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Abstract. The objective of this letter is to generate new low-pass FIR filters with linear phase 
response and equiripple stop-band characteristic. The Chebyshev orthogonal polynomials of the first 
kind are used to generate the design forms of the new non-recursive filters with all poles at zero. 
Comparative analyses of frequency response characteristics of these filters with filters suggested 
earlier in the literature are given for the same design parameters in a few examples.  
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1. INTRODUCTION 

Extensively used type of digital filters in digital signal processing applications is the Finite Impulse 
Response (FIR), mainly for its guaranteed stability (they have no poles). The order of these filters directly 
affects the required number of adders, multipliers and memory for the filter. Cascaded-Integrator-Comb 
(CIC) filter [1] is widely used as decimation filter due to its simplicity; it requires no multiplication but 
rather only additions/substractions. Generally, the classical CIC filter does not provide enough attenuation of 
aliasing, has passband droop that increase with the increase of its comb parameter. An example of design and 
analysis of new FIR filter functions based on classical CIC filters is proposed in [2]. The basic CIC section, 
in conjuction with seven other sections repeated several times, makes the new filter functions presented in 
[2]. Compared with existing filter functions in the literature, the proposed functions not only have improved 
insertion loss but also a multiplierless architecture, better passband characteristics and lower impulse 
response coefficients. The Chebyshev polynomials are special class of polynomials especially suited for 
approximating other functions. In [3], Christoffel-Darboux formula for Chebyshev orthogonal polynomials 
of the first kind is used for generation of a linear phase digital FIR filter function in compact explicit form by 
using an analytical method. New class of extremely economic linear phase symmetric selective FIR filters is 
obtained by the proposed approximation technique. Generally, several methods for improving the digital 
filter efficiency have been described in [4–7]. In the modified filter designs presented in [6] and [7], the 
designs of compensation filters for comb decimators are introduced in order to improve magnitude 
characteristics in passband. 

The Chebyshev polynomials of the first kind are used here to generate integer coefficients of new 
selective low-pass filters. The motivation behind the use of Chebyshev polynomials of the first kind is to 
design filters with appropiate characteristics in passband and stopband without additional compensation 
filters. This paper proposes non-recursive filters with all poles at zero which show equiripple characteristics 
in stop-band. Linear phase characteristic is preserved which is very important in realization of decimator for 
large conversion factors. 

The recursion for generation of the Chebyshev polynomial of the first kind [8–10] denoted as ( )NT x  is 
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The first few Chebyshev polynomials of the first kind can be found in [8]. 
The Chebyshev polynomials of the first kind are used to generate Coleman filter form given in [9]. 

There, the frequency response is 20
7( ) 2 ( ( ))G f T F f−= ⋅ , where 7 ( )T x  is the Chebyshev polynomial of the 

first kind of degree seven and the frequency dependent function is defined as ( ) 2 2 cos(2 )F f f= + ⋅ π . In 
that paper, the exact functions with Chebyshev polynomials of degree N  are obtained by following relation 

( ) (0) ( ( ))N NG f G T F f= ⋅ , (2)

where the constant is exactly calculated as (0) ( (0))NG T F= , i.e as the Chebyshev polynomilas of degree N  
for argument being function ( ) 2 2 cos(2 )F f f= + ⋅ π  and frequency chosen to be zero. 

The authors’ idea is to try to design new filter functions which will keep simplicity of the given 
structure by avoiding the multipliers, being low complexity structure with linear phase characteristic and 
equiripple stopband. The idea is to change the argument function used in Chebyshev polynomials. In this 
approach, the desired high stopband attenuation can be achieved directly, without the need for combination 
with some compensation filter. 

The rest of the paper is structured as follows. In the Section II, a new filter form based on the 
Chebyshev polynomials of the first kind is generated. Also, implementation form of the proposed filter is 
presented. Designs of a few examples with even and odd filter orders are described in Section III. Section IV 
presents comparative analysis of filters’ characteristics designed for different filter orders. The paper is 
concluded in Section V. 

2. THE NEW FILTER FORM AND ITS IMPLEMENTATION 

The Chebyshev polynomials of the first kind are also used here to generate new low-pass filters. In this 
case, the function of new filter ,new ( )NG f  is generated by equation 

,new new new( ) (0) ( ( ))N NG f G T F f= ⋅ , (3)

where the normalized constant is calculated as new new(0) ( ( ))NG T F f= , i.e. as the Chebyshev polynomials of 
degree  and frequency chosen to be zero ( 0f = ) for applied new cosinuse function  

new ( ) 1 2 cos(2 )F f f= + ⋅ π . (4)

Here, a new cosinuse function with reduced DC component is used. These equations allow one to predict 
how the filter will respond to varying frequency. 

The non-recursive nature of FIR filter offers the opportunity to create implementation schemes that 
significantly improve the overall efficiency of the filter. Using the complex exponential form of the cosine 
function 

2 cos( ) jk jkk e eω − ω⋅ ω = + , (5)

and setting 
jz e ω= , (6)

it follows 

2 cos( ) k kk z z−⋅ ω = +  (7)

which will be used in forming digital filter function. Generally, the FIR filter function of the corresponding 
non-recursive implementation has the form [11] 
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where the filter function * ( )NG z  is defined as 
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and (0)G  is the normalized constant for the unit magnitude response at frequency 0f = . The vector of 
impulse response coefficients ( , )h N r  is defined as { }( , ) ( , 0), ( ,1),..., ( , 2 )N r h N h N h N N=h . The 
coefficients satisfy the following symmetry condition, ( , ) ( , 2 )h N r h N N r= − .  

The non-recursive structure can achieve computational simplicity through polyphase decomposion. 
The polyphase decomposition can be applied to non-recursive form by grouping the odd and even numbered 
coefficients. The transfer function can be written in form of two polyphase componenets 2
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In case of a higher order filters, the polyphase decomposition of the transfer function can be also used. The 
FIR transfer function is decomposed into several lower order transfer function called polyphase components, 
which are added together to compose the original transfer function. The polyphase components are combined 
to form parallel structure.  

3. DESIGN EXAMPLES 

Designs of a few examples are carried out in MATLAB. The function proposed by J. Coleman [9], 
( )NG ω  from Eq. (2), and functions of new FIR filters, ,new ( )NG ω  from Eq. (3), for filter order N  are 

arranged here differently as the following unique function of ω 

[ ]( ) (0) (1) cos( ) (2) cos(2 ) ( ) cos( ) / (0)NG a a a a N N Gω = + ⋅ ω + ⋅ ω + + ⋅ ω… , (11)

[ ],new new( ) (0) (1) ( ) (2) cos(2 ) ( ) cos( ) / (0)NG a a cos a a N N Gω = + ⋅ ω + ⋅ ω + + ⋅ ω… , (12)

which are normalized with the constant (0)G  and new (0)G , respectively. Filter coefficients ( )а i , 
1, 2,...,i N=  are given in tabular form in Table 1 for solution of FIR filters given by J. Coleman and Table 2 

for new FIR filters. Filter coefficients of new FIR filters given in Table 2 have lower values versus 
coefficients values of Coleman filter functions given in Table 1. 

Table 1 

Coefficients a(i), 1, 2,...,i N= of FIR filters (Eq. (2)) with function ( ) 2 2 cos(2 )F f f= + ⋅ π  

N 5 6 7 8 9 

G(0)  15124 119071 937444 7380481 58106404 

a(0) 3642 26315 192530 1421825 10576370 

a(1) 6130 45456 339010 2540800 19122498 

a(2)  3600 29028 230048 1805504 14089824 

a(3) 1400 13312 118160 1008128 8390256 

a(4) 320 4128 44352 432448 3976128 

a(5) 32 768 11424 137216 146275 

a(6)  64 1792 30208 401664 
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Table 1  (continued) 

a(7)   128 4096 77148 

a(8)    256 9216 

a(9)     512 
 

Table 2 

Coefficients a(i), 1,2,...,i N=  of FIR filters (Eq. (3)) with new function new ( ) 1 2 cos(2 )F f f= + ⋅ π  

N 5 6 7 8 9 

new (0)G  3363 19601 114243 665857 3880899 

(0)а  681 3653 19825 108545 598417 

(1)а  1210 6600 36274 200576 1114578 

(2)а  840 4836 27664 157760 898416 

(3)а  440 2816 17360 104704 622896 

(4)а  160 1248 8736 57664 367200 

(5)а  32 384 3360 25600 180576 

(6)а   64 896 8704 71808 

(7)а    128 2048 21888 

(8)а     256 4608 

(9)а      512 

4. COMPARATIVE ANALYSIS OF FILTERS 

Normalized curves of designed low-pass filters with functions ( )F f  and new ( )F f , versus normalized 
frequency / (2 )f = ω π , are summarized in Figs. 1 and 2. Examples of even and odd orders are generated in 
MATLAB. The generated filter characteristics by Eq. (11) for the function new ( )F f  and different filter order 
N  show higher selectivity in the transient area in comparison with filters generated by Eq. (11) for the 
function ( )F f . The both filters give equiripple stop-band characteristics where little better stop-band 
performances are obtained by filters designed with function ( )F f . That filter has an stop-band down about 
100 dB for 6N = , and about 120 dB for 7N = , which is depicted in Table 3. The suppression in the stop-
bands for new filters are about 85 dB and 100 dB, for 6N =  and 7N = , respectively, Table 3. In order to 
achieve the same attenuation in stop-band, the new filters require higher order. Table 3 gives also some other 
FIR filter parameters, such as pass-band cut-off frequencies cpf  at max 0.1dBα = , and minimum attenuation  

minα  at stop-band cut-off frequency cnf . For the filters with function ( )F f , the normalized stop-band cut-
off frequency is 0.33cnf = , and in case of filters with the function new ( )F f  it is ,new 0.25cnf = . These values 

of stop-band cut-off frequencies indicate higher selectivity of new filters. For the designed new filters, the 
normalized stop-band cut-off frequency is ,new 0.25cnf =  independently of the filter order. Also, passband 

drop is very small and passband edge frequency differs very little for different values of filter order, Table 3. 
Deep, equiripple stopband is obtained for all filter orders, but the suppression in the stop-bands differs 
depending of filter order as shown in Table 3. 
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Fig. 1 – Normalized curves of filters in dBs for case 6.N =  
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Fig. 2 – Normalized curves of filters in dBs for case 7.N =  

 
Table 3 

Parameters of designed FIR filters 

 N 5 6 7 8 

Ref. [9] 0.0150 0.0137 0.0127 0.0119 max @ cpfα  

max 0.1dBα =  New filter 0.0129 0.0117 0.0108 0.0102 

Ref. [9] @0.33  83.59 101.50 119.40 137.40 
min @ cnfα  

New filter @0.25  70.53 85.85 101.20 116.50 

5. CONCLUSION 

New lowpass filters proposed here are FIR filters with an equiripple stop-band characteristic and a 
linear phase response. Design forms include the Chebyshev orthogonal polynomials of the first kind which 
are frequency dependant according to suggested function. Digital filters are commonly employed in signal 
processing applications. The suggested design keeps the good features of previously designed FIR filters 
such as linear phase characteristic which is very important for large factor conversions. Verifycation of the 
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design equations of new filters and FIR filter parameters are provided for even and odd order. Using new 
function in filter design, filter performances are improved in a manner that greater selectivity of magnitude 
response characteristics and reduced values of filter coefficients are obtained. 

The proposed filter functions have potential applications in certain applications of signal processing 
where it is desire to avoid aliasing phenomenon, i.e. to eliminate high-frequency components. Since the  
signals usually have high frequency tails, one has to filter out this tail and limit the maximum frequency of 
the signal such that one can lower the sampling frequency and avoid aliasing. High-frequency components 
can be suppressed very well by use of these filter functions because of their high stopband suppression. 

APPENDIX 

Designs of a few examples presented in the paper are carried out in MATLAB. Here, MATLAB code 
for  one design example of new filter functions based on Chebyshev polynomial of the first kind of degree 
six is shown. The design of other examples can be done easily by use of recursion for generation of the 
Chebyshev polynomial of the first kind given in Eq. (1). 
 
% Design of filter functions based on Chebyshev polynomial of the first kind of degree six 
clear;clc; 
format long 
f = 0:0.0001:0.5; 
omega = 2*pi.*f; 
z = exp(j.*omega)'; 
%% Filter functions from Jeffrey O. Coleman ISCAS 2014 [9] 
Ff = 2+2.*cos(omega); 
Ff_0 = 2+2.*cos(0); 
G0 = 32*power(Ff_0,6)-48*power(Ff_0,4)+18*power(Ff_0,2)-1, 
G = (32.*power(Ff,6)-48.*power(Ff,4)+18.*power(Ff,2)-1)./G0; 
alphaG = 20*log10(G); 
%% New filter functions 
Ffnew = 1+2.*cos(omega); 
Ffnew_0 = 1+2.*cos(0); 
G0_new = 32*power(Ffnew_0,6)-48*power(Ffnew_0,4)+18*power(Ffnew_0,2)-1, 
G_new = (32.*power(Ffnew,6)-48.*power(Ffnew,4)+18.*power(Ffnew,2)-1)./G0_new; 
alphaGnew = 20*log10(G_new); 
%% Plot options 
figure(1); 
plot(f,alphaG,'k-',f,alphaGnew,'r:');grid; 
legend('Filter with F(f)','Filter with F_{new}(f)') 
axis([0 0.5 -150 0]);  
xlabel('Frequency, {\itf}','FontSize',12); ylabel('Attenaution [dB]','FontSize',12); 
pause 
figure(2);plot(f,G,'k-',f,G_new,'r:');grid; 
legend('Filter with F(f)','Filter with F_{new}(f)') 
axis([0 0.5 0 1]);  
xlabel('Frequency, {\itf}','FontSize',12); ylabel('Magnitude]','FontSize',12); 
pause;close('all')  
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