
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 20, Number 3/2019, pp. 311–319

NETWORKS OF PICTURE PROCESSORS WITH CIRCULAR PERMUTATION

Fernando ARROYO1, Sandra GOMEZ1, Victor MITRANA1,2, José Ramón SANCHEZ1
1 Department of Information Systems, University College of Computer Science

Polytechnic University of Madrid, Crta. de Valencia km. 7 – 28031 Madrid, Spain
2 National Institute for Research and Development of Biological Sciences,

Independentei Bd. 296, Bucharest, Romania
Corresponding author: Victor Mitrana, E-mail: victor.mitrana@upm.es

Abstract. We propose a new variant of network of evolutionary picture processors, where the operations
mask and unmask considered in [4] are replaced by the circular permutation of a row or column on the
picture frontier. We propose a solution based on these networks to the picture pattern matching
problem that runs in ()n m kl+ +O computational steps, where the pattern is of size (,)k l and the
input picture is of size (,)n m . We finally discuss how our solution may easily lead to solutions to a
few further related problems on pictures.

Key words: picture, picture language, circularly permuting picture processor, network of picture
processors with circular permutation, picture pattern matching.

1. INTRODUCTION

Several generating mechanisms defining picture languages have been introduced and studied in the
literature. In [14,15,16,18], pictures are considered as two-dimensional matrices that can be generated by
different types of grammars. Other picture processing models have been proposed by the 70’s [13], while a
hierarchy of generative models for such languages was considered in [17]. Further models extend concepts
and results defined for string languages and formal series to two dimensional languages, see, e.g. [8], and to
picture series, see, e.g., [6,11]. A good and concise survey is [7]. This work is a continuation of [5], where
networks of evolutionary picture processors (NEPP) accepting rectangular pictures have been introduced.
Such a network consists of nodes hosting picture processors. A picture processor may either substitute a
letter by another letter either in a row or in a column, or delete either a row or a column. The row/column in
which the substitution is to take place as well as the row/column which is to be deleted is specified. If the
letter to be substituted appears more than once in the specified row/column, then each such occurrence is
substituted in different copies of that picture. Therefore, we implicitly assume that sufficiently many copies
of every picture are available. All the nodes simultaneously send their pictures to (and receive pictures from)
the nodes they are connected to. This process is regulated by input and output filters which allow the pictures
to enter and go out from the nodes, respectively.

In [4], two operations, similar to “zoom-in” and “zoom-out”, called mask and unmask are introduced.
The variant introduced in [4] is used to solve the problem of pattern matching of a given pattern of size (,)k l
in an arbitrary given rectangular picture of size (,)n m . The proposed solution is efficient (it runs in

()n m kl+ +O computational steps) and can be extended at no further cost with respect to the number of
computational steps to any finite set of patterns, all of them of the same size.

In this paper, we replace the two operations introduced in [4] by just one operation, namely the circular
permutation. Thus, the leftmost column, rightmost column, upmost row and downmost row can be shifted as
the rightmost column, leftmost column, downmost row and upmost row, respectively. We propose a solution
based on the new variant of NEPP to the 2D pattern matching problem which is of the same complexity as
that proposed in [4]. Actually, we follow the same strategy to that used in [4]. We finally discuss how our
solution may easily lead to solutions to a few further related problems on pictures.

312 F. ARROYO, S. GOMEZ, V. MITRANA, J.R. SANCHEZ 2

2. BASIC DEFINITIONS

We use [7] for the basic concepts and notations concerning two-dimensional languages. We denote the
set of the first n positive integers by [n], while the power set of the set A is denoted by 2A . The cardinality
of a finite set A is denoted by ()card A . A picture (or a two-dimensional string) over the alphabet V is a
two-dimensional array of elements from V . The set of all pictures over the alphabet V is denoted by *

*V ,
while a two-dimensional language over V is a subset of *

*V .
The minimal alphabet containing all symbols appearing in a picture π is denoted by ()alph π . Let π be

a picture in *
*V ; we denote the number of rows and the number of columns of π by π and | |π , respectively.

The pair (,| |)π π is called the size of the picture π . The size of the empty picture ε is obviously (,)n m with
0nm = . Note that the empty picture is actually the (equivalence) class of all pictures of size (,)n m with
0nm = . The set of all pictures of size (,)m n over the alphabet V , where , 1m n ≥ , is denoted by n

mV . The
symbol placed at the intersection of the i th row with the j th column of the picture π is denoted by (,)i jπ .

We recall informally the row and column concatenation operations between pictures. For a formal
definition the reader is referred to [7] or [9]. The row concatenation of two pictures π of size (,)m n and ρ
of size (,)m n′ ′ is denoted by ® and is defined only if n n′= . The picture π®ρ is obtained by adjoining the
picture ρ under the last row of π . Analogously one defines the column concatenation denoted by ©. Let V
be an alphabet; a rule of the form a b→ , with , { }a b V∈ ∪ ε is called an evolutionary rule. We say that a
rule a b→ is: a) a substitution rule if neither of a and b is ε ; b) a deletion rule if a ≠ ε , b = ε ; c) an
insertion rule if a = ε , b ≠ ε . In this paper, we shall ignore insertion rules because we want to process every
given picture in a space bounded by the size of that picture. Let { | , }VSub a b a b V= → ∈ and

{ | }VDel a a V= → ε ∈ . Given a rule σ as above and a picture n
mVπ∈ , we define the following actions of σ

on π :
• If Va b Subσ ≡ → ∈ , then

– If the first column of π contains an occurrence of a , then ()←σ π is the set of all pictures ′π
such that the following conditions are satisfied:

 (i) there exists 1 i m≤ ≤ such that (,1)i aπ = and (,1)i b′π = ,
 (ii) (,) (,)j l j l′π = π for all (,) ([] []) {(,1)}j l m n i∈ × 5 .

– If this column does not contain any occurrence of a , then () { }←σ π = π .
Informally, ()←σ π is the set of all pictures that can be obtained from π by replacing an occurrence
of a by b in the first (leftmost) column of π . Note that σ is applied to all occurrences of the letter
a in the leftmost column of π in different copies of the picture π .
Similarly, we define ()→σ π , ()↑σ π , ()↓σ π , ()+σ π , as the set of all pictures obtained by applying
σ to the rightmost column, to the first row, to the last row, and to any column/row of π .

• If Va Delσ ≡ → ε∈ , then

– ()←σ π is the picture obtained from π by deleting the leftmost column of π , provided that this
column contains at least one occurrence of a . If this column does not contain any occurrence of
a , then () { }←σ π = π . Analogously, ()→σ π , ()↑σ π , and ()↓σ π is the picture obtained from π
by applying σ to the rightmost column, to the first row, and to the last row of π , respectively.
Furthermore,

– ()+σ π is the set of pictures obtained from π by deleting an arbitrary column or row containing an
occurrence of a from π . If more than one column or row of π contains a , then each such
column (row) is removed from different copies of π . If π does not contain any occurrence of a ,
then () { }+σ π = π .

3 Networks of picture processors with circular permutation 313

For every rule σ , symbol { , , , , }α∈ ← → ↑ ↓ + and *
*L V⊆ , we define the α-action of σ on L by

() ()
L

Lα α

π∈

σ = σ π∪ . Given a finite set of rules M , we define the α-action of M on the picture π and the

language L by () () and () ()
M L

M M L Mα α α α

σ∈ π∈

π = σ π = π∪ ∪ , respectively. In what follows, we shall refer

to the rewriting operations defined above as evolutionary picture operations since they may be viewed as the
2 -dimensional extensions of the 1-dimensional evolutionary operations.

We now define a new operation on pictures that could replace the insertion operation defined above
and not considered here. Let π be a picture of size (,)m n over V .

• ()πz returns the picture obtained from π by shifting its leftmost column after the rightmost
column of π . Formally, ()π = ρz ©θ , provided that π = θ©ρ . Analogously, ()π{ returns the
picture obtained from π by shifting its rightmost column before the leftmost column of π .

• ս ()π returns the picture obtained from π by shifting its upmost row below the downmost row of

π . Formally, ս ()π = ρ®θ , provided that π = θ®ρ . Analogously, ջ ()π returns the picture

obtained from π by shifting its downmost row above the upmost row of π .

For every { , ,°∈ z { ս ,ջ} and *
*L V⊆ , we define () { () | }L L° = ° π π∈ .

For two disjoint subsets P (permitting symbols) and F (forbidding symbols) of an alphabet V and a
picture π over V , we consider the following two predicates which we will later use to define two types of
filters:

(; ,) () () ,
(; ,) () () .

s

w

rc P F P alph F alph
rc P F alph P F alph

π ≡ ⊆ π ∧ ∩ π =∅
π ≡ π ∩ ≠∅ ∧ ∩ π =∅

For every picture language *
*L V⊆ and { , }s wβ∈ , (, ,) { | (; ,) true}rc L P F L rc P Fβ β= π∈ π = .

 An evolutionary picture processor (EPP) over V is a 5 -tuple (, , , ,)M PI FI PO FO , where:
• Either VM Sub⊆ or VM Del⊆ . The set M consists of all the evolutionary rules of the processor.

As one can see, a processor is “specialized” for just one type of evolutionary operations.
• ,PI FI V⊆ are the input sets of permitting and forbidding symbols associated with the processor,

while ,PO FO V⊆ are the output sets of permitting and forbidding symbols associated with the
processor (with PI FI∩ =∅ and PO FO∩ =∅).

A circularly permuting picture processor (CPPP) over V is a 5 -tuple (, , , ,)M PI FI PO FO , where M

belongs to { , ,z { ս ,ջ} , while the other parameters are identical to those defined above for evolutionary

processors. An accepting network of picture processors with circular permutation (ANPPPC) is a 9 -tuple

314 F. ARROYO, S. GOMEZ, V. MITRANA, J.R. SANCHEZ 4

(, , , , , , , ,)V U G N In Halt AcceptΓ = α β ,
where:

• V and U are the input and network alphabet, respectively, V U⊆ .
• (,)G GG X E= is an undirected graph without loops with the set of vertices GX and the set of edges

GE . G is called the underlying graph of the network.
• N is a mapping which associates with each node Gx X∈ the picture processor

 () (, , , ,)x x x x xN x M PI FI PO FO= .

• : GXα →{ , , , , }← → ↑ ↓ + ; ()xα is a partial mapping that gives the action mode of the rules of node
x on the pictures existing in that node. Note that if x is a CPPP then ()xα is not defined.

• : GXβ →{ , }s w defines the type of the input and output filters of a node. More precisely, for every
node Gx X∈ , the following filters are defined:

 ()

()

input filter: () (; ,) ,
output filter: () (; ,).

x x x x

x x x x

r c PI FI
r c PO FO

β

β

ρ ⋅ = ⋅
τ ⋅ = ⋅

That is, ()xρ π (resp. ()xτ π) indicates whether or not the picture π can pass the input (resp. output)
filter of x . More generally, ()x Lρ (resp. ()x Lτ) is the set of pictures of L that can pass the input
(resp. output) filter of x .

• , , GIn Halt Accept X∈ are the input node, the halting node, and the accepting node of Γ,
respectively. Of course, it is not obligatory that the three nodes are different from each other.

We then say that ()Gcard X is the size of Γ . A configuration of an ANPPPC Γ as above is a mapping

: GC X → *
*2U which associates a finite set of pictures with every node of the graph. A configuration may be

understood as the sets of pictures which are present in any node at a given moment. Given a picture *
*Vπ∈ ,

the initial configuration of Γ on π is defined by ()
0 () { }C Inπ = π and ()

0 ()C xπ =∅ for all { }Gx X In∈ 5 .
Configurations are changed by alternating processing steps and communication steps. When a

configuration C is changed by a processing step, each component ()C x is changed in accordance with the
set of rules xM associated with the node x and the way of applying these rules, namely ()xα . Formally, we
say that the configuration C′ is obtained in one processing step from the configuration C′ , written as
C C⇒ ′ , iff ()() (()) for all x

x GC x M C x x Xα′ = ∈ . When changing via a communication step, each node
processor Gx X∈ sends one copy of each picture it has, which is able to pass the output filter of x , to all the
node processors connected to x , and receives all the pictures sent by any node processor connected with x
provided that they can pass its input filter. Formally, we say that the configuration C′ is obtained in one
communication step from configuration C , written as C C′A , iff

()

()
{ , }

() () (())

(()) (()) for all .
G

x

y x G
x y E

C x C x C x

C y C y x X
∈

′ = τ ∪

τ ∩ρ ∈∪
5

Note that pictures that cannot pass the output filter of a node remain in that node and can be further
modified in the subsequent evolutionary steps, while pictures that can pass the output filter of a node are
expelled. Further, all the expelled pictures that cannot pass the input filter of any node are lost.

Let Γ be an ANPPPC; the computation of Γ on an input picture *
*Vπ∈ is a sequence of

configurations () () ()
0 1 2, , ,C C Cπ π π … , where ()

0C π is the initial configuration of Γ on π, () ()
2 2 1i iC Cπ π

+⇒ and

5 Networks of picture processors with circular permutation 315

() ()
2 1 2 2i iC Cπ π
+ +A , for all 0i ≥ . Note that configurations are changed by alternative steps. A computation as

above halts if there exists a configuration such that the set of pictures existing in the halting node is non-
empty. The picture language decided by Γ is

*
*() { | the computation of on halts with a non-empty accepting node}.L VΓ = π∈ Γ π

For the rest of this paper, we only deal with ANPPPCs that halt on every input.

3. SOLVING PICTURE MATCHING WITH ANPPPCs

The picture pattern matching problem consists in finding a fixed picture, called pattern, in a given
picture. The problem, which is a generalization of the well-known string pattern matching, is motivated by
many aspects in the area of low level image processing [12]. A generalization of this problem to pictures that
are not two-dimensional arrays is of great interest in the fields of Pattern Recognition, Image Analysis,
Computer Vision, etc., see, e.g. [10,19].

Various algorithms exist for the exact two-dimensional matching problem, see, e.g. [3,20] for their
time and space complexity. We propose a solution to the two-dimensional pattern matching problem which
is based on the networks defined in the previous section. We assume that any picture appears in an arbitrarily
large number of identical copies. As our sources of inspiration are some biological phenomena, we consider
to be biologically feasible to have sufficiently many identical copies of a molecule. By techniques of genetic
engineering, in a linear number of laboratory operations one can get an exponential number of identical
2-dimensional molecules [1,2]. Our construction closely follows the idea developed in [4], hence the first
step in our solution is to construct a network able to decide the singleton language formed by a given picture.

PROPOSITION 1. Let π be a picture of size (,)k l , for some , 1k l ≥ over an alphabet V . The
language { }π can be decided by an ANPPPC.

Proof. We define an ANPPPC Γ that decides the singleton language { }π . This network is formed by
two disjoint subnetworks. One of these subnetworks checks whether the input picture is exactly π , while the
other one makes a computation that is long enough such that the first network can complete its computation.
We start by defining the working alphabet U of Γ that consists of the following sets:

{ } { }1 2[(,),] | (,) ([1] []) , (,), | [] ,
{ | }, { | }.

U i j i i j k l U k j j j l
V a a V V a a V

= π ∈ − × = 〈π 〉 ∈
′ ′= ∈ = ∈

We now define the nodes of the network deciding π only. We accompany the nodes by some
explanations regarding their role. The input node In is defined as follows:

M PI FI PO FO α β

{ | } { | }a a a V a a a V→ ∈ ∪ → ′ ∈ V 1 2V V U U∪ ∪ ∪′ V V∪ ′ ∅ + w

The input picture, say θ , is initially in the input node In . Here, in different copies of θ , an occurrence

of some a is replaced by a ′ . The unchanged picture enters 1X (since it has no prime symbol), while all
those having a prime symbol enter 1Z . The nodes 1X and 1Z are the starting nodes of two disjoint
subnetworks (this means that the two subnetworks never exchange pictures between them). We denote by

1SN and 2SN the subnetworks starting with 1X and 1Z , respectively. The subnetwork 1SN checks whether
the input picture is identical to π , while the subnetwork 2SN makes a sufficiently long computation
allowing the subnetwork 1SN to complete its computation.

316 F. ARROYO, S. GOMEZ, V. MITRANA, J.R. SANCHEZ 6

The subnetwork 1SN is also formed by two subnetworks: a star subnetwork containing the nodes

1 2, , , lX X X… and CP (denoted by 11SN), and a path subnetwork containing the nodes 1 2 1, , , kY Y Y −…
(denoted by 12SN). In the case of 1k = , 12SN is empty. In its turn, the subnetwork 2SN is a path
subnetwork formed by the nodes 1 2,Z Z and 3Z . The whole underlying network of Γ is depicted in Fig.1.

Fig. 1 – The underlying network of Γ.

We continue with the definition of the nodes jX , []j l∈ :

M PI FI PO FO α β

{ (,) [(,),] |
[1]}

{ (,) (,), }

i j i j i
i k

k j k j j

π → π
∈ − ∪
π → 〈π 〉

 { (,)}k jπ

{ (,), |
}

, if 1,
, otherwise.

k r r
j r l
V j

〈π 〉
≤ ≤ ∪

=′⎧
⎨∅⎩

{ (,), }

{[(,),] |
[1]}

k j j
i j i

i k

〈π 〉 ∪
π
∈ −

 ∅ ← s

The definition of CP is:

M PI FI PO FO β
{ }z 2U ∅ 2U ∅ w

We follow the itinerary of the input picture θ that arrives in 1X . In its first column, at least one
occurrence of each symbol (,1)iπ , [1]i k∈ − , is replaced by [(,1),]i iπ . If the first column of θ does not
contain (1,)kπ , the picture remain trapped in 1X forever, because a picture cannot go out from 1X unless it
contains the symbol (,1),1k〈π 〉 . If (1,)kπ appears in the first column of θ , as soon as one of its occurrences
is replaced by (,1),1k〈π 〉 , the new picture leaves 1X . As one can see later in the computation, if a picture
leaves 1X but its first column still contains symbols from V , it will disappear. Let us now follow what
happens with a picture, say 1θ , that leaves 1X . Such a picture enters CP , where a circular permutation takes
place such that its first column is moved as the rightmost column. Obviously, the former second column of

1θ becomes now the leftmost column of the new picture, which enters 2X . The process described above will
be applied to all pictures entering rX and further CP , for all 2 r l≤ ≤ . Note that a picture that was
processed in a node rX , for some []r l∈ , cannot enter later any node jX with j r≤ .

Consequently, a picture that enters 1,1SN can leave this subnetwork after visiting exactly once each of

the nodes
1 21, , , , ,

pi i i lX X X X X… for some 0p ≥ , and

1 21 , (*)pi i i l< < <…< <

in this order. Furthermore, the output filters of the nodes jX , []j l∈ , ensures that the input picture has at
least k rows. Therefore, the input picture must have at most l columns and at least k rows.

7 Networks of picture processors with circular permutation 317

A picture that leaves 11SN may enter 1Y , if 1k > , or Halt and Accept simultaneously, if 1k = ,
provided that it does not contain any symbol from V . For an analysis of this part of the computation when

1k > , we first define the nodes jY , [1]j k∈ − , of the path subnetwork.

M PI FI PO FO α β

{[,] |a j
a V

→ ε
∈

 {[,] | }a j a V∈
{[,] |1 },
 if 2,

, if 1.

a r r j
V j

j

≤ <⎧
⎪∪ ≥⎨
⎪∅ =⎩

{ (,), |

[]}
k r r

r l
〈π 〉

∈
 {[,] | }a j a V∈ ↑ w

A picture enters 1Y if it contains at least one symbol [,1]a for some a V∈ . The first row of all pictures

in 1Y is deleted and the newly obtained pictures are expelled from 1Y . If some of these pictures still contain a
symbol [,1]a for some a V∈ , then they are lost because they can enter neither 2Y nor lX .

Assume that a picture 1ρ , obtained by deleting the first row of a picture ρ in 1Y , enters 2Y . This means
that ρ = μ® 1ρ , where

 1([(1,1),1],[(1,),1], ,[(1,),1],[(1,),1])pi i lμ = π π … π π

with 1 2, , , pi i i… defined in (*). This reasoning may be applied inductively to all pictures that enter

2 3 1, , , kY Y Y −… . We now define the halting and accepting node by:

Node M PI FI PO FO α β
Halt ∅ { (,), | []}k r r r l V〈π 〉 ∈ ∪ ′ U PI5 { (,), | []}k r r r l〈π 〉 ∈ ∅ + w
Accept ∅ { (,), | []}k r r r l〈π 〉 ∈ U PI5 { (,), | []}k r r r l〈π 〉 ∈ ∅ + s

It follows that a picture which enters 1,2SN can leave this subnetwork if it has at least k rows, each row

j with [1]j k∈ − being exactly 1([(,1),],[(,),], ,[(,),],[(,),])pj j j i j j i j j l jπ π … π π with 1 2, , , pi i i… defined in
(*). After leaving 1,2SN , a picture that contains more than two rows is lost as it cannot enter any further
node. We infer that a picture which enters 1,2SN can leave this subnetwork and enter Halt , provided that it
has exactly k rows. The same picture can enter simultaneously Accept if it is a row picture with exactly l
elements. By all these considerations, we conclude that a picture θ which enters 1,1SN can eventually enter
simultaneously Halt and Accept if and only if θ = π .

It is worth noting that this computation needs 1kl k l+ + − processing steps and 1kl k l+ + −
communicating steps to complete.

We now discuss the role of the subnetwork 2SN . Informally, a picture that enters this subnetwork will
eventually enter Halt after exactly 2kl processing steps and 2kl communicating steps. The subnetwork

2SN contains the nodes 1 2 3, ,Z Z Z defined as follows:

Node M PI FI PO FO α β

1Z { | }a a a V→ ∈′ V ′ ∅ V ′ V + w

2Z { | }a a a V→ ∈′ V ′ ∅ V V ′ + w

3Z { | }a a a V→ ∈′ V ∅ V ′ ∅ + w

Indeed, as one can easily see, in 1Z all symbols a V∈ are replaced by a ′ , which takes 1kl −
processing steps (note that one symbol was replaced in In), while in 2Z all the primed symbols are restored,
which takes kl processing steps. Finally, before entering Halt , one more symbol from V is replaced by its

318 F. ARROYO, S. GOMEZ, V. MITRANA, J.R. SANCHEZ 8

primed copy. The proof is complete as soon as we note that 2 1kl kl k l≥ + + − , which is equivalent to
(1)(1) 0k l− − ≥ .

PROPOSITION 2. Let π be a picture of size (,)k l for some , 1k l ≥ , and let ,n k m l≥ ≥ . The language

, () { | is a picture of size (,) and is a subpicture of }n mL n mπ = θ θ π θ

can be decided by an ANPPPC in ()n m kl+ +O computational (processing and communication) steps.

Proof. The reasoning here is actually the same as that used in [4]; for sake of completeness, we recall
the main considerations from [4]. We give only an informal description of the construction, which is based
on a rather simple idea.The network defined in the proof of Proposition 1 will be used as a subnetwork as
follows. We add nine new nodes:

– In , the new initial node that is a substitution node. Here each symbol is replaced by itself.
– Eight new deletion nodes, divided in four pairs of identical nodes: each pair is used for deleting the

leftmost column, the rightmost column, the uppermost row and the undermost row, respectively.
Informally, the new nodes cut arbitrary subpictures from the given picture, and send them to the

subnetwork constructed in the proof of Proposition 1. Clearly, all subpictures of the same size are produced
and sent simultaneously. Further on, as soon as all these pictures leave the new nodes, they cannot further
return to them.

All subpictures of the same size received by the subnetwork are matched against the pattern π in
parallel. For a given picture is of size (,)m n , all subpictures of the same size (,)k l′ ′ are extracted from the
input picture and sent to the subnetwork after exactly () () 1m k n l′ ′− + − + processing steps. If at least one of
these subpictures is identical to π , both halting and accepting node will eventually be non-empty after

4m k n l l− + − + processing steps. In this case, the input picture is accepted. If the halting node is empty
after 4m k n l l− + − + steps, it will definitely become non-empty after 4 1m n l+ + − processing steps. As

4 1 4m n l m k n l l+ + − > − + − + , the input picture is rejected.
It is easy to note that the construction described above can be extended by ANPPPCs able to detect any

pattern from a finite set of pictures, all of them of the same size, at no further computational complexity cost.
It suffices to construct an independent subnetwork of the type just discussed for each pattern. This leads to
the main result:

THEOREM 1. Given a finite set F of patterns of size (,)k l and (,)l k for any , 1k l ≥ , the pattern
matching problem with patterns from F can be solved by ANPPPCs in ()n m kl+ +O computational
(processing and communication) steps.

4. CONCLUSIONS

We have proposed an ()n m kl+ +O computational steps solution to the picture pattern matching
problem based on ANPPPCs. This construction has a series of consequences. First, it is immediate that any
(,)k l -local language [7] with arbitrary ,k l can be decided in ()n m kl+ +O computational steps by
ANPPPCs. We now define a scattered subpicture π , of size (,)k l , in a picture θ, of size (,)n m , as being the
picture obtained from θ by deleting n k− arbitrary rows and m l− arbitrary columns. The scattered picture
pattern matching problem is to find a pattern as a scattered subpicture in a given picture. Our construction for
solving the picture pattern matching problem can be easily modified such that:

THEOREM 2. Given a finite set F of patterns of size (,)k l and (,)l k , for any , 1k l ≥ , the scattered
pattern matching problem with patterns from F can be solved by ANPPPCs in ()n m kl+ +O computational
(processing and communication) steps.

9 Networks of picture processors with circular permutation 319

We also define the Hamming distance between two pictures of the same size as the number of positions
at which the corresponding symbols are different. The construction in Theorem 1 may be extended to prove:

THEOREM 3. Let 1p ≥ and F be a set of patterns of size (,)k l and (,)l k , for any , 1k l ≥ . For any
given picture θ of size (,)n m , the problem of finding a pattern in θ which is at a Hamming distance at
most p from a picture in F can be solved by ANPPPCs in ()n m kl+ +O computational (processing and
communication) steps.

ACKNOWLEDGEMENTS

Work supported by a grant of the Romanian National Authority for Scientific Research and Innovation,
project number POC P-37-257.

REFERENCES

1. L.M. ADLEMAN, Q. CHENG, A. GOEL, M. HUANG, Running time and program size for self-assembled squares, Proc. 33rd
ACM STOC, pp. 740-748, 2001.

2. G. AGGARWALQ. CHENG, M.H. GOLDWASSER, M.Y. KAO, P.M. DE ESPANES, R.T. SCHWELLER, Complexities for
generalized models of self-assembly, SIAM Journal on Computing, 34, 6, pp. 1493-1515, 2005.

3. A. AMIR, G. BENSON, M. FARACH, Alphabet independent two dimensional matching, Proc. 24th ACM STOC, pp. 59-68, 1992.
4. H. BORDIHN, P. BOTTONI, A. LABELLA, V. MITRANA, Networks of picture processors as problem solvers, Soft

Computing, 21, 19, pp. 5529-5541, 2017.
5. P. BOTTONI, A. LABELLA, V. MITRANA, Networks of evolutionary picture processors, Fundamenta Informaticae, 131,

pp. 337-349, 2014.
6. S. BOZAPALIDIS, A. GRAMMATIKOPOULOU, Recognizable picture series, J. of Automata, Languages and Combinatorics,

10, pp. 159-183, 2005.
7. D. GIAMMARRESI, A. RESTIVO, Two-dimensional languages, in: Handbook of Formal Languages, Springer-Verlag, Berlin,

pp. 215-267, 1997.
8. D. GIAMMARRESI, A. RESTIVO, Recognizable picture languages, Int. J. Pattern Recognition and Artificial Intelligence, 6,

pp. 241-256, 1992.
9. I. INOUE, I. TAKANAMI, A survey of two-dimensional automata theory, Proc. 5th Int. Meeting of Young Computer Scientists,

Springer-Verlag, Berlin, pp. 72-91, 1990.
10. K. MARRIOTT, B.E. MEYER, Visual Language Theory, Springer, 1998.
11. I. MAÜRER, Characterizations of recognizable picture series, Theoretical Computer Science, 374, pp. 214-228, 2007.
12. A. ROSENFELD, A.C. KAK, Digital picture processing, Academic Press, New York, 1982.
13. A. ROSENFELD, R. SIROMONEY, Picture languages – a survey, Languages of design, 1, pp. 229-245, 1993.
14. G. SIROMONEY, R. SIROMONEY, K. KRITHIVASAN, Abstract families of matrices and picture languages, Computer

Graphics and Image Processing, 1, pp. 284-307, 1972.
15. G. SIROMONEY, R. SIROMONEY, K. KRITHIVASAN, Picture languages with array rewriting rules, Information and

Control, 22, pp. 447-470, 1973.
16. K.G. SUBRAMANIAN, R. SIROMONEY, On array grammars and languages, Cybernetics and Systems, 18, pp. 77-98, 1987.
17. P.S. WANG, Hierarchical structure and complexities of parallel isometric patterns, IEEE Trans. PAM I, 5, pp. 92-99, 1983.
18. P.S. WANG, Sequential/parallel matrix array languages, Journal of Cybernetics, 5, pp. 19-36, 1975.
19. P.S. WANG, H. BUNKE (eds.), Handbook on optical character recognition and document image analysis, World Scientific, 1996.
20. R.F. ZHU, T. TAKAOKA, A technique for two-dimensional pattern matching, Communications of the ACM, 32, pp. 1110-1120 1989.

Received May 12, 2019

