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Abstract. We propose a new variant of network of evolutionary picture processors, where the operations 
mask and unmask considered in [4] are replaced by the circular permutation of a row or column on the 
picture frontier. We propose a solution based on these networks to the picture pattern matching 
problem that runs in ( )n m kl+ +O  computational steps, where the pattern is of size ( , )k l  and the 
input picture is of size ( , )n m . We finally discuss how our solution may easily lead to solutions to a 
few further related problems on pictures. 
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1. INTRODUCTION 

Several generating mechanisms defining picture languages have been introduced and studied in the 
literature. In [14,15,16,18], pictures are considered as two-dimensional matrices that can be generated by 
different types of grammars. Other picture processing models have been proposed by the 70’s [13], while a 
hierarchy of generative models for such languages was considered in [17]. Further models extend concepts 
and results defined for string languages and formal series to two dimensional languages, see, e.g. [8], and to 
picture series, see, e.g., [6,11]. A good and concise survey is [7]. This work is a continuation of [5], where 
networks of evolutionary picture processors (NEPP) accepting rectangular pictures have been introduced. 
Such a network consists of nodes hosting picture processors. A picture processor may either substitute a 
letter by another letter either in a row or in a column, or delete either a row or a column. The row/column in 
which the substitution is to take place as well as the row/column which is to be deleted is specified. If the 
letter to be substituted appears more than once in the specified row/column, then each such occurrence is 
substituted in different copies of that picture. Therefore, we implicitly assume that sufficiently many copies 
of every picture are available. All the nodes simultaneously send their pictures to (and receive pictures from) 
the nodes they are connected to. This process is regulated by input and output filters which allow the pictures 
to enter and go out from the nodes, respectively. 

In [4], two operations, similar to “zoom-in” and “zoom-out”, called mask and unmask are introduced. 
The variant introduced in [4] is used to solve the problem of pattern matching of a given pattern of size ( , )k l  
in an arbitrary given rectangular picture of size ( , )n m . The proposed solution is efficient (it runs in 

( )n m kl+ +O  computational steps) and can be extended at no further cost with respect to the number of 
computational steps to any finite set of patterns, all of them of the same size. 

In this paper, we replace the two operations introduced in [4] by just one operation, namely the circular 
permutation. Thus, the leftmost column, rightmost column, upmost row and downmost row can be shifted as 
the rightmost column, leftmost column, downmost row and upmost row, respectively. We propose a solution 
based on the new variant of NEPP to the 2D pattern matching problem which is of the same complexity as 
that proposed in [4]. Actually, we follow the same strategy to that used in [4]. We finally discuss how our 
solution may easily lead to solutions to a few further related problems on pictures. 
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2. BASIC DEFINITIONS 

We use [7] for the basic concepts and notations concerning two-dimensional languages. We denote the 
set of the first n  positive integers by [n],  while the power set of the set A  is denoted by 2A . The cardinality 
of a finite set A  is denoted by ( )card A . A picture (or a two-dimensional string) over the alphabet V  is a 
two-dimensional array of elements from V .  The set of all pictures over the alphabet V  is denoted by *

*V , 
while a two-dimensional language over V  is a subset of *

*V . 
The minimal alphabet containing all symbols appearing in a picture π  is denoted by ( )alph π . Let π  be 

a picture in *
*V ; we denote the number of rows and the number of columns of π  by π  and | |π , respectively. 

The pair ( ,| |)π π  is called the size of the picture π .  The size of the empty picture ε  is obviously ( , )n m  with 
0nm = . Note that the empty picture is actually the (equivalence) class of all pictures of size ( , )n m  with 
0nm = . The set of all pictures of size ( , )m n  over the alphabet V ,  where , 1m n ≥ , is denoted by n

mV . The 
symbol placed at the intersection of the i th row with the j th column of the picture π  is denoted by ( , )i jπ . 

We recall informally the row and column concatenation operations between pictures. For a formal 
definition the reader is referred to [7] or [9]. The row concatenation of two pictures π  of size ( , )m n  and ρ  
of size ( , )m n′ ′  is denoted by ® and is defined only if n n′= . The picture π®ρ  is obtained by adjoining the 
picture ρ  under the last row of π .  Analogously one defines the column concatenation denoted by ©. Let V  
be an alphabet; a rule of the form a b→ , with , { }a b V∈ ∪ ε  is called an evolutionary rule. We say that a 
rule a b→  is: a) a substitution rule if neither of a  and b  is ε ; b) a deletion rule if a ≠ ε , b = ε ; c) an 
insertion rule if a = ε , b ≠ ε . In this paper, we shall ignore insertion rules because we want to process every 
given picture in a space bounded by the size of that picture. Let { | , }VSub a b a b V= → ∈  and 

{ | }VDel a a V= → ε ∈ . Given a rule σ  as above and a picture n
mVπ∈ , we define the following actions of σ  

on π :  
• If Va b Subσ ≡ → ∈ , then 

–  If the first column of π  contains an occurrence of a , then ( )←σ π  is the set of all pictures ′π  
such that the following conditions are satisfied: 

 (i) there exists 1 i m≤ ≤  such that ( ,1)i aπ =  and ( ,1)i b′π = , 
 (ii) ( , ) ( , )j l j l′π = π  for all ( , ) ([ ] [ ]) {( ,1)}j l m n i∈ × 5 . 

– If this column does not contain any occurrence of a , then ( ) { }←σ π = π . 
Informally, ( )←σ π  is the set of all pictures that can be obtained from π  by replacing an occurrence 
of a  by b  in the first (leftmost) column of π .  Note that σ  is applied to all occurrences of the letter 
a  in the leftmost column of π  in different copies of the picture π .  
Similarly, we define ( )→σ π , ( )↑σ π , ( )↓σ π , ( )+σ π , as the set of all pictures obtained by applying 
σ  to the rightmost column, to the first row, to the last row, and to any column/row of π .  

• If Va Delσ ≡ → ε∈ , then 

– ( )←σ π  is the picture obtained from π  by deleting the leftmost column of π ,  provided that this 
column contains at least one occurrence of a . If this column does not contain any occurrence of 
a , then ( ) { }←σ π = π . Analogously, ( )→σ π , ( )↑σ π , and ( )↓σ π  is the picture obtained from π  
by applying σ  to the rightmost column, to the first row, and to the last row of π ,  respectively. 
Furthermore, 

– ( )+σ π  is the set of pictures obtained from π  by deleting an arbitrary column or row containing an 
occurrence of a  from π .  If more than one column or row of π  contains a , then each such 
column (row) is removed from different copies of π .  If π  does not contain any occurrence of a , 
then ( ) { }+σ π = π . 
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For every rule σ , symbol { , , , , }α∈ ← → ↑ ↓ +  and *
*L V⊆ , we define the α-action of σ  on L  by 

( ) ( )
L

Lα α

π∈

σ = σ π∪ . Given a finite set of rules M , we define the α-action of M  on the picture π  and the 

language L  by ( ) ( )   and   ( ) ( )
M L

M M L Mα α α α

σ∈ π∈

π = σ π = π∪ ∪ , respectively. In what follows, we shall refer 

to the rewriting operations defined above as evolutionary picture operations since they may be viewed as the 
2 -dimensional extensions of the 1-dimensional evolutionary operations. 

We now define a new operation on pictures that could replace the insertion operation defined above 
and not considered here. Let π  be a picture of size ( , )m n  over V .  

• ( )πz  returns the picture obtained from π  by shifting its leftmost column after the rightmost 
column of π .  Formally, ( )π = ρz ©θ , provided that π = θ©ρ . Analogously, ( )π{  returns the 
picture obtained from π  by shifting its rightmost column before the leftmost column of π .  

• ս ( )π  returns the picture obtained from π  by shifting its upmost row below the downmost row of 

π .  Formally, ս ( )π = ρ®θ , provided that π = θ®ρ . Analogously, ջ ( )π  returns the picture 

obtained from π  by shifting its downmost row above the upmost row of π .  

For every { , ,°∈ z { ս ,ջ}  and *
*L V⊆ , we define ( ) { ( ) | }L L° = ° π π∈ . 

For two disjoint subsets P  (permitting symbols) and F  (forbidding symbols) of an alphabet V  and a 
picture π  over V , we consider the following two predicates which we will later use to define two types of 
filters: 

 
( ; , ) ( )  ( ) ,
( ; , ) ( )   ( ) .

s

w

rc P F P alph F alph
rc P F alph P F alph

π ≡ ⊆ π ∧ ∩ π =∅
π ≡ π ∩ ≠∅ ∧ ∩ π =∅

 

For every picture language *
*L V⊆  and { , }s wβ∈ ,  ( , , ) { | ( ; , ) true}rc L P F L rc P Fβ β= π∈ π = . 

 An evolutionary picture processor (EPP) over V  is a 5 -tuple ( , , , , )M PI FI PO FO , where: 
• Either VM Sub⊆  or VM Del⊆ . The set M  consists of all the evolutionary rules of the processor. 

As one can see, a processor is “specialized” for just one type of evolutionary operations. 
• ,PI FI V⊆  are the input sets of permitting and forbidding symbols associated with the processor, 

while ,PO FO V⊆  are the output sets of permitting and forbidding symbols associated with the 
processor (with PI FI∩ =∅  and PO FO∩ =∅ ). 

 
A circularly permuting picture processor (CPPP) over V  is a 5 -tuple ( , , , , )M PI FI PO FO , where M  

belongs to { , ,z { ս ,ջ} , while the other parameters are identical to those defined above for evolutionary 

processors. An accepting network of picture processors with circular permutation (ANPPPC) is a 9 -tuple 
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( , , , , , , , , )V U G N In Halt AcceptΓ = α β , 
where: 

• V  and U  are the input and network alphabet, respectively, V U⊆ . 
• ( , )G GG X E=  is an undirected graph without loops with the set of vertices GX  and the set of edges 

GE . G  is called the underlying graph of the network. 
• N  is a mapping which associates with each node Gx X∈  the picture processor 

 ( ) ( , , , , )x x x x xN x M PI FI PO FO= . 

• : GXα →{ , , , , }← → ↑ ↓ + ; ( )xα  is a partial mapping that gives the action mode of the rules of node 
x  on the pictures existing in that node. Note that if x  is a CPPP then ( )xα  is not defined. 

• : GXβ →{ , }s w  defines the type of the input and output filters of a node. More precisely, for every 
node Gx X∈ , the following filters are defined: 

 ( )

( )

input filter: ( ) ( ; , ) ,
output filter: ( ) ( ; , ).

x x x x

x x x x

r c PI FI
r c PO FO

β

β

ρ ⋅ = ⋅
τ ⋅ = ⋅

 

That is, ( )xρ π  (resp. ( )xτ π ) indicates whether or not the picture π  can pass the input (resp. output) 
filter of x . More generally, ( )x Lρ  (resp. ( )x Lτ ) is the set of pictures of L  that can pass the input 
(resp. output) filter of x . 

• , , GIn Halt Accept X∈  are the input node, the halting node, and the accepting node of Γ, 
respectively. Of course, it is not obligatory that the three nodes are different from each other. 

 
We then say that ( )Gcard X  is the size of Γ . A configuration of an ANPPPC Γ  as above is a mapping 

: GC X → *
*2U  which associates a finite set of pictures with every node of the graph. A configuration may be 

understood as the sets of pictures which are present in any node at a given moment. Given a picture *
*Vπ∈ , 

the initial configuration of Γ  on π  is defined by ( )
0 ( ) { }C Inπ = π  and ( )

0 ( )C xπ =∅  for all { }Gx X In∈ 5 . 
Configurations are changed by alternating processing steps and communication steps. When a 

configuration C  is changed by a processing step, each component ( )C x  is changed in accordance with the 
set of rules xM  associated with the node x  and the way of applying these rules, namely ( )xα . Formally, we 
say that the configuration C′  is obtained in one processing step from the configuration C′ , written as 
C C⇒ ′ , iff ( )( ) ( ( ))  for all  x

x GC x M C x x Xα′ = ∈ . When changing via a communication step, each node 
processor Gx X∈  sends one copy of each picture it has, which is able to pass the output filter of x , to all the 
node processors connected to x , and receives all the pictures sent by any node processor connected with x  
provided that they can pass its input filter. Formally, we say that the configuration C′  is obtained in one 
communication step from configuration C , written as C C′A , iff 

 
( )

( )
{ , }

( ) ( ) ( ( ))

( ( )) ( ( ))   for all  .
G

x

y x G
x y E

C x C x C x

C y C y x X
∈

′ = τ ∪

τ ∩ρ ∈∪
5

 

Note that pictures that cannot pass the output filter of a node remain in that node and can be further 
modified in the subsequent evolutionary steps, while pictures that can pass the output filter of a node are 
expelled. Further, all the expelled pictures that cannot pass the input filter of any node are lost. 

Let Γ  be an ANPPPC; the computation of Γ  on an input picture *
*Vπ∈  is a sequence of 

configurations ( ) ( ) ( )
0 1 2, , ,C C Cπ π π … , where ( )

0C π  is the initial configuration of Γ  on π, ( ) ( )
2 2 1i iC Cπ π

+⇒  and 
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( ) ( )
2 1 2 2i iC Cπ π
+ +A , for all 0i ≥ . Note that configurations are changed by alternative steps. A computation as 

above halts if there exists a configuration such that the set of pictures existing in the halting node is non-
empty. The picture language decided by Γ  is 

*
*( ) { |  the computation of   on  halts with a non-empty accepting node}.L VΓ = π∈ Γ π  

For the rest of this paper, we only deal with ANPPPCs that halt on every input. 

3. SOLVING PICTURE MATCHING WITH ANPPPCs 

The picture pattern matching problem consists in finding a fixed picture, called pattern, in a given 
picture. The problem, which is a generalization of the well-known string pattern matching, is motivated by 
many aspects in the area of low level image processing [12]. A generalization of this problem to pictures that 
are not two-dimensional arrays is of great interest in the fields of Pattern Recognition, Image Analysis, 
Computer Vision, etc., see, e.g. [10,19]. 

Various algorithms exist for the exact two-dimensional matching problem, see, e.g. [3,20] for their 
time and space complexity. We propose a solution to the two-dimensional pattern matching problem which 
is based on the networks defined in the previous section. We assume that any picture appears in an arbitrarily 
large number of identical copies. As our sources of inspiration are some biological phenomena, we consider 
to be biologically feasible to have sufficiently many identical copies of a molecule. By techniques of genetic 
engineering, in a linear number of laboratory operations one can get an exponential number of identical  
2-dimensional molecules [1,2]. Our construction closely follows the idea developed in [4], hence the first 
step in our solution is to construct a network able to decide the singleton language formed by a given picture. 

PROPOSITION 1. Let π  be a picture of size ( , )k l , for some , 1k l ≥  over an alphabet V . The 
language { }π  can be decided by an ANPPPC. 

Proof. We define an ANPPPC Γ  that decides the singleton language { }π . This network is formed by 
two disjoint subnetworks. One of these subnetworks checks whether the input picture is exactly π ,  while the 
other one makes a computation that is long enough such that the first network can complete its computation. 
We start by defining the working alphabet U  of Γ  that consists of the following sets: 

{ } { }1 2[ ( , ), ] | ( , ) ([ 1] [ ]) ,    ( , ), | [ ] ,
{ | },    { | }.

U i j i i j k l U k j j j l
V a a V V a a V

= π ∈ − × = 〈π 〉 ∈
′ ′= ∈ = ∈

 

We now define the nodes of the network deciding π  only. We accompany the nodes by some 
explanations regarding their role. The input node In  is defined as follows: 
 

M PI FI PO FO α β 

{ | } { | }a a a V a a a V→ ∈ ∪ → ′ ∈  V 1 2V V U U∪ ∪ ∪′  V V∪ ′  ∅  + w  

 
The input picture, say θ , is initially in the input node In . Here, in different copies of θ , an occurrence 

of some a  is replaced by a ′ . The unchanged picture enters 1X  (since it has no prime symbol), while all 
those having a prime symbol enter 1Z . The nodes 1X  and 1Z  are the starting nodes of two disjoint 
subnetworks (this means that the two subnetworks never exchange pictures between them). We denote by 

1SN  and 2SN  the subnetworks starting with 1X  and 1Z , respectively. The subnetwork 1SN  checks whether 
the input picture is identical to π ,  while the subnetwork 2SN  makes a sufficiently long computation 
allowing the subnetwork 1SN  to complete its computation. 
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The subnetwork 1SN  is also formed by two subnetworks: a star subnetwork containing the nodes 

1 2, , , lX X X…  and CP  (denoted by 11SN ), and a path subnetwork containing the nodes 1 2 1, , , kY Y Y −…  
(denoted by 12SN ). In the case of 1k = , 12SN  is empty. In its turn, the subnetwork 2SN  is a path 
subnetwork formed by the nodes 1 2,Z Z and 3Z . The whole underlying network of Γ  is depicted in Fig.1. 

 
Fig. 1 – The underlying network of Γ. 

We continue with the definition of the nodes jX , [ ]j l∈ : 

M PI FI PO FO α β 

{ ( , ) [ ( , ), ] |
[ 1]}

{ ( , ) ( , ), }

i j i j i
i k

k j k j j

π → π
∈ − ∪
π → 〈π 〉

 { ( , )}k jπ  

{ ( , ), |
}

,  if 1,
,  otherwise. 

k r r
j r l
V j

〈π 〉
≤ ≤ ∪

=′⎧
⎨∅⎩

 
{ ( , ), }

{[ ( , ), ] |
[ 1]}

k j j
i j i

i k

〈π 〉 ∪
π
∈ −

 ∅  ←  s 

The definition of CP  is: 

M PI FI PO FO β 
{ }z  2U  ∅  2U  ∅  w 

We follow the itinerary of the input picture θ  that arrives in 1X . In its first column, at least one 
occurrence of each symbol ( ,1)iπ , [ 1]i k∈ − , is replaced by [ ( ,1), ]i iπ . If the first column of θ  does not 
contain (1, )kπ , the picture remain trapped in 1X  forever, because a picture cannot go out from 1X  unless it 
contains the symbol ( ,1),1k〈π 〉 . If (1, )kπ  appears in the first column of θ ,  as soon as one of its occurrences 
is replaced by ( ,1),1k〈π 〉 , the new picture leaves 1X . As one can see later in the computation, if a picture 
leaves 1X  but its first column still contains symbols from V ,  it will disappear. Let us now follow what 
happens with a picture, say 1θ , that leaves 1X . Such a picture enters CP , where a circular permutation takes 
place such that its first column is moved as the rightmost column. Obviously, the former second column of 

1θ  becomes now the leftmost column of the new picture, which enters 2X . The process described above will 
be applied to all pictures entering rX  and further CP , for all 2 r l≤ ≤ . Note that a picture that was 
processed in a node rX , for some [ ]r l∈ , cannot enter later any node jX  with j r≤ . 

Consequently, a picture that enters 1,1SN  can leave this subnetwork after visiting exactly once each of 

the nodes 
1 21, , , , ,

pi i i lX X X X X…  for some 0p ≥ , and 

1 21 ,           (*)pi i i l< < <…< <  

in this order. Furthermore, the output filters of the nodes jX , [ ]j l∈ , ensures that the input picture has at 
least k  rows. Therefore, the input picture must have at most l  columns and at least k  rows. 
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A picture that leaves 11SN  may enter 1Y , if 1k > , or Halt  and Accept  simultaneously, if 1k = , 
provided that it does not contain any symbol from V .  For an analysis of this part of the computation when 

1k > , we first define the nodes jY , [ 1]j k∈ − , of the path subnetwork. 
 

M PI FI PO FO α β 

{[ , ] |a j
a V

→ ε
∈

 {[ , ] | }a j a V∈  
{[ , ] |1 },
     if 2,

,  if 1.

a r r j
V j

j

≤ <⎧
⎪∪ ≥⎨
⎪∅ =⎩

 
{ ( , ), |

[ ]}
k r r

r l
〈π 〉

∈
 {[ , ] | }a j a V∈  ↑  w 

 
A picture enters 1Y  if it contains at least one symbol [ ,1]a  for some a V∈ . The first row of all pictures 

in 1Y  is deleted and the newly obtained pictures are expelled from 1Y . If some of these pictures still contain a 
symbol [ ,1]a  for some a V∈ , then they are lost because they can enter neither 2Y  nor lX . 

Assume that a picture 1ρ , obtained by deleting the first row of a picture ρ  in 1Y , enters 2Y . This means 
that ρ = μ® 1ρ , where 

 1([ (1,1),1],[ (1, ),1], ,[ (1, ),1],[ (1, ),1])pi i lμ = π π … π π  

with 1 2, , , pi i i…  defined in (*). This reasoning may be applied inductively to all pictures that enter 

2 3 1, , , kY Y Y −… . We now define the halting and accepting node by: 
 

Node M PI FI PO FO α β 
Halt  ∅  { ( , ), | [ ]}k r r r l V〈π 〉 ∈ ∪ ′  U PI5  { ( , ), | [ ]}k r r r l〈π 〉 ∈  ∅  + w 
Accept  ∅  { ( , ), | [ ]}k r r r l〈π 〉 ∈  U PI5  { ( , ), | [ ]}k r r r l〈π 〉 ∈  ∅  + s 

 
It follows that a picture which enters 1,2SN  can leave this subnetwork if it has at least k  rows, each row 

j  with [ 1]j k∈ −  being exactly 1([ ( ,1), ],[ ( , ), ], ,[ ( , ), ],[ ( , ), ])pj j j i j j i j j l jπ π … π π  with 1 2, , , pi i i…  defined in 
(*). After leaving 1,2SN , a picture that contains more than two rows is lost as it cannot enter any further 
node. We infer that a picture which enters 1,2SN  can leave this subnetwork and enter Halt , provided that it 
has exactly k  rows. The same picture can enter simultaneously Accept  if it is a row picture with exactly l  
elements. By all these considerations, we conclude that a picture θ  which enters 1,1SN  can eventually enter 
simultaneously Halt  and Accept  if and only if θ = π . 

It is worth noting that this computation needs 1kl k l+ + −  processing steps and 1kl k l+ + −  
communicating steps to complete. 

We now discuss the role of the subnetwork 2SN . Informally, a picture that enters this subnetwork will 
eventually enter Halt  after exactly 2kl  processing steps and 2kl  communicating steps. The subnetwork 

2SN  contains the nodes 1 2 3, ,Z Z Z  defined as follows: 
 

Node M PI FI PO FO α β 

1Z  { | }a a a V→ ∈′  V ′  ∅   V ′  V + w 

2Z  { | }a a a V→ ∈′  V ′  ∅  V V ′  + w 

3Z  { | }a a a V→ ∈′  V ∅  V ′  ∅  + w 
 

Indeed, as one can easily see, in 1Z  all symbols a V∈  are replaced by a ′ , which takes 1kl −  
processing steps (note that one symbol was replaced in In ), while in 2Z  all the primed symbols are restored, 
which takes kl  processing steps. Finally, before entering Halt , one more symbol from V  is replaced by its 
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primed copy. The proof is complete as soon as we note that 2 1kl kl k l≥ + + − , which is equivalent to 
( 1)( 1) 0k l− − ≥ . 

PROPOSITION 2. Let π  be a picture of size ( , )k l  for some , 1k l ≥ , and let ,n k m l≥ ≥ . The language 

, ( ) { |  is a picture of size ( , ) and  is a subpicture of }n mL n mπ = θ θ π θ  

can be decided by an ANPPPC in ( )n m kl+ +O  computational (processing and communication) steps. 

Proof. The reasoning here is actually the same as that used in [4]; for sake of completeness, we recall 
the main considerations from [4]. We give only an informal description of the construction, which is based 
on a rather simple idea.The network defined in the proof of Proposition 1 will be used as a subnetwork as 
follows. We add nine new nodes: 

– In , the new initial node that is a substitution node. Here each symbol is replaced by itself. 
–  Eight new deletion nodes, divided in four pairs of identical nodes: each pair is used for deleting the 

leftmost column, the rightmost column, the uppermost row and the undermost row, respectively. 
Informally, the new nodes cut arbitrary subpictures from the given picture, and send them to the 

subnetwork constructed in the proof of Proposition 1. Clearly, all subpictures of the same size are produced 
and sent simultaneously. Further on, as soon as all these pictures leave the new nodes, they cannot further 
return to them. 

All subpictures of the same size received by the subnetwork are matched against the pattern π  in 
parallel. For a given picture is of size ( , )m n , all subpictures of the same size ( , )k l′ ′  are extracted from the 
input picture and sent to the subnetwork after exactly ( ) ( ) 1m k n l′ ′− + − +  processing steps. If at least one of 
these subpictures is identical to π ,  both halting and accepting node will eventually be non-empty after 

4m k n l l− + − +  processing steps. In this case, the input picture is accepted. If the halting node is empty 
after 4m k n l l− + − +  steps, it will definitely become non-empty after 4 1m n l+ + −  processing steps. As 

4 1 4m n l m k n l l+ + − > − + − + , the input picture is rejected. 
It is easy to note that the construction described above can be extended by ANPPPCs able to detect any 

pattern from a finite set of pictures, all of them of the same size, at no further computational complexity cost. 
It suffices to construct an independent subnetwork of the type just discussed for each pattern. This leads to 
the main result: 
 

THEOREM 1. Given a finite set F of patterns of size ( , )k l  and ( , )l k  for any , 1k l ≥ , the pattern 
matching problem with patterns from F can be solved by ANPPPCs in ( )n m kl+ +O  computational 
(processing and communication) steps. 

4. CONCLUSIONS 

We have proposed an ( )n m kl+ +O  computational steps solution to the picture pattern matching 
problem based on ANPPPCs. This construction has a series of consequences. First, it is immediate that any 
( , )k l -local language [7] with arbitrary ,k l  can be decided in ( )n m kl+ +O  computational steps by 
ANPPPCs. We now define a scattered subpicture π ,  of size ( , )k l , in a picture θ, of size ( , )n m , as being the 
picture obtained from θ  by deleting n k−  arbitrary rows and m l−  arbitrary columns. The scattered picture 
pattern matching problem is to find a pattern as a scattered subpicture in a given picture. Our construction for 
solving the picture pattern matching problem can be easily modified such that: 
 

THEOREM 2. Given a finite set F of patterns of size ( , )k l  and ( , )l k , for any , 1k l ≥ , the scattered 
pattern matching problem with patterns from F can be solved by ANPPPCs in ( )n m kl+ +O  computational 
(processing and communication) steps. 
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We also define the Hamming distance between two pictures of the same size as the number of positions 
at which the corresponding symbols are different. The construction in Theorem 1 may be extended to prove: 

THEOREM 3. Let 1p ≥  and F be a set of patterns of size ( , )k l  and ( , )l k , for any , 1k l ≥ . For any 
given picture  θ   of size ( , )n m , the problem of finding a pattern in  θ   which is at a Hamming distance at 
most p  from a picture in F can be solved by ANPPPCs in ( )n m kl+ +O  computational (processing and 
communication) steps. 
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