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Abstract. The paper aims to present an application of the three-wave method and the homoclinic test 
method to the (3+1)-dimensional Sharma-Tasso-Olver-like equation. As a consequence, abundant 
novel types of analytical solutions involving multiple arbitrary parameters to the equation are 
revealed. Moreover, by choosing special values for the parameters, a few plots of the presented 
solutions are made to exhibit localized structures and dynamic behaviors. 
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1. INTRODUCTION 

As is well-known, a great many of real physical features and properties of nonlinear complex 
phenomena can be characterized by nonlinear partial differential equations. Due to the fact that the analysis 
of exact solutions to nonlinear partial differential equations provides more insight into interpreting these 
nonlinear physical phenomena and dynamical processes, it is a significant subject for researchers to seek 
novel exact solutions to nonlinear partial differential equations. During the past decades, a number of fruitful 
algorithmic methods and their extensions have been presented, such as the Hirota’s bilinear method [1,2], the 
Darboux transformation method [3], the (G’/G)-expansion method [4], the sub-ODE method [5], the multiple 
exp-function method [6,7], the transformed rational function method [8], the algebra-geometric method [9-
12] and so forth. Whereas among the methods of solving nonlinear differential equations, the Hirota’s 
bilinear method is one of the most direct and powerful approaches. The key step in this method is to 
transform the equation under consideration into its related bilinear differential form, based on which one can 
construct one-solitary-wave, two-solitary-wave as well as N-solitary-wave solutions. Inspired by this idea, 
plenty of research work was done on the interaction phenonmena among solitary waves, periodic waves and 
others. For example, Dai et al. [13] proposed an extended homoclinic test approach and obtained two types 
of exact periodic solitary-wave and kinky periodic-wave solutions of the Jimbo-Miwa equation. Wang et al. 
[14] handled the (2+1)-dimensional and (3+1)-dimensional KdV-type equations via generalized three-wave 
type ansatz approach, and acquired periodic type three-wave solutions. Recently, various classes of 
interaction solutions between lumps and kinks to the (2+1)-dimensional BKP equation [15] and KP equation 
[16] were presented through combining quadratic functions and exponential functions. Diverse interaction 
phenomena between lumps and solitons [17,18] were explored as well by using quadratic functions and 
hyperbolic cosine functions. 

The (1+1)-dimensional classical Sharma-Tasso-Olver equation [19] reads 

3 23( ) ( ) 02t x xx xxxu u u u+ α + α + α = , (1)
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where u  is an unknown function of the variables x  and t .  This equation is a prominent double nonlinear 
dispersive model. Since the significance of scientific applications, systematical investigations [20-23] have 
been carried out on equation (1). Recently, based on the idea of Lax pair generating function, a new (3+1)-
dimensional Sharma-Tasso-Olver-like equation [24] 

3 1 2 1

1 2 1

[(3 ) ] [(2 ) ]

[(2 ) ] 0 ,
t x x xxx y x x y x y x xxy

z x x z x z x xxz

u uu u u uu u u u u u

uu u u u u u

− −

− −

+ α + + + β + ∂ + ∂ +

+ γ + ∂ + ∂ + =
 (2)

with , ,α β γ  being real constants, was proposed. Here 1
x
−∂  denotes the inverse operator of x∂  defined by 

1( )( ) ( ) d
x

x f x f t t−

−∞
∂ = ∫ , 

and 1 1 1x x x x
− −∂ ∂ = ∂ ∂ = . It is clear that Eq. (1) can be regarded as the special case of Eq. (2) when 0β = γ = . 

If only set 0γ = , then Eq. (2) reduces to the (2+1)-dimensional Sharma-Tasso-Olver-like equation. By virtue 
of the simplified Hirota’s approach, multiple-soliton solutions for Eq. (2) were gained [24]. It will be our 
main concern to construct more novel exact solutions to Eq. (2) in the rest of this paper. 

2. THREE-WAVE METHOD 

In this section, we are interested in studying Eq. (2) by applying the three-wave method [14,25] and 
find out diverse exact solutions. Equation (2) can be mapped into the following equation in f :  

0xxxx xxxy xxxz x xxx x xxy x xxz xt x tf f f f f f f f f f f f f f f fα + β + γ − α − β − γ + − =  (3)

via employing a dependent variable transformation 

(ln )xu f=  

with ( , , , )f f x y z t=  as an auxiliary function. Obviously, if f  satisfies Eq. (3), then (ln )xu f=  directly 
generates a solution of the original equation (2). 

In order to determine f  explicitly, we set an auxiliary function of such form 

4 4
2 2 3 3 4 5cos cosh e e ,

,    2,3,4,i i i i i

f a a a a
k x l y m z c t i

ξ −ξ⎧ = ξ + ξ + +⎪
⎨ξ = + + + =⎪⎩

 (5)

where , , , ,i i i i ia k l m c  and 5a  are some constants to be determined below. Carrying (5) into (3) yields a 
system of determining equations about the unknowns. However, for the sake of simplicity, we omit to list 
them. Then, under the condition of 2 3 4 5, , ,a a a a  being all not zero, we solve the resulting system to find that 

2 2 3 2 2
2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4( ) ,   ( ) ,   c k k l m c k k l m c k k l k m= α + β + γ = − α + β + γ = −α − β − γ , 

where 2 3 4 2 3 4 2 3 4, , , , , , , ,k k k l l l m m m  are all arbitrary constants. Accordingly, we acquire the expression of 
solutions as follows 
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Setting 4 0a >  and 5 1a =  in (6), therefore we arrive at the kinky periodic soliton solutions to (2) 

( )
( )

2 2 2 3 3 3 4 4 4 4

2 2 3 3 4 4 4

1sin sinh 2 sinh ln2
1cos cosh 2 cosh ln2

a k a k k a a
u

a a a a

− ξ + ξ + ξ +
=

ξ + ξ + ξ +
. 

Next, we are going to consider some special cases associated with (5) and present a series of exact 
solutions to Eq. (2). 

● Case 1.  If 2 3 0a a= =  and 
3 2 2

4 4 4 4 4 4c k k l k m= −α − β − γ , 

where 4 5 2 3 4 2 3 4 2 3 2 3 4, , , , , , , , , , , ,a a k k k l l l c c m m m  are free constants, then (5) can be abbreviated as 

4 4
4 5e ef a aξ −ξ= + , 

which in turn gives the soliton solution of Eq. (2) 

4 4
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−
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+
 

with 
3 2 2

4 4 4 4 4 4 4 4 4( )k x l y m z k k l k m tξ = + + − α + β + γ . 
This solution is similar as the result appeared in [24]. 

● Case 2.  If 2 0a =  and 
2

3 2 2 2 23
5 3 4 3 4 4 3 4 4 4 3 4 4 4

4

,   ,   2 ,   1
4
aa k k c k k l k l k m k m c
a

= = ε = − εα −β − εβ − γ − εγ − ε ε = ± , 

where 3 2 4 2 3 4 2 4 2 3 4, , , , , , , , , ,a k k l l l c c m m m  and 4 0a ≠  are free constants, then (5) can be expressed by 

4 4
2
3

3 3 4
4

cosh e e
4
af a a
a

ξ −ξ= ξ + + . 

Substituting the results into (4) gives rise to 

4 4
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2
3
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with 
3 2 2 2 2

3 4 3 3 4 4 3 4 4 4 3 4 4 4

4 4 4 4 4

( 2 ) ,
.
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k x l y m z c t
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● Case 3.  If 3 0a =  and 
3 2 2 2

2 2 2 2 2 2 4 4 4 4 4,   ( )c k k l k m c k k l m= α +β + γ = − α +β + γ , 

where 2 4 5 2 3 4 2 3 4 3 2 3 4, , , , , , , , , , , ,a a a k k k l l l c m m m  are free constants, then we obtain the auxiliary function 

4 4
2 2 4 5cos e ef a a aξ −ξ= ξ + + , (7)

and the kinky breather wave solution to Eq. (2) 
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where 
3 2 2

2 2 2 2 2 2 2 2 2
2

4 4 4 4 4 4 4 4

( ) ,

( ) .

k x l y m z k k l k m t

k x l y m z k k l m t
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⎨
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Under the constraints of 2 4 0k k= ≠  and 5 1a = , expression (7) is rewritten as 

( )2 2 4 4 4
1cos 2 cosh ln2f a a a= ξ + ξ + . 

The corresponding kinky breather wave solution for Eq. (2) takes the form 
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( )
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 (8)

with 
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● Case 4.  If 4 4 4 0a k c= = =  and 

3 2 2 3 2 2
2 2 2 2 2 2 3 3 3 3 3 3,   c k k l k m c k k l k m= α +β + γ = −α −β − γ , (9)

where 2 3 5 2 3 2 3 4 2 3 4, , , , , , , , , ,a a a k k l l l m m m  are free constants, then (5) becomes 

4
2 2 3 3 5cos cosh ef a a a −ξ= ξ + ξ + . 

As a result, the expression of solution reads 
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, 

where 
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In particular, if 4 5 0a a= =  and 2 3,c c  satisfy (9), then the auxiliary function is of the form 

2 2 3 3cos coshf a a= ξ + ξ , 

which leads to the kinky breather wave solution 

2 2 2 3 3 3
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a k a ku
a a

− ξ + ξ
=

ξ + ξ
, 

where 
3 2 2

2 2 2 2 2 2 2 2 2
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( ) ,
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3. HOMOCLINIC TEST METHOD 

In what follows, we proceed to look for novel solutions of Eq. (2) by virtue of the homoclinic test 
method [26], which has the following assumption 
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2 22
1 1 21 e cos e ,

,   1, 2,i i i i i i

f b b
k x l y m z c t d i

ξ ξ⎧ = + ξ +⎪
⎨ξ = + + + + =⎪⎩

 (10)

where , , , , ,i i i i i ik l m c d b  are some undetermined parameters. And then substitution of (10) into (3) leads to a 
set of algebraic equations with respect to the unknowns. Setting 1 2,b b  being all not zero, the solutions that 
follow these equations can be given below: 

● Case 1.  When 2 2 0k c= =  and 

3 2 2 2
1 1 1 1 1 1 2,  mc k k l k m l γ
= α + β + γ = −

β
, 

where 1 2 1 1 1 2 1 2, , , , , , ,b b k l m m d d  are some free parameters, the exact periodic soliton solution for Eq. (2) is 

2

2 2

1 1 1
2
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e sin
1 e cos e

b ku
b b

ξ

ξ ξ

ξ
= −

+ ξ +
, (11)

in which 
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2
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( ) ,

.

k x l y m z k k l k m t d
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⎪
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With regard to expression (11), by taking account of 2 0b > , it is then turned into 

( )
1 1 1

1 1 2 2 2

sin
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b ku
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ξ
= −

ξ + ξ +
. (12)

● Case 2.  When 1 2 0k c= =  and 

2 2 2 2
1 2 1 2 1 2,  k mc k l k m l α + γ
= −β − γ = −

β
, 

where 1 2 2 1 1 2 1 2, , , , , , ,b b k l m m d d  are free parameters, the corresponding solution reads 
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with 
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● Case 3.  When 
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2
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where 1 2 1 2 1 2 2 1 2, , , , , , , ,b b k k l l m d d  are free parameters, hence Eq. (2) possesses the solution 
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with 

2 3 2 2 2 2
1 1 1 1 2 2 1 2 1 2 1 2 2 1 2 2 2
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⎪
⎩

 

 
● Case 4.  When 

2
2 3 21

2 1 2 1 2 2 1 2 2 2 2 2 2 1
1,   ,   ( ),   8 8 8 ,   1

4
bb k ik m i m i l l c k m k k l ic= = ε = ε γ + ε β − β = − γ − α − β + ε ε = ±

γ
, 

where 1 1 2 1 2 2 1 2, , , , , , ,b c k l l m d d  are free parameters, Eq. (2) admits the solution 

2 2 2

2 2

22
1 2 1 1 2 1 1 2

22
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1e sin e cos e2
11 e cos e4

ib k b k b k
u

b b

ξ ξ ξ

ξ ξ
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=
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with 

1 2 1 2 2 1 1 1

2 3 2
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1 ( ) ,

(8 8 8 ) .

ik x l y i m i l l z c t d
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4. DISCUSSIONS AND CONCLUSIONS 

We choose some of the obtained solutions to display their characteristics of localized structures and 
dynamic behaviors by depicting graphics in three dimensions. Figure 1 shows that the breather wave solution 
(8) stands in a straight line and propagates towards the negative direction of the t  axis with increasing y .  In 
this wave, there also exists a certain angle with the x  axis and the t  axis, which means that the breather wave 
possesses both spatial and temporal periodicities. When time t  is fixed, it is found that the amplitude of the 
wave oscillates up and down, and the wave moves towards the negative direction of the x axis. Thus it can be 
seen that such a wave is generated by the interaction between the soliton and the periodic wave. In addition, 
the solution (12) is plotted in Fig. 2. Worthy to note that in Fig. 2b the wave stands in a straight line and 
possesses many adjacent humps in opposite directions: some are above the plane and others are underneath. 
As increasing the variable z, the wave travels towards the positive direction of the y  axis. 

 

           
Fig. 1 – Kinky breather wave solution (8): a) y = −2;  b) y = 0;  c) y = 3. 
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Fig. 2 – Periodic solitary wave solution (12): a) y = z = 0;  b) x = z = 0;  c) x = y = 0. 

 
In conclusion, taking advantage of two direct constructive approaches, we have succeeded in 

presenting diverse new exact analytical solutions for the (3+1)-dimensional Sharma-Tasso-Olver-like 
equation, some of which include kinky periodic soliton solutions, kinky breather wave solutions and periodic 
solitary wave solutions. The obtained solutions contain multiple arbitrary parameters. Also the characteristics 
of localized structures and dynamic behaviors of some waves were shown graphically. The advantages of 
algorithms performed in this paper are straightforward and reliable in their applications and do not result in 
more complicated calculations. 
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