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Abstract. This work presents a simple approximate integral method based on the use of flexibility 
influence functions (Green’s functions) for numerical calculations of either critical buckling loads or 
natural frequencies in the case of Euler-Bernoulli type beams resting on two-parameters elastic 
foundation. Several numerical applications demonstrate good agreement with available results from 
literature obtained analytically or by other methods. The theoretical approach presented in this work 
leads to an eigenvalue matrix form efficient for numerical solutions. 
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1. INTRODUCTION 

Main design issues for beam like structures are the critical buckling loads calculation and also the 
natural frequencies estimation in order to avoid possible resonances. In the last decades a large number of 
technical works have been dedicated to this subject. The analysis of dynamics of beams resting on elastic 
foundation is of particular interest for industrial applications such as the study of concrete structures or 
pipelines resting on elastic soil, railway applications or the study of some parts of machinery resting on 
isolation members. One of the first attempts to analyse the buckling of beams on elastic foundation is 
described in the work [1], where Hetényi presented a trial approach for calculation of critical buckling loads. 
An analytical formula for the critical buckling loads, in the case of uniform simply supported beams on 
elastic foundation is also given in [2]. The paper [3] presents the Recursive Differentiation Method (RDM) to 
find analytical solutions for critical buckling loads and natural frequencies of non-uniform beams resting on 
elastic foundations. Other numerical methods, such as Differential Quadrature Method (DQM) and 
Variational Iteration Method (VIM), are described in [4], respectively [5].  

A general form of the equation describing bending deflection w(x, t) of a non-uniform beam with 
bending stiffness EI(x) resting on a two parameters elastic foundation and subjected to constant axial 
compression force P  and transverse distributed force p(x, t) (see Fig.1), is according to [3]:  
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In this equation ρ  and A(x) represent the beam material mass density and the cross-section area. A 
common situation is the Winkler foundation model with k2 = 0 and with the elastic coefficient k1 constant or 
variable along the beam axis [6–8]. The Winkler model was first presented in the paper [9] in 1867, 
representing a linear algebraic relation between the bending displacement of the beam and the contact 
pressure at foundation, and it was originally used for the analysis of deflections and stress states of railroad 
tracks. The coefficient k1 is commonly called the Winkler foundation modulus or modulus of subgrade 
reaction while k2 is the shear foundation modulus, known as the Pasternak effect. In fact some of the best 
known models for the two parameter foundation are the Pasternak one [10] and the Vlasov and Leontiev one 
[11]. These two parameters have different expressions as presented for example in the paper [12]. 
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Fig. 1 − Beam resting on two parameter elastic foundation. 

2. PROBLEM FORMULATION 

2.1. Integral form for the differential equation of beam bending behavior 

The differential equation governing the static bending response of a straight beam subjected to the 
transverse load p(x), in term of the bending displacement w(x), is given by: 
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The integral form of this equation, based on the use of flexibility influence functions (Green’s functions) [13] 
can be written as: 

0

( ) ( , ) ( )d
L

ww x G x p= ξ ξ ξ∫ . (3) 

In this relation Gw(x,ξ) is the Green function representing the bending deflection w  at location x  on the beam 
due to a transverse unit force applied at location ξ  (Fig. 2). The Green’s function values represent flexibility 
coefficients and they can be numerically calculated using specific methods such as the Mohr-Maxwell 
method, Castigliano’s theorem or the principle of virtual work. 

The equation (3) has been used in many applications, and we reference here as a representative 
example, the works [14,15] in which the authors developed an aeroelastic analysis for large aspect ratio 
wings considered as cantilever beams. 

 
Fig. 2 − Physical significance of the Green function for a simply supported beam. 

The reference [16] starts from this integral form in order to calculate the natural frequencies for 
transverse vibrations of rotating beam highlighting the stiffening effect of the rotation. A more general case 
of pretwisted rotating beam coupled vibration analysis was presented in [17]. 

2.2. Integral matrix forms of the equation for a beam resting on two parameters elastic foundation 

In the present paper, an appropriate form, to find the natural circular frequencies ω, is developed using 
the equation (1) when the external distributed load is p(x, t) = 0.This equation is re-written as: 
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The right hand side terms in (4) will be regarded as a distributed transverse force p(x) allowing the 
integral form (3) to be developed using appropriate Green’s functions for the case of the simply supported 
beam.  The integrals involved in such formulations can computed by using the Simpson’s method, choosing 
of an even number n = 2m of equally spaced collocation (sampling) points on beam axis. The integral is then 
calculated as:  
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where fi are the values of f (ξi) in the collocation points ξi and Wi are the corresponding weighting numbers. 
The relation (3) can be written in matrix form: 

w=w G Wp , (6) 

where: 
– Gw is a (n,n) dimension matrix containing the Green’s functions values, 
– W is a (n,n) diagonal weighting matrix containing the weighting numbers Wi , 
– w and p are column vectors of the bending deflections w(ξ) and of the distributed forces p(ξ) in the 

chosen n collocation points respectively. 
For the case of constant values k1, k2, the equation (4) in matrix form becomes: 

2
2 2 1( ) w w wP k k= − + − + ωw G WD w G Ww G W Mw . (7) 

The new matrices in the previous relation are: 
– D2 a (n,n) differentiation matrix used to obtain the second derivative of the bending deflection w  and 
– M a (n,n) diagonal matrix containing the beam distributed mass m(x) = ρA(x) in the collocation 

points. 
A different approach is the projection (expansion) of the bending displacement w(x) using a suitable 

basis of p  known functions fk(x) for the simply supported boundary conditions: 
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where Ck are constant coefficients. In this manner the second derivative of the bending deflection can be 
directly obtained without the need of a differentiation matrix. For the n  collocation points one can obtain 
relations of the form: 

,   ′′= = 2w FC w F C , (9) 

which give the values of the bending deflections and of theirs second derivatives. The matrices F and F2, 
containing the values fk(x) respectively ( )kf x′′  at the collocation points, are of dimension (n, p) and the 
column vector C  contains p  coefficients Ck . Using the relations (9), equation (7) becomes: 

2
2 2 1( )P k k= − + − + ωw w wFC G WF C G WFC G WMFC . (10) 

After left multiplication with the transpose FT, the previous relation takes the form: 
2

1 2 1 1 2 3( )P k k= − + − + ωA C B C B C B C , (11) 

where all the matrices A1, B1, B2, B3 are now of dimension (p, p): 
T T T T

1 1 2, ,w w w= = = =2 3A F F B F G WF B F G WF, B F G WMF . (12) 

The general matrix relations (7), determined using n  collocation points, can be put in a form of a n  
dimensional eigenproblem allowing the calculation of the critical buckling loads Pcr (for ω=0), of the natural 
circular frequencies ω  for P = 0 or of p  values below the critical buckling load. The general matrix relations 
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(11), in the case of the use on n collocation points and p  collocation functions can also be put in a form of an 
eigenproblem of dimension p<n, allowing the same calculations. 

For the critical buckling loads calculations, that is for ω = 0, the relation (7) takes the form: 

2 2 1( ) w wP k k= − + −w G WD w G Ww . (13) 

After left multiplication with the inverse G1 of the matrix GwWD2 one can obtain the following relation: 

1 2 1 2( ) nP k k= − + −G w I w G w , (14) 

where In is the (n,n) unit matrix and: 

( ) 1
1 2 2 1,    w w

−= =G G WD G G G W . (15) 

Relation (14) is an n  dimensional eigenproblem of the form: 

( )1 2 1 2n nk k P− + = = −G I G w A w w . (16) 

The eigenvalues λ  of the matrix An give the critical buckling loads λ=−Pcr . 
When the relation (11) is used for the buckling loads calculations (the case ω= 0), this relation becomes: 

1 2 1 1 2( )P k k= − + −A C B C B C . (17) 

After left multiplication with the inverse of the matrix B1 one can obtain a relation of the form: 

1 2 1 2( ) pP k k= − + −D C I C D C , (18) 

where Ip is the (p,p) unit matrix and: 
1 1

1 1 1 2 1 2,    − −= =D B A D B B . (19) 

This represents a p  dimensional eigenvalue problem of the form: 

( )1 2 1 2p pk k P− + = = −D I D C A C C , (20) 

for which the eigenvalues λ  of the matrix Ap provide the critical buckling loads λ=−Pcr . 
For the calculations of the natural circular frequencies ω, left multiplication of equation (7) with the 

inverse G3 of the matrix GwWM, leads to the equation: 
2

3 2 4 1 5( ) nP k k= − + − + ωG w G w G w I w , (21) 

where In is the (n,n) unit matrix and: 

( ) 1
3 4 3 2 5 3,    ,    w w w
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Equation (21) represents an n  dimensional eigenvalue problem of the form: 

( ) 2
3 2 4 4 1 5 nk P k− + + = = ωG G G G w A w w , (23) 

where the eigenvalues λ=ω2 of the matrix An give the natural circular frequencies. When the relation (11) is 
used for calculations of the natural circular frequencies ω, left multiplication with the inverse of the matrix 
B3 , leads to the equation:  

2
3 2 4 1 5( ) pP k k= − + − + ωD C D C D C I C , (24) 

where Ip is the (p, p) unit matrix and: 
1 1 1

3 3 1 4 3 1 5 3 2,   ,   − − −= = =D B A D B B D B B . (25) 

This represents a p  dimensional eigenproblem of the form: 
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( ) 2
3 2 4 4 1 5 pk P k− + + = = ωD D D D C A C C , (26) 

where the eigenvalues λ=ω2 of the matrix Ap provide the natural circular frequencies. 

3. NUMERICAL ANALYSES AND DISCUSSIONS 

3.1. Stability analysis 

The first example concerning the buckling load calculation is taken from [5]. The results for uniform 
beams (EI = const.) on Winkler foundation (with k2 = 0) are presented using two non-dimensional 
coefficients namely β  (for k1) and α  representing a critical buckling load parameter:  

4 4
1 cr,    

k L P L
EI EI

β = α = . (27) 

A comparison of results obtained using this formulation and those presented in [5] is shown in Table 1 in the 
case of a simply-supported beam, using an increasing number of collocation points. 

Table 1 
Results for α  parameter obtained with n  collocation points and relation (16) 

β n = 10 n = 20 n = 40 n = 60 n = 100 Results [5] 
0 11.051 10.378 10.108 10.025 9.961 9.8696 

50 16.756 15.712 15.298 15.172 15.075 14.9357 
100 22.416 21.032 20.485 20.318 20.188 20.0017 

 
For the formulation based on collocation functions, a set of p  sinusoidal functions representing the 

real buckling modes for the uniform simply supported beam are used in relation (8), written as: 

∑
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k L
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1

sin)( . (28) 

Table 2 shows the comparison between the results obtained using collocation functions, with p = 2 and 
n =100 points, and the results obtained using only collocation points for the same example. One can observe 
that an improved accuracy is obtained using the collocation function approach. 

Table 2 
Results for α  parameter obtained with collocation functions and relation (20) 

β n = 100 p = 2,  n = 100 Results [5] 
0   9.961 9.868   9.8696 

50 15.075 14.9341 14.9357 
100 20.188 20.0001 20.0017 

 
In order to verify the present model for the fundamental buckling load calculation in the case of an 

uniform simply supported beam resting on a two parameter elastic foundation, a case test from the reference 
[18] has been considered. Two non-dimensional parameters of the foundation and a stability parameter λ  are 
defined as: 

4 2 2
1 2 cr

1 2 2,    ,    
k L k L P L

k k
EI EI EI

= = λ =
π

. (29) 

Table 3 shows good agreement of the results obtained with n =100 collocation points and p = 2 
collocation functions, in comparison with FEM results reported in Table 1 from [18]. 
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Table 3 
Results for stability parameter λ  obtained with n = 100 collocation points and relation (20) 

2 0k =  2 1k =  2 2.5k =  
1k  

FEM [18] Present FEM [18] Present FEM [18] Present 
0 3.1415 3.1413 4.4428 4.4427 5.8774 5.8772 

100 4.4723 4.4721 5.4654 5.4653 6.6840 6.6838 

3.2. Free vibrations analysis 

The first example concerning the natural circular frequencies calculation is taken from [19]. In this 
reference a benchmark is presented for a simply-supported uniform beam with E = 24.82 GPa, ρA = 446.3 kg/m,  
I = 1.439x10-3 m4, on Winkler foundation with the length L = 6.096 m, k2=0 and constant distributed 
stiffness k1 = K = 16.55 MN/m2. Comparison is carried out by using the analytical solutions presented in [20]:  

4 4

4i
EI i K
A L EI

π
ω = +

ρ
. (30) 

Table 4 shows the convergence of results ωi (in Hz) for this example, obtained with the collocation 
points approach in comparison with the analytical results given by (30). 

Table 4 
Results for ωi obtained with n collocation points and relation (23) 

ωi n = 10 n = 20 n = 40 n = 60 n = 100 Results (30) 
ω1 32.866 32.889 32.896 32.897 32.898 32.898 
ω2 55.604 56.492 56.726 56.771 56.794 56.808 
ω3 104.74 110.07 111.43 111.68 111.82 111.90 
ω4 168.57 187.80 192.24 193.08 193.51 193.76 

 
Another example concerning the natural circular frequencies calculation is taken from the paper [21]. 

In this reference results are obtained for an uniform simply-supported beam resting on a two-parameter 
elastic foundation using several non-dimensional parameters: 

4 2 2 2
1 2 4

1 2 2
cr

,   ,   ,   
k L k L P AL

k k
EI EI P EI

ρ ω
= = γ = λ =

π
. (31) 

The beam has constant values I, A and constant foundation parameters k1 and k2. Using the formulae 
(31), the critical buckling force can be calculated as, [22]: 

4 4 2 2
1 2

cr 2 2

EI k L k L
P

L
π + + π

=
π

. (32) 

Table 5 shows the results for this example using n =100 collocation points, compared with the FEM 
results [21]. 

Table 5 
Results for frequency factor λ  obtained with n =100 collocation points and relation (23) 

2 0k =  2 1k =  2 2.5k =  
1k  γ 

FEM [21] Present FEM [21] Present FEM [21] Present 
0 3.1415 3.1415 3.7306 3.7315 4.2970 4.2896 

0.4 2.7705 2.7691 3.2947 3.2867 3.7893 3.7970 0 
0.8 2.1257 2.1201 2.5270 2.5070 2.9050 2.8763 
0 3.7483 3.7483 4.1437 4.1404 4.5824 4.5763 

0.4 3.3055 3.3041 3.6541 3.6478 4.0408 4.0305 100 
0.8 2.5350 2.5296 2.8014 2.7862 3.0964 3.0732 
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The next numerical test regarding the free vibration analysis is an example from [22] where the 
following data has been considered: beam with L = 4 m, having square cross-section b = h = 0.3 m, Young’s 
modulus E = 2.1·1011 Pa, mass density ρ = 7860 kg/m3. To describe the two foundation parameters the 
following non-dimensional parameters have been considered: 

EI
Lkk

EI
Lkk

2
2

2

4
1

1 , == . (33) 

The first three natural frequencies fi = ωi /(2π) and f10 have been obtained for a compression force P = 40 kN. 
Table 6 gives the results obtained with the collocation function approach with n =100 points, p =20 in 
equation (26), results being compared with those obtained with the spectral finite element method SFEM [22].  

Table 6 
Results for frequency factor λ  obtained with  relation (26) 

Natural frequencies [Hz] 
Case Results 

from f1 f2 f3 f10 
[22] 43.96 175.80 395.53 4394.71 

1 0k = ,  2 0k =  
P = 40 kN Present 43.93 175.72 395.22 4359.01 

[22] 46.16 176.36 395.78 4394.73 
1 10k = ,  2 0k =  

P = 40 kN Present 46.13 176.28 395.47 4359.03 
[22] 83.80 225.10 447.97 4450.04 

1 10k = , 2 25k =  
P = 40 kN Present 83.79 225.04 447.69 4414.79 

The results show good agreement especially for the lower modes. 
The last example considered here concerns a non-uniform tapered beam free vibration analysis with 

data from [23]. The distribution of the bending stiffness and cross-section area are given by the following 
linear relations: 

( ) ( )0 0( ) 1 / ,    ( ) 1 /EI x EI x L A x A x L= −α⋅ = − α⋅ , (34) 

where EI0 and A0 are the values at x = 0. The next non-dimensional parameters have been also used: 
4

1 0
1 2

0 1

1,    0,    
k L A

k k
E I k

ρ
= = = ϖ = ω . (35) 

The calculations are carried out for unit values of the parameters E, L, k1, ρ, A0, I0 so that the normalized 
frequency parameter ϖ=ω.  

Table 7 shows the results obtained with the present integral formulation with n =100 points, p =10 
functions and using relation (26), compared with the results presented in [23] obtained with the Adomian 
Decomposition Method. 

Table 7 
Results for ω i obtained with the relation (26) 

ωi 
Results 

from α = 0.1 α = 0.3 α = 0.5 

[23] 9.9217 9.9170 9.8932 ω1 Present 9.9209 9.9162 9.8924 
[23] 39.4928 39.5047 39.5340 ω2 Present 39.4799 39.4918 39.5211 
[23] 88.8340 88.8511 88.8986 ω3 Present 88.7689 88.7860 88.8335 
[23] 157.9189 157.9389 157.9966 ω4 Present 157.7133 157.7333 157.7909 
[23] 246.7443 246.7661 246.8302 ω5 Present 246.2424 246.2642 246.3282 
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One can observe that the approach using collocation functions is especially useful in the case of non-
uniform beams or for calculations of the natural frequencies for higher modes of vibration. 

4. CONCLUSIONS 

This paper presents a simple approximate integral method for stability and free vibration analysis of 
beams resting on Winkler or Pasternak type elastic foundations. The numerical applications have been 
demonstrated for the case of the simply-supported boundary conditions. The equations of motion governing 
the bending behavior has been written in integral form using appropriate Green’s functions, the numerical 
integration being carried out using the collocation method. The values of these functions are flexibility 
influence coefficients representing bending displacements at prescribed collocation points on the beam due 
to unit forces placed at other collocation points.  

The presented approach leads to a matrix formulation using an integration matrix, a differentiation 
matrix used to obtain the second derivative of the bending displacement, and diagonal matrices taking into 
account distributed parameters for the non-uniform beam such as the mass distribution.  The final equation 
represents an eigenvalue problem whose solutions are the critical buckling loads or the squares of natural 
frequencies of the beam. The method has been shown to be very efficient for numerical calculations, the 
results obtained for different benchmarks being in good agreement with reported data. The accuracy 
increases with the number of collocation (sampling) points or the number of collocation functions. For the 
non-uniform beam configurations, the collocation functions representing the real sinusoidal buckling modes 
of the uniform simply-supported beam, were shown to be effective in improving the accuracy. This approach 
can be also used for other beam boundary conditions if appropriate Green’s functions are replaced in this 
formulation. 
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