumped 

parameters in each span of the transmission line; the line’s capacitances, the contact resistance between the 

tower and the ground wire, the contact resistance between the tower and the faulted phase, are all neglected; the 

network is considered linear in the sinusoidal steady-state. 

2. FAULTS ON A SINGLE CIRCUIT 3-PHASE TRANSMISSION LINES  

WITH ONE GROUND WIRE 

In this section it is considered a network containing a source station S that supplies a distribution 

station D through an overhead transmission line. It is considered a single circuit transmission line with one 
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ground wire connected to the ground at every tower of the line, each transmission tower having its own 

grounding electrode or grid. When the fault appears, part of the ground fault current will get to the ground 

through the faulted tower, and the rest of the fault current will get diverted to the ground wire and other 

towers. Fig. 1 presents the connection of the ground wire connected to earth through transmission towers and 

the ground fault current distribution, when a single line-to-ground fault appears at any tower and the fault is 

supplied from one side only. Also it is considered that the span lengths 
)(k

l  and tower resistances 
)(kt

Z  are 

non-uniform (k is the number of considered span).  

 

Fig. 1 – Ground fault current distribution on an single circuit transmission line. 

The self-impedance of the ground wire connected between two grounded towers, called the self-

impedance per span, was noted with 
)(kw

Z . The self-impedance of the faulted phase conductor per span was 

noted with )(kpZ ; )(kmZ  represents the mutual-impedance between the ground wire and the faulted phase 

conductor, per span. The source and the distribution stations grounding systems resistances are sR  and 

respectively sR' . When the fault is supplied from one side only, the equivalent circuit presented in Fig. 2 

could be constructed, where eZ  represents the resultant impedance of the ladder network extended beyond 

the fault, containing the ground wire sections and tower footing resistances. 

 

Fig. 2 – Ground fault current distribution equivalent circuit. 

Considering span k presented in Fig. 3 between two consecutive towers, the following expressions, which 

relate the left-side quantities )1( kpU , )1( kwU , )1( kwI  and )1( kpI  of the span with its right-side quantities 

)(kpU , )(kwU , )(kwI  and )(kpI , can be written [8]:  
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Expressions (1) could be written in a matrix form, as follows: 
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       ][][][ )()()1( kkk NEM   (2) 
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Fig. 3 – Span k between two towers. 

In the same way, the right-side quantities of the span k could be expressed as a function of the left-side 

quantities of the same span: 

        ][][][ )1(

1

)()( 

  kkk MEN  (4) 

where ][ 1

)(



kE  is inverse matrix of ][ )(kE . Recurrently applying expression (3) for all the transmission line 

spans, it will be obtained:  
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Next, the following boundary conditions are necessary. At the faulted tower, on the right side of the first 

span, the faulted phase conductor and the ground wire are connected by the phase-to-ground fault, thus 

ewpwp ZIIUU  )( )1()1()1( . At the left terminal )(nwps III  . Therefore, the column vector ][ )1(N  

and the column vector ][ )(nM  are obtained. The expression (2) is applied to the span (n-1) which contains 

the last tower of the transmission line (see Fig. 2) and the following matrix equation can be written: 
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][ )1( nE  will be computed as in expression (5). Additionally, in order to gain the necessary number of 

equations, for the last span (span n) the next expressions could be written:  

            0)()()()(  nwnmpnwnwss UZIZIIR  (7) 
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          )()1()1()1()1()()( ;; nwnwntntntnwsnwp IIIZIUIII   . (8) 

Taking into account relations (8), expression (7) becomes: 

      0)()( )1()1()()1()()(   ntnwnwsntnwnmsp ZIZRZIZRI . (9) 

Taking into account the boundary conditions for the case of the fault fed from one side, all the unknown 

quantities )(npU , pI , )1(wI , )1( nwI and )(nwI  can be computed from expressions (6) and (9). By choosing 

pI  as the given reference value, all the currents are obtained as per-unit complex values referred to the pure 

reference quantity of pI  [8]. In order to obtain all the ground wires currents, in every span, it is enough to 

observe that: 

              ][][][ )1(

1

)2( 



  nn MEM . (10) 

Because ][ )1( nM  is known from expressions (6), by proceeding toward the fault, all ground wires currents 

could now be determined. 

3. FAULTS ON A DOUBLE CIRCUIT 3-PHASE TRANSMISSION LINE  

WITH ONE GROUND WIRE 

In this section we generalize the method presented in the previous section for the case of a double 

circuit transmission line. As a convenient example it used the same network as above, but this time it is 

considered a double circuit transmission line with one ground wire, as it is presented in Fig. 4. With 
'

2pI  and 

''

2pI  were noted fault current components through the faulted line on the left, respectively on the right side of 

the fault; 1pI  represents the current in the un-faulted line, and pI  is the total ground fault current.  

 

Fig. 4 – Ground fault current distribution on a double circuit transmission line. 

)(1 kmZ  in Fig. 4 represents the mutual-impedance between the faulted phase conductor and the un-faulted 

phase conductor per span; 
)(2 kmZ  represents the mutual-impedance between the ground wire and the un-

faulted phase conductor per span; 
)(3 kmZ  represents the mutual-impedance between the ground wire and the 

faulted phase conductor per span. Generally, if two parallel circuits are bused together at both ends of the 

line, both circuits will carry fault currents when a single line-to-ground fault appears on one of them. Due to 

the magnetic coupling between the ground wire and the phase conductors in the parallel circuits, there is an 

influence of the fault current flowing in these circuits on the magnitude of the ground return currents. In 

principle, any one of the external parallel conductors that carry the fault current can be replaced by two 
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circuits, both grounded at the fault location [3]. The neutrals in distribution station are usually insulated. Zero 

sequence impedance 0

S
Z  of the system at the station S, respectively zero sequence impedance 0

D
Z  of the 

system at the station D fulfils this condition: 00

S
Z

D
Z   [6]. Due to this fact, the currents 

''

2pI  and 1pI , in 

Fig. 4, are equal. As a consequence, in Fig. 5 is presented the equivalent circuit. 0Z represents the zero 

sequence impedance of the transmission line from the fault location to the station D and eZ  represents the 

resultant impedance of the ladder network extended beyond the fault, containing the ground wire sections 

and tower footing resistances. 

 

Fig. 5 – Equivalent circuit of a ground fault current distribution on a double circuit transmission line. 

Considering span k between two towers (Fig. 5), as it was presented above, the following expressions which 

relate the left-side quantities of the span k with the right-side quantities can be written as: 
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As above, expressions (11) could be written in a matrix form: 

             ][][][ )()()1( kkk NEM 
, (12) 

where:  
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In order to determine the unknown quantities, the boundary conditions are necessary. Taking into account 

that at the faulted tower ewpppw ZIIIUU  )( )1(1211 , the column vector ][ )1(N  for the fault tower 

and the column vector ][ )1( nM  for the left terminal could be easily written. The expression (12) applied to 

the span (n–1), which contains the last tower of the transmission line, will result in the matrix equation given 

by (6). This time matrix ][ )1( nE  will be compute considering expression from (17). Following the same 

method as above, all ground wires currents could now be determined. 

4. VALIDATION CASES AND RESULTS 

In order to illustrate and validate the theoretical approach outlined in the sections above, it is 

considered that the line which connects those two stations is a 110 kV double circuit transmission line with 

aluminum-steel (ACSR) 240/40 mm
2
 phase conductors and one aluminum-steel 160/95 mm

2
 ground wire 

(Fig. 6) [4]. Ground wire impedance per one span )(kwZ  and the mutual impedances per one span are 

calculated for different values of the soil resistivity   with formulas based on Carson’s theory of the ground 

return path [1]. Ground wire is in symmetrical position relative to the phase conductors of the two 

transmission line circuits, which means that these impedance per one span has the same value: 

)(3)(2 kmkm ZZ  . The fault was assumed to occur on the phase which is the furthest from the ground wire, 

because the lowest coupling between the phase and the ground wire will produce the highest tower voltage. 

The total fault current was chosen as the reference value given, thus all the currents are obtained as per-unit 

complex values referred to the pure reference quantity of the total fault current. 

 

Fig. 6 – Disposition of the transmission line conductors. 

Figure 7 presents the zero sequence impedance of the transmission line, considering the mutual 

coupling between the two circuits as a function of the soil resistivity. In the absence of mutual coupling the 

fault current will flow to the ground through a smaller number of towers than in the mutual coupling 

presence. As a consequence, the voltage rise of the faulted tower and also its neighbours’ voltage rises will 

be higher in an artificial manner.  

Figure 8 presents the zero sequence impedance of the transmission line as a function of the soil 

resistivity, for the case of an ACSR 160/95 mm
2
 ground wire, respectively the case of a 95 mm

2
 steel ground 

wire. 

Figures 9 and 10 show the currents flowing in the ground wire in the case of a fault that appears at the 

10-th tower of the line counted from the source station, as a function of the spans between the faulted tower 

and the source station for  1.0sR , respectively for 1sR , considering different values for the tower 

impedances. It was assumed that the line has a total number of 30 towers and tower impedances are uniform 
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( tZ 10 ) and respectively non-uniform. In the last case (non-uniform impedances) it was assumed that the 

first 7 towers (counted from the faulted tower to the source station) have the same impedance tZ 5 , and 

the last 3 towers (before the source station) have tZ 10 . The resultant impedance eZ of the ladder 

network extended beyond the fault is computed considering that the remaining 20 towers between the faulted 

tower and the distribution station were split in two equal categories. In the first one all of the towers have 

tZ 5 , and in the second one all of them have tZ 10 . It can be said that in the case of a relatively short 

transmission line, all towers will carry the fault current to the ground. In the case of relative long lines, the 

towers near the source station start collecting currents from ground as they are part of the station grounding 

systems. 

Figure 11 shows the currents flowing in the ground wire in the case of a fault that appears at the 5-th 

tower of the line counted from the source station, for different values of the soil resistivity, considering the 

tower impedances uniform: tZ 5 . 

Figure 12 shows the currents flowing through the transmission line towers as a function of the tower 

impedances, in the case of a fault that appears at the 10-th tower of the line counted from the source station, 

considering a double circuit transmission line. It was assumed that the line has a total number of 30 towers 

and tower impedances are uniform ( tZ 10  and 30 ) and respectively non-uniform. In the last case (non-

uniform impedances) it was assumed that first 7 towers have the same impedance tZ 5 , and the last 3 

tower have  10tZ . It was considered that  1.0sR . 

  

Fig. 7 – Zero sequence impedance of the transmission line, 

considering the mutual coupling between circuits. 
Fig. 8 – Zero sequence impedance of the 110 kV transmission 

line as a function of the soil resistivity. 

  

Fig. 9 – Currents flowing in ground wire, for 0.1sR   . Fig. 10 – Currents flowing in ground wire, for 1sR   . 
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Fig. 11 – Currents flowing in the ground wire; tZ 5 . Fig. 12 – Currents through transmission line towers.  

All the presented quantitative results are based on the theoretical approaches developed during the 

previous sections. In order to do this there were developed some complex numerical intensive programs 

written in Matlab 7.0 software frame, completely implementing the previous presented theoretical methods. 

5. CONCLUSIONS 

In order to evaluate the ground fault current distribution in substations, overhead ground wires and 

towers, a mathematical model inspired by Sebo’s work [8] was described. This model is valid for a single  

3-phase transmission line with one ground wire having non-uniform span lengths and non-uniform tower 

resistances, too. After this presentation we generalized Sebo’s model for the case of a double circuit 

transmission line. Also a complex MATLAB computer program based on this extended method has been 

developed. The models were simulated on different realistic validation cases, generating useful results well 

correlated with other related works [5, 6]. The extended model has the advantages, in comparison with other 

available approaches, of being less complex and thus easily implemented and simulated. A laborious 

parametric analysis was done in order to study the effects of towers footing resistances, configuration and 

parameters of overhead ground wires and power conductors, number of spans of power lines, soil resistivity 

on the ground fault current distribution in substations, overhead ground wires and towers. The currents which 

return through ground wires were computed and examined for various realistic validation cases. From the 

above figures could be seen the strong influence of the soil resistivity on the ground fault currents 

distribution. When the soil resistivity has high values and the ground wire impedance has low values, the 

fraction of the fault current which returns to the source station trough the ground wire will also be high. The 

mutual impedance between the ground conductor and phase conductors reduces the total circuit impedance. 

Neglecting this mutual impedance the fault current would be significantly higher. Also, due to the magnetic 

coupling between the two circuits of the transmission line, there is an influence of the fault current flowing in 

these circuits on the magnitude of the ground return currents. The mutual coupling ''keeps'' the currents in 

ground wires and so they are returning to the source. Otherwise, these currents will play an important role in 

electromagnetic induction on neighboring circuits. The obtained results clearly show that ignoring the 

ground return currents may lead to grounding over-design. 
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