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Abstract. The aim of this paper is to solve approximately the thin film flow of a third grade fluid on a 
moving belt problem by means of a novel approach: Optimal Auxiliary Functions Method (AOFM). 
The corresponding nonlinear differential equation is reduced to the linear differential equations which 
contain some unknown parameters. These parameters are optimally determined by means of the 
collocation method. Our approach is completely different in structure comparing to other procedures, 
is very efficient and effective. 
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1. INTRODUCTION 

In the last time, the subject of non-Newtonian fluid mechanics is very popular due to technological 
and industrial points of view, where the nonlinear fluid has practical applications. A third grade fluid is one 
of the most acceptable fluid in this subclass of non-Newtonian fluids. Examples of non-Newtonian fluids 
include mustard, mayonnaise, toothpaste, asphalt, lava, mud slides, wire and fiber coating, paper production, 
oil wills, fluid cells, etc. Third grade fluid is one of the important fluid in this category and considerable 
efforts have been made to study non-Newtonian fluids for various geometrical configurations via analytical 
procedures. Some developments in this direction are presented in the literature. Wang et al. [1] examined the 
steady plane flows of an incompressible fluid between two plates in a porous medium in the presence of 
magnetic field. Electro-osmotic flow is considered by Akgül and Pakdemirli [2] and approximate solutions 
are obtained by perturbation techniques. Shah et al. [3] obtained an approximate analytical solutions for fluid 
velocity and temperature distribution for the heat transfer flow of a third grade fluid for the post treatment of 
wire coating by means of optimal homotopy asymptotic method. Adomian decomposition method is 
employed by Mahmood and Khan [4] to find the velocity field for three fundamental flow problems that 
frequently arise in this field, namely plane Couette flow, plane Poiseuille flow and generalized Couette flow. 
Zaidi et al. [5] applied variation of parameters method to solve the nonlinear differential equations of the thin 
film flow of a third grade fluid down an inclined plane. Siddiqui et al. [6] used variational iteration method 
and Adomian decomposition method to obtain analytic approximations of a nonlinear problem that arises in 
the thin film flow of a third grade fluid on a moving belt. Optimal homotopy asymptotic method and 
Adomian decomposition method are considered by Gul et al. [7] to solve the problem of heat transfer in 
electrically conducting thin film flow with slip boundary conditions. Many others researchers as Nayak et al. 
[8], Gul et al. [9], Siddiqui et al. [10], Shah et al. [11], B. Marinca and V. Marinca [12] contributed to this 
field of study. 

The objective of the present work is to apply OAFM to solve a boundary value problem for nonlinear 
differential equation of thin film flow of a third grade fluid on a moving belt.  
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2. THE GOVERNING EQUATION 
 

The basic equations of the thin film flow of third grade fluid on a moving belt are: 
 

0V∇⋅ =       (1) 

D g div ,
D

V p
t

ρ = −∇ +ρ + τ      (2) 

where V, ρ , p, τ  denote velocity vector, constant density, pressure and stress tensor respectively, and 
D
Dt

 is 

the material derivative: 
D
D

V
t t

∂
= + ⋅∇.
∂

     (3) 

The stress tensor defining a third grade fluid is given by 

1 2 3,S S Sτ = + +      (4) 
where 

1 1S A= μ  

1

2
2 1 2 2S A A= α + α  

( ) ( )3 1 3 2 1 2 2 1 3 2 1tr .S A A A A A A A= β +β + +β  

Here, μ  is the coefficient of viscosity and 1α , 2α , 1β , 2β  and 3β  are material constants. The  
Rivlin-Ericksen tensor nA  are defined by 0 IA =  (the identity tensor) and 

( ) ( )1
1 1

D
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Dt
n

n n
T
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A A A nV V−
− −∇ + ∇= + ≥  

The ambient air is considered to be stationary so that the flow is due to gravity alone. Also, the surface 
tension can be assumed to be negligible and film is of uniform thickness δ . If the pressure gradient is absent 
and thermal effects are negligible, the velocity fields is: 

( )( ),0,0V u y=       (5) 
and 0U  is the speed of the belt. 

Boundary conditions are  

( ) ( )00 , 0,u U u= δ =′       (6) 
where prime denotes derivative with respect to y. 

Inserting the velocity field (5) and the stress tensor (4) into Eqs. (1) and (2), we obtain the momentum 
equation as: 

( ) ( )22 36 0.u u u gμ + β +β −ρ =′′ ′ ′′     (7) 
The dimensionless variables are defined as: 

2

2 3
0 0

, , ,y u gy u m
U U

ρ δ
= = = β = β +β
δ μ

    (8) 

and dropping the bar, we obtain dimensionless from of the momentum equation (7) with the boundary 
conditions (6) in the forms: 

( )26 0u u u m+ β − =′ ′′      (9) 

( ) ( )0 1, 1 0.u u= =′       (10) 
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3. BASIC IDEAS OF OAFM 

 
In a more general form, Eq (9) with boundary conditions (10) can be written as: 

  ( ) ( ) ( )L y N g 0,yu u y⎡ ⎤ + ⎡ ⎤ + =⎣ ⎦ ⎣ ⎦       (11) 

where L, N and g are linear operator, nonlinear operator and a known function, respectively subject to the 
boundary condition 

 ( ) ( )d
, 0.

d
u y

B u y
y

⎛ ⎞
=⎜ ⎟⎝ ⎠

      (12) 

The approximate solution of Eqs. (11) and (12) can be expressed in the form 

 ( ) ( )0 1( ) y ,   1, 2,3, ,i iu y, C u u y, C i r= + = …      (13) 

where the initial and the first approximation are determined as follows.  

 ( ) ( ) 0
0 0

d
L g 0, , 0

d
u

u y y B u
y

⎛ ⎞
⎡ ⎤ + = =⎣ ⎦ ⎜ ⎟⎝ ⎠

     (14) 

( ) ( ) ( ) 1
1 0 1 1

dL N 0, , 0.
di i
uu y, C u y u y, C B u
y

⎛ ⎞⎡ ⎤ ⎡ ⎤+ + = =⎜ ⎟⎣ ⎦⎣ ⎦ ⎝ ⎠
 (15) 

The nonlinear term in the last equation can be expanded in the form: 

[ ] ( ) ( ) ( ) ( ) ( ) ( )1 1
0 1 0 0 i 0

1 1 1
N N N N ,

! !

sk k
k k

i
k i k

u uu u u u l f y u
k k

∞ ∞

= = =
+ = + = +∑ ∑ ∑     (16) 

where il we known parameters, if ( )y  are the functions which appear in the developing of the operator 

( )0N u , namely “fundamental functions”, s being the number of the fundamental functions. To avoid the 
difficulties that appear in solving of nonlinear differential equation (15) and to accelerate the rapid 
convergence of the first approximation ( )1 iu y,C and implicit of the solution ( )u y instead of the last term 
into Eq. (15), we propose an another expression, such that Eq. (15) can be rewritten as 

 ( ) ( ) ( ) 1
1 1

1

dL 0, , B ,  0 
d

p

i j i j
j

uu y,C A y,C f y p s u
y=

⎡ ⎤
⎡ ⎤ + = ≤ =⎢ ⎥⎣ ⎦

⎣ ⎦
∑     (17) 

where ( )j 1, iA y C  are auxiliary arbitrary functions depending of variable y and of some unknown parameters 

iC , and ( ) , 1, 2,..., ,jf y j p p s= ≤  are above fundamental functions. The unknown parameters 

, 1, 2,...,iC i r=  can be optimally identified via different methods as Ritz, the least square, Galerkin, 
collocation method, and so on [12–14]. We will see that this approach is a very powerful tool for solving 
nonlinear differential problems, without depending on small or large parameters. Our procedure contains 
auxiliary functions ( )j , iA y C  which provide with a simple way to adjust and control convergence of the 

approximate solution after only one iteration. 

4. APROVIMATE SOLUTIONS FOR EQS (9) AND (10) 

The linear, nonlinear and the function g are defined in the following form: 

( ) ( ) ( ) ( )2L , N 6 ,u y u u y u u g y m.⎡ ⎤ = ⎡ ⎤ = β = −′′ ′ ′′⎣ ⎦ ⎣ ⎦   (18) 
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The approximate solution of Eqs (9) and (10) is 

( ) ( ) ( )0 1 , 1, 2,...,i iu y,C u y u y,C i r= + =     (19) 

where the initial approximation ( )0u y  is determined from Eq. (14), which means that 

( ) ( ) ( )0 0 00, 0 1, ' 1 0u y m u u− = = =′′     (20) 

with the solution given by 

( ) ( )20
11 1 1 .
2

u y m y⎡ ⎤= + − −⎣ ⎦     (21) 

Inserting Eq. (21) into Eq. (18), the nonlinear operator will then be 

( ) ( )23
0N 6 1u y m y⎡ ⎤ = − β −⎣ ⎦      (22) 

such that the fundamental functions field and auxiliary functions are respectively:  

( ) ( ) 11 , ( 1)( 2) , 0,1,2,..., 1.j
j j jf y y A j j C j p+= − = + + = −  

The first approximation ( )1 1u y,C  is obtained from eq. (17), which reduces to 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )2 1
1 1 2 3 1 12 6 1 12 1 ... 1 1 0, 0 1 0p

i pu y,C C C y C y p p C y u u−+ + − + − + + + − = = =′′ ′   (23) 

where , 1, 2,...,iC i r p= =  are unknown parameters at this moment and p is a fixed integer number. From 
Eq. (23), we obtain the following expression 

( )( ) ( ) ( ) ( )2 3
1 21 1 1 1 ... 1 1 .p

i i pu y,C C y C y C y⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − + − − + + − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦   (24) 

From Eqs. (21), (24) and (19), we occur approximate solution of Eqs (9) and (10), through OAFM in 
the form: 

( )( ) ( ) ( ) ( ) ( )2 3 4 1
1 2 3

11 1 1 1 1 1 1 ... 1 1
2

p
i pu y,C m C y C y C y C y +⎛ ⎞ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + − − + − − + − − + + − −⎜ ⎟ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 (25) 

5. NUMERICAL RESULTS BY OAFM 

The accuracy of this method is illustrated for different values of the parameters β , m and p. The 
results obtained using OAFM are compared with numerical integration results and the parameters iC  are 
determined by collocation method. 

 
5.1. First, we consider 1β = , m = 4 and p = r = 10. The parameters are: 
C1 = –4.222602063672;   C2 = 4.935152677731;   C3 = 9.391271827942;   
C4 = 10.669550079814;   C5 = –1.090752834895;   C6 = –18.035066773528;   
C7 = 30.846526371527;   C8 = –25.547677957819; 
C9 = 11.871489087301;   C10 = –2.0177919572711. 
In this subcase, the approximate solution using OAFM becomes 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

2 3 4

5 6 7 8

9 10

1.017551031407 2.222602063672 1 4.935152677731 1 9.391271827942 1

10.669550079814 1 1.090752834895 1 18.035066773528 1 30.846526371527 1

25.547677957819 1 11.871489087301 1 2.0

u y y y y

y y y y

y y

= + − − − + − −

− − + − + − − − +

+ − − − + ( )111779572711 1 .y−

   (26) 
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5.2. In the last case, for 3β = , m = 3 and p = r = 10, we obtain 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

2 3 4

5 6 7 8

9 1

0.5006021838046 1.693388059193 1 5.276145236459 1 15.803996128621 1

37.019716793867 1 64.574233173757 1 81.501423102311 1 71.920744556694 1

41.9453960227434 1 14.4915556210316 1

u y y y y

y y y y

y y

= + − − − + − −

− − + − − − + − −

− − + − ( )0 112.24183856772081 1 .y− −

   (27) 

To verify the accuracy of the obtained solutions, we compare these analytical results with numerical 
ones. From Tables 1 and 2 it can be seen that the analytical solutions of the problem (9) and (10) obtained 
using OAFM are very accurate. Our procedure does not depend upon small parameters. 

 
Table 1 

Comparison between the OAFM solution (26) with numerical solutions for m = 4 and 1β =  

y ( )Numericalu y′  ( )u y′  
Eq. (26) 

( ) ( ) ( )Numy u y u yε = −′ ′  

0 -1.12817389837567 -1.1281648632381 9.1 E 06⋅ −  
0.1 -1.08007201020173 -1.08007203203744 2.2 E 08⋅ −  
0.2 -1.02789810677876 -1.02798911439358 7.3 E 09⋅ −  
0.3 -0.97069990494008 -0.9706987450879 1.16 E 06⋅ −  
0.4 -0.90712039216312 -0.907120521578852 1.28 E 07⋅ −  
0.5 -0.835122348481375 -0.835122512467256 1.64 E 07⋅ −  
0.6 -0.751426477126471 -0.751426499955896 2.29 E 08⋅ −  
0.7 -0.650212114581314 -0.650212008248636 1.06 E 07⋅ −  
0.8 -0.519536046602793 -0.51953618755021 1.33 E 07⋅ −  
0.9 -0.328865037138871 -0.328865348065594 3.11 E 07⋅ −  
1 0 0 0 
 

Table 2 

Comparison between the OAFM solution (27) with numerical solutions for m = 3 and 3β =  

y ( )Numericalu y′  ( )u y′  
Eq. (27) 

( ) ( ) ( )Numy u y u yε = −′ ′  

0 -0.723902189531621 -0.7239024947717 3.5 E 07⋅ −  
0.1 -0.69404836540602 -0.69404854561906 1.80 E 07⋅ −  
0.2 -0.661695527325251 -0.6616957584503 2.38 E 07⋅ −  
0.3 -0.626262357730877 -0.626262402142876 4.44 E 08⋅ −  
0.4 -0.58692056853108 -0.586920612120674 4.35 E 08⋅ −  
0.5 -0.542425860024423 -0.54242591769214 4.04 E 08⋅ −  
0.6 -0.490770558886644 -0.490770578225402 1.93 E 08⋅ −  
0.7 -0.428368240200272 -0.428368185506899 5.45 E 08⋅ −  
0.8 -0.3477277827361 -0.367727761086688 2.17 E 08⋅ −  
0.9 -0.228457211360594 -0.22845722885654 8.25 E 08⋅ −  
1 0 0 0 

6. CONCLUSIONS 

In the present work, we applied a new method (OAFM) to determine analytic approximate solutions to 
thin film flow of a third grade fluid on a moving belt. Let us emphasize that our construction of the OAFM is 
different from any other procedures, especially referring to the fundamental functions and in consequence to 
the auxiliary functions ( )j iA y,C  and to some parameters , ,...1 2C C  which ensure a very rapid convergence 

of the solutions. Our procedure is valid even if the nonlinear equation does contain small or large parameters. 
Let us note that very good results are obtained after only one iteration and in only a few terms. 
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Our approach provides us with simple but rigorous way to control and adjust the convergence of the 
solutions by means of several convergence-control parameters iC  which are optimally determined. Optimal 
auxiliary functions method is very powerful, effective, efficient and easy to use. 

REFERENCES 

1. Y. Wang, T. Hayat, K Hutter, Magnetohydrodynamic flows of an Oldroyd and constant fluid in a porous medium, Can. J. Phys., 
82, pp. 965–980, 2004. 

2. M. B. Akgül, M. Pakdemirli, Analytical and numerical solutions of electro-osmatically driven flow of a third grade fluid 
between micro-parallel plates, Int. J. Non-linear Mech., 43, pp. 985–992, 2008. 

3. R. A. Shah, S. Islam, M. Ellahi, T. Haroon, A. M. Siddiqui, Analytical solutions for heat transfer flows of a third grade fluid in 
case of post-treatment of wire coating, Int J. Phys. Sci., 6, 7, pp. 4213–4223, 2011. 

4. T. Mahmood, N. Khan, Thin film flow of a third grade fluid through porous medium over an inclined plane, Int J. Nonlinear 
Sci., 14, pp. 53–59, 2012. 

5. Z. A. Zaidi, S. U. Jan, N. A. U. Khan, S. T. M. Din, Variation of parameters method for thin film flow of a third grade fluid 
down an inclined plane, Italian J. of Pure and Applied Mathematics, 31, pp. 161–168, 2013. 

6. A. M. Siddiqui, A. A. Farooq, T. Haroon, B. S. Babcock, Comparison of variational iteration and Adomian decomposition 
methods in solving nonlinear thin film flow problems, Appl. Math. Sci., 6, pp. 4911–4919, 2012. 

7. T. Gul, R. A. Shah, S. Islam, M. Arif, MHD thin film flows of a third grade fluid on a vertical belt with slip boundary 
conditions, J. Appl. Math, Article ID 707286, 14 pages, 2013. 

8. M. K. Nayak, G. C. Dash, L. P. Singh, Steady MHD flow and heat transfer of a third grade fluid in wire coating analysis with 
temperature dependent viscosity, Int. J. Heat Mass Transfer, 79, pp. 1087–1095, 2014. 

9. T. Gul, S. Islam, R. A. Shah, I. Khan, S. Shafir, Thin film flow in MHD third grade fluid on a vertical belt with temperature 
dependent viscosity, Plos one 6, e97552, doi: 10.1371/Journal pone 0097552, 2014. 

10. A. M. Siddiqui, A. Sohail, A. Ashraf, Q. A. Azim, Drag flow analysis of Oldroyd eight constant fluid, Alexandria Eng. J., 55, 
pp. 2909–2918, 2016. 

11. H. Shah, , J. Pandva, P. Shah, Approximate solution for the thin film flow problem of a third grade fluid using spline collocation 
method, J. Advances Appl. Math., 1, 2, https://dr.doi.org/10.22606/jaam.2016.12001, 2016. 

12. B. Marinca, V. Marinca, Approximate analytical solutions for thin film flow of a fourth grade fluid down a vertical cylinder, 
Proceed Romanian Academy, Series A, 19, 1, pp. 69–76, 2018. 

13. V. Marinca, N. Herişanu, Nonlinear Dynamical Systems in Engineering. Some approximate Approaches, Springer., Berlin, 
Heidelberg, 2011. 

14. V. Marinca, N. Heri�anu, The Optimal Homotopy Asymptotic Method. Engineering Applications Springer, Chaim, Heidelberg, 
N. Y, Dordrecht, London, 2015. 

 Received March 9, 2018     


