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Abstract. A class of linear differential equations having a coefficient depending on two real parameters is 
considered. The dependence on the parameters ensures the existence of an explicit periodical analytical 
solution. For a certain dependence of the coefficient parameters, the second solution of the differential 
equation is also periodic. Parameter dependence is specified by an integral with parameters. We deduce the 
analytical expression of the second solution of the equation. 
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1. PROBLEM FORMULATION 

Let us consider the following second order periodic linear differential equation with respect to real 
dimensionless time t .  The coefficient of the equation depends on the real small p  and k  parameters 
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In what follows we assume that the coefficient Q(t,p,k) is a real positive bounded continuous periodic 
function with respect to t .  By the working hypothesis we admit the particular abstract case 
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The set of solutions of linear equation is the two dimensional real space [1,2]. The function x is a 
periodic solution [3,4] 
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The second solution is described by Floquet theory [5,7]. 
Let u  be the derivative of solution x .  The x  and u  periodic functions check the next system 
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If k  is different from zero, then by composing, the real or complex following constants depend on the 
p  and k  parameters 
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The unknown yp and vp functions represent the periodic solution of the next non-homogeneous system 
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The function y  and its derivative v  have the following expressions 
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This function and its derivative represent a solution of the homogeneous system 
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Since the derivative of following expression is zero, the functions x ,  u ,  y ,  v have the integral property 

x v − u y = 1. (10)

Consequently, the Floquet’s expression of the fundamental matrix follows (see [5,6,7]) 
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The problem is to prove the expression of the coefficient σ and to obtain analytically the periodic 
solution yp , vp . Let yp1 be the first term of the yp expression 
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Let γ  be the periodic function 
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The second term yp2 of the yp expression follows as 
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The yp and vp functions represent the periodic solution of the non-homogeneous system (7). 
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2. EXPLICIT CHARACTERISTIC COEFFICIENT 

From formulas (7) and (9) result in the non-homogeneous equation for yp 
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Let C  be the variable constant of integration 
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The derivative of the next function C0 it is a singularity of function x−2. The product C0 x will be a 
periodic bounded function 

C0 = [(1− p)2 – k] tan t ,     C0 x = [(1− p)2 − k] [1 − 2 p cos2 t + ( p2 − k)cos4 t ] sin t ,     Cσ = C − C0 . (19)

Consequently 
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The first expression of characteristic coefficient will be 
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We will obtain the second expression of σ. 

3. SECOND EXPLICIT SOLUTION 

If k  is different from zero, then by composition, the real or complex constants depend on the p  and k  
parameters, according to formula (5) 

a2 b2 = (1−p)2 − k,        a2 + b2 = 2(1−p) ,       b2 − a2 = 2 k . (22)

We make the change of the variable of integration 
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The last denominator has the equivalent expression 
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From equation (17) we deduce the equation of function h(s) 
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For k  different from zero there are the following identities 
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The unknown h(s) has two h1(s) and h2(s) terms 

h(s) = h1(s) + h2(s),            h1(s) = (1−2p + p2 − k )2 
2 2

2 2 2 2 2 22 2
A s B ss
a s a b s b

⎛ ⎞
+ ⋅ + ⋅⎜ ⎟

+ +⎝ ⎠
 

2 22
2 2 2 2 2

d
(1 2 ) .

d 1
h C Dp p k
s s a s b s

⎛ ⎞ σ
= − + − + −⎜ ⎟+ + +⎝ ⎠

 

(31)

Thus 

yp1 (t) = x(t) h1( tan t ) = (1−2p + p2 − k ) 2 [1−2p cos2t + (p2 − k) cos4t + E ] sin t , (32)

where 

E = 0.5 (cos4 t )[A2 a−2 ( tan2t + b2 ) + B2 b−2 ( tan2t + a 2 )] 

E = 0.5 ( cos2t) { A2 a − 2 [ 1 + (−p + k 1/2 ) cos2 t ] + B2 b−2 [ 1 − ( p + k 1/2 ) cos2 t ] }. 
(33)

Finally 

yp1 (t) = (1−2p + p2 − k ) (1 + K1 cos2 t + K2 cos4 t ) sin t, 

K1 = 0.5 (A2 a −2 + B2 b −2 ) − 2p,         K2 = p2 − k − 0.5 [A2 a −2 ( p − k1/2 ) + B2 b −2  ( p + k1/2 ) ]. 
(34)
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Formula (12) is correct. From formulas (26), (29) and (30) it follows 

2 22 , 2 ,
2 2

B A A BC A D B
a bk k

⎛ ⎞ ⎛ ⎞
= + + = − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

β1 = ( 1 − 2p + p2 − k ) 2 C /a ,      β2 = ( 1 − 2p + p2 − k ) 2 D /b 
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The C2(t) function equation is 
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According to formula (13), the parenthesis has the expression γ(t). Formulas (14) and (15) give the 
periodic solution yp and vp of the non-homogeneous system (7). The solution ( y , v) of the system (9) will be: 

y(t) = yp1 (t) + yp2 (t) + t σ x(t),            v(t) = vp1 (t) + vp2 (t) + σ x(t) + t σ u(t) . (37)

The second solution y(t) is the periodic function if and only if σ(p , k) = 0. The graph of the function 
p(k)  for which the coefficient σ  is zero is comprised between two segments 

σ ( p(k), k) = 0     ⇒     − k / 4 − 0.002 < p(k) < − k / 4 + 0.00001,     − 0.2 < k < 0.2. (38)

4. RESULTS 

The analytical solutions of the differential system of formulas (4), (7) and (9) have the expressions 
specified in the MATHCAD program [8, 9], below. The graphs in Figure 1 show the yp and vp periodic 
solution of the non-homogeneous system (6) and also the two additive components yp1 , yp2 and vp1 , vp2 . For 
the chosen k  and p  values the coefficient σ  is practically zero, so y ≅ yp and v ≅ vp are periodic function. 

The program’s instructions are the following: 

k := 0.2     p := −0.051213008 
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This determines the terms of the periodic component of the second solution. The graphs of these 
terms are given in Fig. 1, when σ  is null the fundamental matrix is periodic 

σ ( p(k), k) = 0         ⇒        Φ ( t + 2 π ) = Φ (t). (39)

 
 

 
Fig. 1 – The graphs of the periodic solution yp and vp of system. 

 

Numerical x, u, yp , vp , y, v solutions of the (4), (7) and (9) systems are denominated in capital letters. 
These solutions check the next system, where the integration interval is divided into N = 2048 parts, 
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Solution matrix columns S represent the values of the variable t and the corresponding values of 
unknown X, U, Yp , Vp , Y, V 

t := S<0>    X := S<1>    U := S<2>    Yp := S<3>    Vp := S<4>    Y := S<5>    V := S<6> 



7 Second order differential equation with periodic fundamental matrix 241 

 

 
Fig. 2 – The graphs (U, X) and (Vp , Yp) show periodicity. 

 
The amplitude of the oscillations of the solution y  increases proportionally to time t .  It is important to 

integrate on the interval [0, 2π], since y (t + 2nπ) = y(t) + 2nπ σ x(t). 

5. CONCLUSIONS 

The constructive demonstration of following propositions is the main contribution of the work. If 
Q( t,p,k)  is a set of functions according to formula (2), then differential equation (1) has a periodic solution 
x(t)  given by formula (3). If the function σ(p,k)  has the algebraic expression (6), then the differential 
system (7) has a periodic solution yp(t), vp(t). The second fundamental solution y(t)  of equation (1) has the 
expression y(t)  = yp(t) + t ⋅ σ(p,k) ⋅x(t) , and the fundamental matrix of the general system (9) has the 
expression (11). It is also shown that the algebraic function σ(p,k) is the value of an integral with the real p 
and k parameter. Explicit expressions of the fundamental matrix components are defined in MATCAD 
programs (Figures 1 and 2). Numerical calculations test the truth of the above propositions, especially for 
cases k =0.2 and p =−0.051213008 respectively p =−0.075, p =−0.03. The proof is in the second section. 
The wronskian determinant of solutions x  and y  does not explicitly depend on Q .  Given u =dx /dt and also 
v =dy /dt we will obtain for y(t)  the equation (10) x ⋅v − u ⋅y = 1 or the linear equation (16) for yp(t). The 
homogeneous equation has the solution C ⋅x(t). The method of variation of the integration constant requires 
yp(t) = C(t) ⋅x(t). The unknown function C(t) checks a singular equation (17) in the sense that x(π /2) = 0. 
The singularity is isolated, resulting in the expression C(t) = C0(t) + Cσ(t). Although C0(t) is periodic, 
unbounded according to (19), the product x(t) C0(t) is a periodic bounded function. The term Cσ(t) must be 
periodic; otherwise yp(t) would not be the periodic component of y(t). The derivative dCσ /dt is a periodic 
function bounded according to (20). But it is known that the integral of a periodic function is periodic, if and 
only if the mean value of the function is zero. Imposing this condition it follows the expression (21) of the 
coefficient σ(p,k). This is an integral with p  and k  as parameters. In the third section the expression of the 
periodic component yp(t) is determined. By the change of the integration variable C(t) = h(s), s = tan t, the 
equation (26) follows. The function h(s) is the primitive of a rational function. By a decomposition in 
certain simple fractions, we need to express the h(s) = h1(s) + h2(s) function. Function h1(s) has the explicit 
expression (31). The first periodic yp1(t) term of the yp(t) component is derived according to formula (34). 
In the differential equation (35) of function h2(s) the coefficient σ( p, k) appears. To have h2(s) bounded at 
the infinite point the algebraic expression (6) of the coefficient σ( p, k) is got. According to formula (36), the 
function h2(s) corresponds to the restriction to the interval [0, π /2) of function C2(t). The differential 
equation (35) will correspond to the equation (36) of the function C2(t) for the positive variable t. Solution 
C2(t) of equation (36) is given in expression (13) of γ(t) function and integral function (14). Knowing C2(t) 
we determine the second component yp2(t) of the yp(t) = yp1(t) + yp2(t) function. 
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In the fourth section there is a numerical program for testing the formulas given above. For the 
exemplified case k = 0.2 the theoretical formulas are consistent with the numerical results. In the case of 
negative k  values, the coefficients a  and b  have complex conjugate values. However, both σ( p, k) and γ(t) 
functions have real values. Finally C2(t) and yp(t) have real values. It is important to note that the graphs in 
Figure 2 are plotted by knowing only Q(t) and the algebraic expression of the σ  coefficient. The particular 
case k = p2, p = 2q / (1+3q) was detailed in the paper [9]. The criterion of integrity σ = 0 can be generalized if 
the periodic solution depends on several parameters. 
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