ALL FRACTIONAL (g, f)-FACTORS IN GRAPHS

Zhiren SUN ${ }^{1}$, Sizhong ZHOU 2
${ }^{1}$ Nanjing Normal University, School of Mathematical Sciences, Nanjing, Jiangsu 210046, P. R. China
E-mail: 05119@njnu.edu.cn
${ }^{2}$ Jiangsu University of Science and Technology, School of Science, Mengxi Road 2, Zhenjiang, Jiangsu 212003, P. R. China Corresponding author: Sizhong Zhou, E-mail: zsz_cumt@163.com

Abstract

Let G a graph, and $g, f: V(G) \rightarrow N$ be two functions with $g(x) \leq f(x)$ for each vertex x in G. We say that G has all fractional (g, f)-factors if G includes a fractional r-factor for every $r: V(G) \rightarrow N$ with $g(x) \leq r(x) \leq f(x)$ for each vertex x in G. Let H be a subgraph of G. We say that G admits all fractional (g, f)-factors including H if for every $r: V(G) \rightarrow N$ with $g(x) \leq r(x) \leq f(x)$ for each vertex x in G, G includes a fractional r-factor F_{h} with $h(e)=1$ for any $e \in E(H)$, where $h: E(G) \rightarrow[0,1]$ is the indicator function of F_{h}. In this paper, we obtain a characterization for the existence of all fractional (g, f) -factors including H and pose a sufficient condition for a graph to have all fractional (g, f)-factors including H.

Key words: graph, fractional (g, f) -factor, all fractional (g, f)-factors.

1. INTRODUCTION

We consider finite undirected graphs which have neither multiple edges nor loops. Let G be a graph. We denote its vertex set and edge set by $V(G)$ and $E(G)$, respectively. For each $x \in V(G)$, the degree of x in G is defined as the number of edges which are adjacent to x and denoted by $d_{G}(x)$. For any $S \subseteq V(G)$, we use $G[S]$ to denote the subgraph of G induced by S, and use $G-S$ to denote the subgraph obtained from G by deleting vertices in S together with the edges incident to vertices in S. A subset S of $V(G)$ is said to be independent if $N_{G}(S) \cap S=\phi$. Let S and T be two disjoint vertex subsets of G. Then $e_{G}(S, T)$ denotes the number of edges joining S to T.

Let $g, f: V(G) \rightarrow N$ be two functions with $g(x) \leq f(x)$ for each $x \in V(G)$. A spanning subgraph F of G is called a (g, f)-factor if one has $g(x) \leq d_{F}(x) \leq f(x)$ for each vertex x in G. An (f, f)-factor is said to be an f-factor. If G includes an r-factor for every $r: V(G) \rightarrow N$ which satisfies $g(x) \leq r(x) \leq f(x)$ for each vertex x in G and $r(V(G))$ is even, then we say that G admits all (g, f)-factors. Let $h: E(G) \rightarrow[0,1]$ be a function. For any $x \in V(G)$, we denote the set of edges incident with x by $E(x)$. If $g(x) \leq \sum_{e \in E(x)} h(e) \leq f(x)$ holds for each vertex x in G, then we call graph F_{h} with vertex set $V(G)$ and edge set E_{h} a fractional (g, f)-factor of G with indicator function h, where $E_{h}=\{e: e \in E(G), h(e)>0\}$. A fractional (f, f)-factor is called a fractional f-factor. If G contains a fractional r-factor for every $r: V(G) \rightarrow N$ with $g(x) \leq r(x) \leq f(x)$ for each vertex x in G, then we say that G admits all fractional (g, f)-factors. If $g(x) \equiv a, f(x) \equiv b$ and G admits all fractional (g, f)-factors, then we say that G contains all fractional $[a, b]$-factors. Let H be a subgraph of G. If for every $r: V(G) \rightarrow N$ such that
$g(x) \leq r(x) \leq f(x)$ for each vertex x in G, G includes a fractional r-factor F_{h} with $h(e)=1$ for any $e \in E(H)$, then we say that G admits all fractional (g, f)-factors including H, where h is the indicator function of F_{h}. For any function $\varphi: V(G) \rightarrow N$, we define $\varphi(S)=\sum_{x \in S} \varphi(x)$ and $\varphi(\phi)=0$. Especially, $d_{G}(S)=\sum_{x \in S} d_{G}(x)$.

Lu [3] first introduced the definition of all fractional (g, f)-factors, and obtained a necessary and sufficient condition for a graph to have all fractional (g, f)-factors, and posed a sufficient condition for the existence of all fractional [a, b]-factors in graphs. Zhou and Sun [4] showed a neighborhood condition for a graph to have all fractional [a, b]-factors, which is an extension of Lu's result [3]. Zhou, Bian and Sun [5] obtained a binding number condition for the existence of all fractional [a, b]-factors in graphs. The following results on fractional (g, f)-factors and all all fractional (g, f)-factors are known.

Anstee [1] gave a necessary and sufficient condition for graphs to have fractional (g, f)-factors. Liu and Zhang [2] posed a new proof.

THEOREM 1 (Anstee [1], Liu and Zhang [2]). Let G be a graph, and $g, f: V(G) \rightarrow Z^{+}$be two functions with $g(x) \leq f(x)$ for each vertex x in G. Then G contains a fractional (g, f)-factor if and only if

$$
f(S)+d_{G-S}(T)-g(T) \geq 0
$$

for any subset S of $V(G)$, where $T=\left\{x: x \in V(G)-S, d_{G-S}(x)<g(x)\right\}$.
The following theorem is equivalent to Theorem 1.
THEOREM 2. Let G be a graph, and $g, f: V(G) \rightarrow Z^{+}$be two functions with $g(x) \leq f(x)$ for each vertex x in G. Then G contains a fractional (g, f)-factor if and only if

$$
f(S)+d_{G-S}(T)-g(T) \geq 0
$$

for all disjoint subsets S and T of $V(G)$.
$\mathrm{Lu}[3]$ showed a characterization of graphs having all fractional (g, f)-factors.

THEOREM 3 (Lu [3]). Let G be a graph, and $g, f: V(G) \rightarrow Z^{+}$be two functions with $g(x) \leq f(x)$ for each vertex x in G. Then G admits all fractional (g, f)-factors if and only if

$$
g(S)+d_{G-S}(T)-f(T) \geq 0
$$

for any subset S of $V(G)$, where $T=\left\{x: x \in V(G)-S, d_{G-S}(x)<f(x)\right\}$.
Some other results on factors and fractional factors of graphs see [6-21]. In this paper, we study the existence of all fractional (g, f)-factors including any given subgraph in graphs, and pose some new results which are shown in the following.

THEOREM 4. Let G be a graph, and $g, f: V(G) \rightarrow Z^{+}$be two functions such that $g(x) \leq f(x)$ for each vertex x in G. Let H be a subgraph of G. Then G has all fractional (g, f)-factors including H if and only if

$$
g(S)+d_{G-S}(T)-f(T) \geq d_{H}(S)-e_{H}(S, T)
$$

for all disjoint subsets S and T of $V(G)$.

THEOREM 5. Let G be a graph, H be a subgraph of G, and $g, f: V(G) \rightarrow Z^{+}$be two functions with $d_{H}(x) \leq g(x) \leq f(x) \leq d_{G}(x)$ for each vertex x in G. If

$$
\left(g(x)-d_{H}(x)\right) d_{G}(y) \geq\left(d_{G}(x)-d_{H}(x)\right) f(y)
$$

holds for any $x, y \in V(G)$, then G has all fractional (g, f)-factors including H.
If $E(H)=\phi$ in Theorem 5, then we obtain the following corollary.

COROLLARY 6. Let G be a graph, and $g, f: V(G) \rightarrow Z^{+}$be two functions with $g(x) \leq f(x) \leq d_{G}(x)$ for each vertex x in G. If

$$
g(x) d_{G}(y) \geq d_{G}(x) f(y)
$$

holds for any $x, y \in V(G)$, then G contains all fractional (g, f)-factors.

2. THE PROOF OF THEOREM 4

Proof of Theorem 4. We first verify this sufficiency. Let $r: V(G) \rightarrow Z^{+}$be an arbitrary integer-valued function such that $g(x) \leq r(x) \leq f(x)$ for each $x \in V(G)$. According to the definition of all fractional (g, f) -factors including H, we need only to verify that G admits a fractional r-factor including H, that is, we need only to verify that G admits a fractional r^{\prime}-factor excluding H, where $r^{\prime}(x)=d_{G}(x)-r(x)$. Let $G^{\prime}=G-E(H)$. Thus, we need only to prove that G^{\prime} admits a fractional r^{\prime}-factor.

For any disjoint subsets S and T of $V(G)$,

$$
g(S)+d_{G-S}(T)-f(T) \geq d_{H}(S)-e_{H}(S, T),
$$

and so,

$$
\begin{equation*}
g(T)+d_{G-T}(S)-f(S)-d_{H}(T)+e_{H}(S, T) \geq 0 . \tag{1}
\end{equation*}
$$

It follows from (1) that

$$
\begin{aligned}
r^{\prime}(S)+d_{G^{\prime}-S}(T)-r^{\prime}(T) & =r^{\prime}(S)+d_{G-S}(T)-r^{\prime}(T)-d_{H}(T)+e_{H}(S, T) \\
& =d_{G}(S)-r(S)+d_{G-S}(T)-d_{G}(T)+r(T)-d_{H}(T)+e_{H}(S, T) \\
& \geq d_{G}(S)-f(S)+d_{G-S}(T)-d_{G}(T)+g(T)-d_{H}(T)+e_{H}(S, T) \\
& =g(T)+d_{G-T}(S)-f(S)-d_{H}(T)+e_{H}(S, T) \geq 0 .
\end{aligned}
$$

In terms of Theorem 2, G^{\prime} admits a fractional r^{\prime}-factor, that is, G has all fractional (g, f)-factors including H.
Now we verify the necessity. Conversely, we assume that there exist disjoint subsets S and T of $V(G)$ such that

$$
g(S)+d_{G-S}(T)-f(T)<d_{H}(S)-e_{H}(S, T) .
$$

Let $r(x)=g(x)$ for any $x \in S$ and $r(y)=f(y)$ for any $y \in V(G) \backslash S$. Thus, we have

$$
0>g(S)+d_{G-S}(T)-f(T)-d_{H}(S)+e_{H}(S, T)=r(S)+d_{G-S}(T)-r(T)-d_{H}(S)+e_{H}(S, T) .
$$

Set $r^{\prime}(x)=d_{G}(x)-r(x)$ and $G^{\prime}=G-E(H)$. Thus,

$$
\begin{aligned}
0 & >r(S)+d_{G-S}(T)-r(T)-d_{H}(S)+e_{H}(S, T) \\
& =d_{G}(S)-r^{\prime}(S)+d_{G^{\prime}-S}(T)+d_{H}(T)-e_{H}(S, T)-d_{G}(T)+r^{\prime}(T)-d_{H}(S)+e_{H}(S, T) \\
& =d_{G^{\prime}}(S)+d_{H}(S)-r^{\prime}(S)+d_{G^{\prime}-S}(T)+d_{H}(T)-d_{G^{\prime}}(T)-d_{H}(T)+r^{\prime}(T)-d_{H}(S) \\
& =r^{\prime}(T)+d_{G^{\prime}-T}(S)-r^{\prime}(S),
\end{aligned}
$$

which implies that G^{\prime} has no fractional r^{\prime}-factor. (Otherwise, $r^{\prime}(A)+d_{G^{\prime}-A}(B)-r^{\prime}(B) \geq 0$ for all disjoint subsets A and B of $V(G)$ by Theorem 2. Set $A=T$ and $B=S$. Thus, we obtain $r^{\prime}(T)+d_{G^{\prime}-T}(S)-$ $r^{\prime}(S) \geq 0$, a contradiction.) And so, G has no fractional r^{\prime}-factor excluding H, that is, G has no fractional r-factor including H. Hence, G has no all fractional (g, f)-factors excluding H, a contradiction. This finishes the proof of Theorem 4.

3. THE PROOF OF THEOREM 5

Proof of Theorem 5. According to Theorem 4, we need only to verify that

$$
g(S)+d_{G-S}(T)-f(T) \geq d_{H}(S)-e_{H}(S, T)
$$

for all disjoint subsets S and T of $V(G)$.
If $T=\phi$, then we have

$$
g(S)+d_{G-S}(T)-f(T)=g(S) \geq d_{H}(S)=d_{H}(S)-e_{H}(S, T) .
$$

In the following, we assume that $T \neq \phi$. Note that $\left(g(x)-d_{H}(x)\right) d_{G}(y) \geq\left(d_{G}(x)-d_{H}(x)\right) f(y)$ holds for any $x, y \in V(G)$, that is, $g(x) d_{G}(y) \geq d_{G}(x) f(y)+d_{H}(x)\left(d_{G}(y)-f(y)\right)$ holds for any $x, y \in V(G)$. Hence, we have

$$
\left(\sum_{x \in S} g(x)\right)\left(\sum_{y \in T} d_{G}(y)\right) \geq\left(\sum_{x \in S} d_{G}(x)\right)\left(\sum_{y \in T} f(y)\right)+\left(\sum_{x \in S} d_{H}(x)\right)\left(\sum_{y \in T}\left(d_{G}(y)-f(y)\right)\right),
$$

that is,

$$
\begin{equation*}
g(S) d_{G}(T) \geq d_{G}(S) f(T)+d_{H}(S)\left(d_{G}(T)-f(T)\right) . \tag{2}
\end{equation*}
$$

We write $U=V(G) \backslash(S \cup T)$. Then we obtain

$$
\begin{aligned}
d_{G}(S) & =e_{G}(S, T)+e_{G}(S, S)+e_{G}(S, U) \geq \\
& \geq e_{G}(S, T)+e_{H}(S, S)+e_{G}(S, U)= \\
& =e_{G}(S, T)+d_{H}(S)-e_{H}(S, T)-e_{H}(S, U)+e_{G}(S, U) \geq \\
& \geq e_{G}(S, T)+d_{H}(S)-e_{H}(S, T)= \\
& =d_{G}(T)-d_{G-S}(T)+d_{H}(S)-e_{H}(S, T),
\end{aligned}
$$

which implies

$$
\begin{equation*}
d_{G}(S)-d_{G}(T) \geq-d_{G-S}(T)+d_{H}(S)-e_{H}(S, T) . \tag{3}
\end{equation*}
$$

In terms of (2) and (3), we have

$$
\begin{aligned}
& d_{G}(T)\left(g(S)+d_{G-S}(T)-f(T)-d_{H}(S)+e_{H}(S, T)\right)= \\
& \quad=d_{G}(T) g(S)+d_{G}(T) d_{G-S}(T)-d_{G}(T) f(T)-d_{G}(T) d_{H}(S)+d_{G}(T) e_{H}(S, T) \\
& \quad \geq d_{G}(S) f(T)+d_{H}(S)\left(d_{G}(T)-f(T)\right)+d_{G}(T) d_{G-S}(T)-d_{G}(T) f(T)-d_{G}(T) d_{H}(S)+d_{G}(T) e_{H}(S, T) \\
& \quad=f(T)\left(d_{G}(S)-d_{G}(T)\right)+d_{G}(T) d_{G-S}(T)-d_{H}(S) f(T)+d_{G}(T) e_{H}(S, T) \\
& \quad \geq f(T)\left(-d_{G-S}(T)+d_{H}(S)-e_{H}(S, T)\right)+d_{G}(T) d_{G-S}(T)-d_{H}(S) f(T)+d_{G}(T) e_{H}(S, T) \\
& \quad=\left(d_{G-S}(T)+e_{H}(S, T)\right)\left(d_{G}(T)-f(T)\right) \geq 0 .
\end{aligned}
$$

Combining this with $d_{G}(T) \geq f(T) \geq|T| \geq 1$, we obtain

$$
g(S)+d_{G-S}(T)-f(T) \geq d_{H}(S)-e_{H}(S, T)
$$

Theorem 5 is proved.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to the anonymous referees for their very helpful comments and suggestions which resulted in a much improved paper. This work is supported by Six Big Talent Peak of Jiangsu Province (Grant No. JY-022) and 333 Project of Jiangsu Province.

REFERENCES

1. R.P. ANSTEE, Simplified existence theorems for (g, f)-factors, Discrete Applied Mathematics, 27, pp. 29-38, 1990.
2. G. LIU, L. ZHANG, Fractional (g, f)-factors of graphs, Acta Mathematica Scientia Series B, 21, pp. 541-545, 2001.
3. H. LU, Simplified existence theorems on all fractional [a,b]-factors, Discrete Applied Mathematics, 161, pp. 2075-2078, 2013.
4. S. ZHOU, Z. SUN, On all fractional (a, b, k)-critical graphs, Acta Mathematica Sinica, English Series, 30, pp. 696-702, 2014.
5. S. ZHOU, Q. BIAN, Z. SUN, Binding numbers for all fractional (a,b,k)-critical graphs, Filomat, 28, pp. 709-713, 2014.
6. M. D. PLUMMER, Graph factors and factorization: 1985-2003: A survey, Discrete Mathematics, 307, pp. 791-821, 2007.
7. W. GAO, W. WANG, New isolated toughness condition for fractional ($\mathrm{g}, \mathrm{f}, \mathrm{n}$)-critical graphs, Colloquium Mathematicum, 147, pp. 55-66, 2017.
8. S. ZHOU, A sufficient condition for a graph to be an (a,b,k)-critical graph, Int. J. Comput. Math., 87, pp. 2202-2211, 2010.
9. S. ZHOU, Some results about component factors in graphs, RAIRO-Operations Research, 53, 3, pp. 723-730, 2019.
10. S. ZHOU, Remarks on orthogonal factorizations of digraphs, Int. J. Comput. Math., 91, pp. 2109-2117, 2014.
11. S. ZHOU, Z. SUN, Z. XU, A result on r-orthogonal factorizations in digraphs, European Journal of Combinatorics, 65, pp. 1523, 2017.
12. S. ZHOU, F. YANG, L. XU, Two sufficient conditions for the existence of path factors in graphs, Scientia Iranica, 2018, DOI: 10.24200/SCI.2018.5151.1122.
13. S. ZHOU, L. XU, Z. XU, Remarks on fractional ID-k-factor-critical graphs, Acta Mathematicae Applicatae Sinica, English Series, 35, 2, pp. 458-464, 2019.
14. W. GAO, W. WANG, A tight neighborhood union condition on fractional ($\mathrm{g}, \mathrm{f}, \mathrm{n}$ ', m)-critical deleted graphs, Colloquium Mathematicum, 149, pp. 291-298, 2017.
15. L. XIONG, Characterization of forbidden subgraphs for the existence of even factors in a graph, Discrete Applied Mathematics, 223, pp. 135-139, 2017.
16. K. KIMURA, f-factors, complete-factors, and component-deleted subgraphs, Discrete Mathematics, 313, pp. 1452-1463, 2013.
17. S. ZHOU, Z. SUN, Neighborhood conditions for fractional ID-k-factor-critical graphs, Acta Mathematicae Applicatae Sinica, English Series, 34, 3, pp. 636-644, 2018.
18. S. ZHOU, T. ZHANG, Some existence theorems on all fractional (g, f)-factors with prescribed properties, Acta Mathematicae Applicatae Sinica, English Series, 34, 2, pp. 344-350, 2018.
19. S. ZHOU, Z. SUN, H. YE, A toughness condition for fractional (k, m) -deleted graphs, Information Processing Letters, 113, pp. 255-259, 2013.
20. S. ZHOU, Y. XU, Z. SUN, Degree conditions for fractional (a, b, k)-critical covered graphs, Information Processing Letters, 152, article 105838, 2019. DOI: 10.1016/j.ipl.2019.105838.
21. S. ZHOU, Z. SUN, Binding number conditions for $P_{\geq 2}$-factor and $P_{\geq 3}$-factor uniform graphs, Discrete Mathematics, 343, 3, p. 111715, 2020, DOI: 10.1016/j.disc.2019.111715.
