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Abstract. In this paper we discuss the 6-PGK innovative structure of a spatial parallel robot with  
6 degrees of freedom. We devised a complete model for the dynamic behavior of the robot which is 
defined analytically. It allows the evaluation of the robot and aids the design process. The robot is 
evaluated via the analysis of actuator force index which allows all the actuators of the manipulator to 
be compared on the same dimensionless scale and to select it properly in the design process. Three 
sets of tests are performed on the most common trajectories used in industrial applications, consisting 
in linear and circular motions. The results of the numerical tests that are presented provide some in-
sight to the dynamic behavior of the parallel robot manipulator. 
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1. INTRODUCTION 

Parallel robot manipulators are closed-loop mechanisms which control the position and the orientation 
of the end-effector via a mechanical system constituted by a number of links arranged in parallel. The syn-
chronized motion of these links produces the desired motion of the end-effector. For the past several dec-
ades, parallel robot manipulators have been found for extensive applications including assembly work, flexi-
ble manufacturing, machine tools, piezoelectric transducers, sensors, haptic devices, bionic eye mechanisms, 
spray painting, etc. [1, 2]. 

Performance is a critical topic for the further improvement of parallel robot manipulators. Improving 
the overall performance of parallel robot manipulators is the bridge to connect the academia and industry for 
the great development and real-world application. 

In order to evaluate the performance of a parallel robot, various indexes are used: the polytrope force, 
the out-of-plane stability, the performance visualization, the finite element analysis, the genetic algorithms 
and the artificial neural networks as an intelligent optimization tool for the dimensional synthesis of the spa-
tial six degree-of-freedom, the performance atlases, the performance index defined as the maximum accept-
able distance between the mobile platform geometric center and the center of mass of the set consisting of 
the platform and a payload, etc. [3, 4]. For the efficient computation of the solution set diverse software 
packages which implement various algorithms are used. Such an example is represented by the algorithm 
based on homotopy continuation [5]. 

The purpose of this paper is to study the performance of the 6-PGK parallel robot manipulator using 
the actuator force index as index of robot performance, on various set of parameters and to provide some 
insight to the dynamic behavior that is useful in the design process. The objective is to use the conservative 
estimates of parameters in order to obtain the worst case actuator requirements. 

2. THE 6-PGK PARALLEL ROBOT MANIPULATOR 

2.1. The geometric structure 

The basic geometric structure of the 6-PGK parallel robot manipulator developed at “Petru Maior” Univer-
sity consists in a mobile platform (supporting the end-effector) connected to the adjacent links at six distinct points 
Ci (i = 1,2,…,6) located at the distances li from the oz axis and symmetrical positioned at the level III, by cardan 
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kinematic pairs, which form the δi angles with the ox axis (Fig. 1) [6, 7]. The orientations of the two Cardan 
joints’ rotational axes are located in the plane of the mobile platform and perpendicular to thereto. 

Each leg has an actuated translational kinematic 
pair at level I located at the distances Li from the OZ 
axis, that are symmetrically positioned by the angles 
Δi with the OX axis and a spherical kinematic pair at 
level II. The translational kinematic pairs form the 
angles λi with the vertical axis in points Bi, varying in 
the interval of [0o–90o]. The location (position and 
orientation) of the end-effector and of the manipulated 
object are expressed in the base coordinate system 
OXYZ by the generalized coordinates of the manipu-
lated object Xp, Yp, Zp, ψ, ϕ, θ denoted 

jpq  
(j = 1,2,…,6), and in the platform coordinate system 
oxyz by the xp, yp, zp coordinates. The constructive 
dimensions of the parallel mechanism are Li = 0.4 m, 
li = 0.27 m, Ri = 0.26 m, δI  = (i-1)60°, ΔI  = (i–1)60°, 
xp = 0, yp = 0, zp = 0.25 mm (I = 1,…,6). 

The displacements in the actuated translational 
kinematic pairs (actuators displacements) are the gen-
eralized coordinates of the parallel robot qi 

(I = 1,…,6). The range of motion is restricted by the workspace limits of the mechanism, which seems to be 
like a turned teapot with six feet [8]. 

2.2. Inverse kinematics 

Motion control of the robot needs an inverse kinematics which is described as a transformation of the 
position and orientation of the end-effector into the control variables driven by actuators. The vector equa-
tions, expressed for each leg of the robot (Fig. 1) [6] are: 

( 1, 2, ..., 6)i i p i i p i iA C Oo OB oC oo B A i= − + − − =  (1)

which in matrix form are: 

[ ] [ ] ( 1, 2, ..., 6)
O oO O o O

i i p i i p i iA C Oo OB R oC R oo B A i⎡ ⎤ ⎡ ⎤= − + − − =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦  (2)

where O denotes the fixed frame OXYZ and o denotes the mobile frame oxyz assigned to the mobile platform. 
[R] is the rotational matrix that relates the coordinates fixed in mobile frame to the base coordinates OXYZ: 

[ ]
C C S C S C S S C C S S

R S C C C S S S C C C C S
S S S C C

α α α ψ ϕ ψ θ ϕ ψ ϕ ψ θ ϕ ψ θ
β β β ψ ϕ ψ θ ϕ ψ ϕ ψ θ ϕ ψ θ
γ γ γ θ ϕ θ ϕ θ

′ ′′ ′′′ − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ′′ ′′′= = + − + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′ ′′ ′′′⎣ ⎦ ⎣ ⎦

 (3)

By squaring equation (2), where: 

, , ; , , ; , ,0 ( 1, 2, ..., 6);

, ,0 ( 1, 2, ..., 6); , , ( 1, 2, ..., 6)

O T o T o T
p p p p p p p p i i i i i
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OB L C L S i B A q S S q S C q C i

δ δ

λ λ λ
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= Δ Δ = = Δ − Δ =⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (4)

and T denotes the transpose matrix, it results: 

( ){ ( ) ( ) ( )
( ) ( ) } ( ) ( )

2

2

2i i p i i p i i p i i p i i p i i p i i p i i
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p p i i
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(5)

 

 
Fig. 1 – The structure of the 6-PGK parallel robot [6]. 
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(i = 1,2, … ,6) the in-out equations of the robot that are obtained, in the form: 
2 2 0  ( 1, 2, ..., 6).i i i iq b q c i− + = =  (6)

that is a system of six second order equations in qi, with the solution (qi)1,2 (i = 1,2,...,6). It means that for the 
same location of the mobile platform two configurations of the robot′s legs are possible. The existence of the 
solutions must be verified because in practice, it is sometimes possible to obtain only a sole solution: 

( )1,2 ( 1, 2,..., 6),m M
i i iq q q i≤ ≤ =  (7)

where m
iq  and M

iq  are the minimum and the maximum values of the robot generalized coordinates. 

2.3. Inverse instantaneous kinematics 

The inverse instantaneous kinematic problem aims to compute the generalized velocities of the parallel 
robot iq  (i = 1,2,...,6) given the manipulated object velocities , , , , ,p p pX Y Z ψ ϕ θ  denoted 

ipq  (j = 1,2,... ,6), as 
follows [6]: 

6

1 2 3 4 5 6
1

( 1, 2,...,6).
ji ij p i p i p i p i i i

j

q l q l X l Y l Z l l l iψ ϕ θ
=

= = + + + + + =∑  (8)

By deriving the equations (6), the robot generalized velocities are deduced: 

( ) ( )2 2   ( 1, 2,...,6).i i i i i iq b q c q b i= − − =  (9)

By comparing the equations (8) and (9) the ijl  (i = 1,2,...,6; j = 1,2,...,6) terms of the inverse Jacobian 
matrix are obtained. 

The angular velocity terms in OXYZ system are: 

, , .X Y ZS S C S C S Cω ϕ θ ψ θ ψ ω ϕ θ ψ θ ψ ω ψ ϕ θ= + = − + = +  (10)

By differentiating equation (10), the angular acceleration projections of the manipulated object are obtained: 

, ,

.
x y

z

S S C C S S C S S C S C C S S S

C S

ε ϕ θ ψ θ ψ ϕθ θ ψ ϕψ θ ψ θψ ψ ε ϕ θ ψ θ ψ ϕθ θ ψ ϕψ θ ψ θψ ψ

ε ψ ϕ θ ϕθ θ

= + + + − = − + − + +

= + −
 (11)

2.4. Equations of motion 

The Lagrangian formulation describes the behavior of the parallel robot in terms of machine work and 
energy stored in the system rather than in terms of forces and moments of the individual legs involved [9, 
10]. The Lagrangian equations of motion of the 6-degree-of-freedom parallel robot are: 

d   ( 1, 2,...,6)
d

j j

c c
j

p p

E E
Q j

t q q
∂ ∂
∂ ∂

⎛ ⎞
− = =⎜ ⎟

⎜ ⎟⎝ ⎠
 (12)

where Ec, jpq  and Qj are the kinetic energy, the generalized coordinates of the manipulated object and the 

generalized forces, respectively. 
Since no closed-form solution exists for the forward kinematic problem of the parallel robot, Cartesian 

position and orientation of the mobile object cannot be expressed in terms of the parallel robot generalized 
coordinates. Consequently, the generalized coordinates from equations (12) are selected to be the manipu-
lated object generalized coordinates. The kinetic energy of the elements AiCi (i = 1,2,...,6) can be neglected 
due to the small masses in comparison with the other elements of the parallel robot (Fig. 1). The total kinetic 
energy of the parallel robot consists of the kinetic energy created from the general motion of the mobile plat-
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form, of the gripper and of the manipulated object and of the kinetic energy produced by the motor links 
translational motion along the prismatic joints: 

3 3 3 6
2 2

1 1 1 1

1 1 1( ) ,
2 2 2kc kl k l o p p i i

k l k i

E J m m q m qω ω
= = = =

= + + +∑∑ ∑ ∑  (13)

where m0 represents mobile platform mass, mp represents gripper and manipulated object mass, mi are the 
motor links masses and Jkl are the inertia matrix elements [ ]*O J  in terms of the coordinate system OXYZ: 

[ ] [ ] [ ][ ]* * ,O o TJ R J R=  (14)

where [ *]O J  represents inertia matrix in the coordinate system oxyz, whose axes are main axes of the mobile 
platform. The manipulated object and the gripper are considered to be a point of mass mp and coordinates 

ppp zyx ,,  in the system oxyz. 
By identification, from the virtual work of the robot mechanism it results: 

( )
6

1 2 3 4 5 6
1

 ,
i im i i G p p o o p p p

i

L Q q m g Z m g Z m g Z Q X Q Y Q Z Q Q Qδ δ δ δ δ δ δ δ δψ δϕ δθ
=

= − − − = + + + + +∑  (15)

where ( ) ,   ( 1,2,...,6)
iG i i iZ q l C iλ= − =  are the motor elements mass centers coordinates, the generalized forces 

that act on the robot mechanism are obtained: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

6 6 6 6
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6 6

5 5 6 6
1 1
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i i
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λ θ ϕ θ ϕ λ θ ϕ θ ϕ θ

= = = =

= =

− = − = − − = −

= − + − = − + + −

∑ ∑ ∑ ∑

∑ ∑
 (16)

where 
imQ  are the robot motor generalized forces, g is the gravity acceleration and M = m0+mp.  

By using equations (12) and (13), after some mathematical computations the following parallel robot 
motion equations are obtained: 

3 3 3 3 3 3
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 (17)

The motion dynamic equations (17) obtained by Lagrange method are composed of three terms: iner-
tial, centrifugal and Coriolis, and gravitational [11]. 

The relationship between [Q]-generalized forces vector, [Qm]-generalized motor forces vector, by 
means of [J]-inverse Jacobian matrix is: 

[ ][ ].mQ J Q=⎡ ⎤⎣ ⎦  (18)

3. MOTION AND TASK PLANNING FOR TESTING 

Two different types of motions or tasks are used for robot dynamic testing in Matlab simulation soft-
ware. The platform is used in a machining process to support and move workpieces. A full groove is cut with 
a four tooth end mill. The workpiece is to be taken through rectilinear and curvilinear motion as explained 
below. 
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The first motion to be used for machining the workpiece is a rectilinear motion parallel to the XY plane 
at a distance Zp from the base, as shown in Fig. 2a, along the axis of translation w which is at an angle α with 
the X axis, as shown in Fig. 2b. The platform starts moving from point Cstart, performs a ΔS displacement 
along the direction of motion in a period of time T and completes its motion at point Cstop. The workpiece is 
machined through the complete motion. 

 

 
Fig. 2 a – Rectilinear motion for machining; b. Axis of translation for the platform; c. Curvilinear motion for machining. 

 
The second motion to be used for machining the workpiece is a curvilinear motion. The trajectory has a 

curvature radius rp, the axis of rotation OZ, starting at the height Zpstart and ending at Zpstop, as shown in Fig. 
2c. The initial orientation of the platform is 0°, and it rotates 180° in a period of time T to end. The work-
piece is machined through the complete motion and the cutting forces are tangent to the path at all times. 

4. TEST CASES RESULTS AND DISCUSSION 

The effect of geometric variations is explored by changing the height Zp and the angles λi, then varia-
tions of the motion planning parameters is examined by reducing the time period T required for completing 
the motion. 

The required actuator forces are calculated for each test by the simulation program and displayed. One 
important condition is that the actuator forces requirements must not exceed the maximum force capacity. 
When this happens, the system is operating in a condition known as actuator singularity and the desired mo-
tion cannot be produced by the manipulator. The possibility of actuator singularity appearance is monitored 
with the actuator force index parameter: 

( )max max 100,mAFI Q Q Q⎡ ⎤= − ×⎣ ⎦  (19)

where: Qmax represents the actuator maximum force capacity and Qm is the required actuator force. 
The above equation is similar to the definition of some performance indices used in the area of control 

theory. The use of the actuator force index AFI allows all the actuators of the manipulator to be compared on 
the same dimensionless scale which might be somewhat difficult by just using the actuator force plots. The 
force index simplifies identifying actuator saturation; the smaller the force index, the closer the actuator is 
being saturated. This index also allows the designer to avoid overdesigning or understanding when selecting 
the actuators. 

4.1. Test cases with geometric variations 

The first test cases involve a rectilinear motion of the platform as discussed in Fig. 2a, b. In the group 
of tests the height of the platform Zp was increased from Zp1 = 0.3 m, Zp2 = 0.5 m up to Zp3 = 0.7 m. 

For the rectilinear motion it can be seen that as the height is increased there is an increase in module of 
the force requirements for all the actuators (Fig. 3a). This is seen more clearly in the actuators force index 
plots when AFI is nearest to 0, which happens for the extreme values of the actuator forces (Fig. 3b). 

This suggests that the general force requirements increase with the height. The lower the height, the 
greater horizontal force components which are desirable for balancing the effect of an external load, such as 
the cutting force. 
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Fig. 3 – Effects of the platform height on the: a) actuator forces; b) actuator force index, rectilinear motion. 

 
The second test case uses the curvilinear motion described in Fig. 2c, and the reference height of the 

platform is increased between 0.3 m, 0.5 m up to 0.7 m, the angle λ is zero and the time period T is 20 sec-
onds. The results of these tests are shown in Fig. 4a, 4b. 

 

  
Fig. 4 – Effects of the platform height on the: a) actuator forces; b) actuator force index, curvilinear motion. 

 
The effects of changing the height for the curvilinear motion are similar with the results obtained for the rec-

tilinear motion. For the curvilinear motion as the height is increased, the overall force requirements are higher. 
The next set of tests consists of changing the angle λ1 = 0°, λ2 = 30°, λ3 = 60° while keeping the plat-

form at a fixed height of Zp = 0.3 m and the time period T equal to 20 seconds. The results of the rectilinear 
and curvilinear motions are shown in Figs. 5.a,b and 6.a,b respectively. 

(a) (b) 

(a) (b) 
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Fig. 5 – Effects of the angle λ on the: a) actuator forces; b) actuator force index, rectilinear motion. 

 

  
Fig. 6 – Effects of the angle λ on the: a) actuator forces; b) actuator force index, curvilinear motion. 

 
These plots indicate that increasing the angle λ between the actuators and the normal to the base plat-

form, requires an increasing of general actuator force. The increase of λ angle increases the force compo-
nents for the actuators in the higher plane. 

4.2. Test cases with variations of motion planning parameters 

The effects of motion planning parameters variations are examined by reducing the time period T re-
quired for completing the motion. This set of tests is conducted considering the variations of the T time pe-
riod. A shorter time period leads to a faster platform movement. 

(a)

(a)

(b) 

(b) 
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The results of the tests for the rectilinear and curvilinear motions are shown in Figs. 7.a,b and 8.a,b re-
spectively. It can be seen that the reduction of the time period from 20 seconds, 10 seconds and 1 second 
does not produce any noticeable changes in the force requirements. 

 

  
Fig. 7 – Effects of the time period on the: a) actuator forces; b) actuator force index, rectilinear motion. 

 

  
Fig. 8 – Effects of the time period on the: a) actuator forces; b) actuator force index, curvilinear motion. 

 
The platform moves faster as the time period is shorter, and the velocity and acceleration of the con-

nectors will increase. This will increase the magnitude of the tangential, Cori-olis and centrifugal coupling 
wrenches of the actuators, since they are functions of the kinematic state of the system, among other things. 

Since these wrenches are a function of the kinematic state, one would expect a noticeable increase in 
the actuator force requirements as the platform moves faster. In the test results this trend is not observed. 
One possible explanation is that the magnitudes of the angular velocities and acceleration vectors are small 
for the motions tested. 

(a)

(a)

(b) 

(b) 
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5. CONCLUSIONS 

In this paper we present the new 6-PGK spatial parallel robot with 6 degrees of freedom. In order to 
evaluate the robot and fulfill the design process a complete dynamic model based on the Lagrange method 
was defined. The numerical evaluation phase is carried out by exploiting the concept of actuator force index 
which is essentially a dimensionless performance index that allows the designer to avoid overdesigning or to 
appropriate actuators selection. This index indicates when an individual actuator saturates but does not indi-
cate for how long it stays saturated and does not take into account the rest of the actuators. The designer has 
to compare all the force index plots for one design with all the force index plots of a competing design in 
order to select the most suitable design. 

Tests are done on two different trajectories which are most common in industrial applications. 
In a first set of tests it is demonstrated for both trajectories that the general force requirements increase 

with the height Zp on which the task is performed. The lower the height, the batter the capacity of the parallel 
robot manipulator to balance the effect of external load. 

The next set of tests consists in changing the angle λ between the actuators and the normal to the base 
platform. The results indicate that increasing λ angle increases the general actuator force requirements. The 
increase of angle λ increases the force components for the actuators in the higher plane. 

The third set of tests was conducted using variations of the time period T for the same task. It is demon-
strated that the reduction of the time period does not produce any noticeable changes in the force requirements. 

The equations of motion depend on a large set of parameters that can vary. This underlines the high 
importance of extensive testing with different sets of geometric parameters, system parameters, motions and 
tasks in order to carefully study the effects of coupling. These results provide some insight on the dynamic 
behavior of a developed system and how it is affected by different factors. 
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