A FURTHER LOOK AT A COMPLETE CHARACTERIZATION OF RAMANUJAN-TYPE CONGRUENCES MODULO 16 FOR OVERPARTITIONS

Mircea MERCA
Academy of Romanian Scientists, Ilfov 3, Sector 5, Bucharest, Romania
Corresponding author: Mircea MERCA, E-mail: mircea.merca@profinfo.edu

Abstract

In 2016, X. Xiong provided a complete determination of the overpartition function $\bar{p}(n)$ modulo 16 by relating it to some binary quadratic forms. In this paper, we approach the characterization of $\bar{p}(n)$ modulo 16 considering the relations of the form $$
\bar{p}\left(2^{\alpha}(8 n+\ell)\right) \equiv r \quad(\bmod 16)
$$ with $\alpha \geqslant 0$ and $\ell \in\{1,3,5,7\}$.

Key words: overpartitions, congruence relations, divisor functions.

1. INTRODUCTION

Recall [4] that an overpartition of the positive integer n is an ordinary partition of n where the first occurrence of parts of each size may be overlined. Let $\bar{p}(n)$ denote the number of overpartitions of n. For example, the overpartitions of the integer 3 are:

$$
3, \overline{3}, 2+1, \overline{2}+1,2+\overline{1}, \overline{2}+\overline{1}, 1+1+1 \text { and } \overline{1}+1+1 .
$$

We see that $\bar{p}(3)=8$. It is well-known that the generating function of $\bar{p}(n)$ is given by

$$
\sum_{n=0}^{\infty} \bar{p}(n) q^{n}=\frac{(-q ; q)_{\infty}}{(q, q)_{\infty}}=\left(\sum_{n=-\infty}^{\infty}(-q)^{n^{2}}\right)^{-1},
$$

where

$$
(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(1-a)(1-a q)\left(1-a q^{2}\right) \cdots\left(1-a q^{n-1}\right) .
$$

Because the infinite product $(a ; q)_{\infty}$ diverges when $a \neq 0$ and $|q| \geqslant 1$, whenever $(a ; q)_{\infty}$ appears in a formula, we shall assume that $|q|<1$.

In the recent years many congruences for the number of overpartitions have been discovered. For more information and references, see Chen [1], Chen, Hou, Sun and Zhang [2], Chern and Dastidar [3], Dou and Lin [6], Fortin, Jacob and Mathieu [7], Hirschhorn and Sellers [8], Kim [10, 11], Lovejoy and Osburn [12], Mahlburg [13], Xia [14], Xiong [15] and Yao and Xia [16].

It seems that the first Ramanujan-type congruences modulo power of 2 for $\bar{p}(n)$, was founded in 2003 by Fortin, Jacob and Mathieu [7]. For all n that cannot be written as a sum of s or less squares, they obtained that

$$
\begin{equation*}
\bar{p}(n) \equiv 0 \quad\left(\bmod 2^{s+1}\right) . \tag{1}
\end{equation*}
$$

This result is meaningful only for $s<4$ since, by Lagrange's four-square theorem, all numbers can be written as a sum of four squares. So considering that $8 n+7$ cannot be written as a sum of three or less squares, they derived the following congruence modulo 16 :

$$
\begin{equation*}
\bar{p}(8 n+7) \equiv 0 \quad(\bmod 16) \tag{2}
\end{equation*}
$$

The following Ramanujan-type congruence for $\bar{p}(n)$ modulo 16 was founded in 2013 by Yao and Xia [16] using dissection techniques:

$$
\begin{array}{ll}
\bar{p}(24 n+17) \equiv 0 & (\bmod 16), \\
\bar{p}(48 n+14) \equiv 0 & (\bmod 16), \\
\bar{p}(96 n+68) \equiv 0 & (\bmod 16), \\
\bar{p}(96 n+92) \equiv 0 & (\bmod 16), \tag{4}\\
\bar{p}(72 n+21) \equiv 0 & (\bmod 16), \\
\bar{p}(72 n+51) \equiv 0 & (\bmod 16),
\end{array}
$$

and

$$
\bar{p}(72 n+3) \equiv\left\{\begin{array}{lll}
8 & (\bmod 16), & \text { if } n=G_{k} \\
0 & (\bmod 16), & \text { otherwise }
\end{array}\right.
$$

where

$$
G_{k}=\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\left(3\left\lceil\frac{k}{2}\right\rceil+(-1)^{k}\right)
$$

is either of the k-th generalized pentagonal numbers.
Three years later, Chen, Hou, Sun and Zhang [2] gave a 16 -dissection of the generating function for $\bar{p}(n)$ modulo 16 and showed that:

$$
\bar{p}(4 n) \equiv(-1)^{n} \bar{p}(n) \quad(\bmod 16)
$$

and

$$
\begin{equation*}
\bar{p}\left(4^{\alpha}(16 n+14)\right) \equiv 0 \quad(\bmod 16) . \tag{5}
\end{equation*}
$$

We see that this congruence is a generalization of (3). In addition, applying the 2 -adic expansion of the generating function for $\bar{p}(n)$ according to Mahlburg, they obtain that

$$
\bar{p}\left(\ell^{2} n+r \ell\right) \equiv 0 \quad(\bmod 16),
$$

where $\ell \equiv-1 \quad(\bmod 8)$ is an odd prime and r is a positive integer coprime to ℓ.
In 2016, Xiong [15] considered some binary quadratic forms and provided a complete determination of overpartition function modulo 16 . For $n \geqslant 1, r_{2}^{\prime}(n)$ is the number of representations of n as sum of two squares $m^{2}+l^{2}$, with $m, l \geqslant 1$ and $m \neq l$. For $n \geqslant 1, e_{2}(n)$ is the number of representations of n as the form of $m^{2}+2 l^{2}$, with $m, l \geqslant 1$.

THEOREM 1.1. For $n \geqslant 1$, we have:
$\bar{p}(n) \equiv 0 \quad(\bmod 16)$ if n is neither a square nor a double square and $e_{2}(n) \equiv r_{2}^{\prime}(n) \quad(\bmod 2)$,
$\bar{p}(n) \equiv 2(\bmod 16)$ if n is a square of an odd number and $e_{2}(n) \equiv r_{2}^{\prime}(n)(\bmod 2)$,
$\bar{p}(n) \equiv 4 \quad(\bmod 16)$ if n is a double of a square and $e_{2}(n) \equiv r_{2}^{\prime}(n)(\bmod 2)$,
$\bar{p}(n) \equiv 6 \quad(\bmod 16)$ if n is a square of an even number and $e_{2}(n) \not \equiv r_{2}^{\prime}(n)(\bmod 2)$,
$\bar{p}(n) \equiv 8 \quad(\bmod 16)$ if n is neither a square nor a double square and $e_{2}(n) \equiv r_{2}^{\prime}(n) \quad(\bmod 2)$,
$\bar{p}(n) \equiv 10 \quad(\bmod 16)$ if n is a square of an odd number and $e_{2}(n) \not \equiv r_{2}^{\prime}(n) \quad(\bmod 2)$,
$\bar{p}(n) \equiv 12 \quad(\bmod 16)$ if n is a double of a square and $e_{2}(n) \not \equiv r_{2}^{\prime}(n) \quad(\bmod 2)$,
$\bar{p}(n) \equiv 14 \quad(\bmod 16)$ if n is a square of an even number and $e_{2}(n) \equiv r_{2}^{\prime}(n) \quad(\bmod 2)$.
THEOREM 1.1 reduces the determination of overpartition function $\bar{p}(n)$ modulo 16 to the calculations of $r_{2}^{\prime}(n)$ and $e_{2}(n)$. More details can be found in [15, Theorems 1.2 and 1.3].

In this paper, we shall provide a complete characterization of Ramanujan-type congruences modulo 16 for $\bar{p}(n)$ considering the identities of the form

$$
\bar{p}\left(2^{\alpha}(8 n+\ell)\right) \equiv r \quad(\bmod 16)
$$

with $\alpha \geqslant 0$ and $\ell \in\{1,3,5,7\}$. Having

$$
\mathcal{A}_{\ell}=\bigcup_{\alpha=0}^{\infty}\left\{2^{\alpha}(8 n+\ell) \mid n \in \mathbb{N}_{0}\right\}
$$

we note that $\left[\mathcal{A}_{1}, \mathcal{A}_{3}, \mathcal{A}_{5}, \mathcal{A}_{7}\right]$ is a partition of the set \mathbb{N}.
The first result is a generalization of (2), (4) and (5).
THEOREM 1.2. For $n, \alpha \geqslant 0$,

$$
\bar{p}\left(2^{\alpha}(8 n+7)\right) \equiv 0 \quad(\bmod 16)
$$

Surprisingly, this congruence went unobserved so far. It is clear that the congruence (5) is the case α odd of this theorem. Replacing n by $3 n+2$ and α by 2 in Theorem 1.2, we obtain (4).

The following two results provide new Ramanujan-type congruences that combines the overpartition function $\bar{p}(n)$ and the divisor function $\tau_{\text {odd }}(n)$ that counts the odd positive divisors of n.

THEOREM 1.3. For $n, \alpha \geqslant 0$,

$$
\bar{p}\left(2^{\alpha}(8 n+3)\right) \equiv\left\{\begin{array}{lll}
8 & (\bmod 16), & \text { if } \tau_{\text {odd }}(8 n+3) / 2 \text { is odd } \\
0 & (\bmod 16), & \text { if } \tau_{\text {odd }}(8 n+3) / 2 \text { is even }
\end{array}\right.
$$

THEOREM 1.4. For $n, \alpha \geqslant 0$,

$$
\bar{p}\left(2^{\alpha}(8 n+5)\right) \equiv\left\{\begin{array}{lll}
8 & (\bmod 16), & \text { if } \tau_{\text {odd }}(8 n+5) / 2 \text { is odd } \\
0 & (\bmod 16), & \text { if } \tau_{\text {odd }}(8 n+5) / 2 \text { is even } .
\end{array}\right.
$$

If n is a square or twice of a square, then the following result shows that $\bar{p}(n)$ is congruent to 2,4 , $6,10,12$ or $14(\bmod 16)$.

THEOREM 1.5. Let n and α be nonnegative integers.
i. If $8 n+1$ is not a square, then

$$
\bar{p}\left(2^{\alpha}(8 n+1)\right) \equiv 0 \quad(\bmod 16)
$$

ii. If $8 n+1$ is a square, then it is of the form $(8 k \pm 1)^{2}$ or $(8 k \pm 3)^{2}$. We have

$$
\bar{p}\left(2^{\alpha}(8 n \pm 1)^{2}\right) \equiv\left\{\begin{array}{lll}
2 \quad(\bmod 16), & \text { for } \alpha=0 \\
4 & (\bmod 16), & \text { for } \alpha \text { odd } \\
14 & (\bmod 16), & \text { for } \alpha>0 \text { even }
\end{array}\right.
$$

and

$$
\bar{p}\left(2^{\alpha}(8 n \pm 3)^{2}\right) \equiv\left\{\begin{array}{lll}
10 & (\bmod 16), & \text { for } \alpha=0 \\
12 & (\bmod 16), & \text { for } \alpha \text { odd } \\
6 & (\bmod 16), & \text { for } \alpha>0 \text { even } .
\end{array}\right.
$$

The following linear homogeneous recurrence relation [7, Corollary 4]

$$
\bar{p}(n)=2 \sum_{j=1}^{\lfloor\sqrt{n}\rfloor}(-1)^{j+1} \bar{p}\left(n-j^{2}\right),
$$

with $\bar{p}(0)=1$, provides a simple and reasonably efficient way to compute the value of $\bar{p}(n)$. In order to prove Theorems 1.3-1.5, we consider this recurrence relation and the following characterization of Ramanujan-type congruences modulo 8 for the overpartition function $\bar{p}(n)$ provided by Kim [11, Theorem 3]:

$$
\bar{p}(n) \equiv\left\{\begin{array}{ll}
2 & (\bmod 8), \tag{6}\\
4 & \text { if } n \text { is a square of an odd number, } \\
6 & (\bmod 8), \\
(\bmod 8), & \text { if } n \text { is a double of a square } \\
0 & (\bmod 8),
\end{array}, \quad \text { otherwise } . ~ \$\right.
$$

2. PROOF OF THEOREM 1.2

We need to prove only the case α even. First we point out that $2^{2 \alpha}(8 n+7)$ is not a square.
The fundamental theorem on sums of two squares claims that a natural number N is a sum of two squares if and only if all prime factors of N of the form $4 m+3$ have even exponent in the prime factorization of N. It is clear that

$$
2^{2 \alpha}(8 n+7)=2^{2 \alpha}(4(2 n+1)+3)
$$

cannot be written as a sum of two squares.
On the other hand, Legendre's three-square theorem states that a natural number N can be represented as the sum of three squares of integers if and only if N is not of the form $2^{2 \alpha}(8 n+7)$.

Thus we deduce that $2^{2 \alpha}(8 n+7)$ cannot be written as a sum of three or less squares. Considering (1), we obtain

$$
\bar{p}\left(2^{2 \alpha}(8 n+7)\right) \equiv 0 \quad(\bmod 16)
$$

This concludes the proof.

3. PROOF OF THEOREM 1.3

We remark that an integer of the form $8 n+3$ cannot be a square. For all integers a and b, we have

$$
a^{2}+b^{2} \equiv 0,1 \text { or } 2(\bmod 4)
$$

Thus we deduce that $8 n+3$ cannot be written as a sum of two squares.
Let $R(n)$ be the number of nonnegative integer solutions to the equation

$$
x^{2}+2 y^{2}=8 n+3 .
$$

Moreover, if (x, y) is an integer solution of this equation, then x and y are odd integers.
Let $x_{1}, x_{2}, \ldots, x_{R(n)}$ and $y_{1}, y_{2}, \ldots, y_{R(n)}$ be nonnegative integers such that

$$
\left(2 x_{k}+1\right)^{2}+2\left(2 y_{k}+1\right)^{2}=8 n+3, \quad k=1,2, \ldots, R(n) .
$$

Considering (6), the expression

$$
\bar{p}(8 n+3)=2 \sum_{j=1}^{\lfloor\sqrt{8 n+3}\rfloor}(-1)^{j+1} \bar{p}\left(8 n+3-j^{2}\right),
$$

can be reduced modulo 16 as follows:

$$
\bar{p}(8 n+3) \equiv 2 \sum_{k=1}^{R(n)} \bar{p}\left(8 n+3-\left(2 x_{k}+1\right)^{2}\right) \equiv 2 \sum_{k=1}^{R(n)} \bar{p}\left(2\left(2 y_{k}+1\right)^{2}\right) \equiv 2 \sum_{k=1}^{R(n)} 4 \equiv 8 R(n) \quad(\bmod 16)
$$

On the other hand, due to Dirichlet [5], we know that the number of representation of $8 n+3$ as the sum of a square and twice a square is given by

$$
2\left(d_{1}(n)+d_{3}(n)-d_{5}(n)-d_{7}(n)\right)
$$

where $d_{\ell}(n)$ is the number of positive divisors of $8 n+3$ of the form $8 k+\ell$. It is clear that

$$
R(n)=\frac{d_{1}(n)+d_{3}(n)-d_{5}(n)-d_{7}(n)}{2}
$$

Moreover, we see that $R(n)$ and $\tau_{\text {odd }}(8 n+3) / 2$ have the same parity. In addition, having $R\left(2^{\alpha} n\right)=R(n)$, we obtain

$$
\bar{p}\left(2^{\alpha}(8 n+3)\right) \equiv 8 R(n) \quad(\bmod 16)
$$

and the proof is finished.

4. PROOF OF THEOREM 1.4

Firstly we remark that the equations of the form

$$
x^{2}+2 y^{2}=2^{\alpha}(8 n+5)
$$

do not have integer solutions. Let $R(n)$ be the number of positive integer solutions to the equation

$$
x^{2}+y^{2}=8 n+5
$$

If (x, y) is an integer solution of this equation, then we remark that x and y have different parities.
Let $x_{1}, x_{2}, \ldots, x_{R(n)}$ and $y_{1}, y_{2}, \ldots, y_{R(n)}$ be nonnegative integers such that

$$
\left(2 x_{k}+1\right)^{2}+\left(2 y_{k}\right)^{2}=8 n+5, \quad k=1,2, \ldots, R_{1}(n) .
$$

Considering (6), the expression

$$
\bar{p}(8 n+5)=2 \sum_{j=1}^{\lfloor\sqrt{8 n+5}\rfloor}(-1)^{j+1} \bar{p}\left(8 n+5-j^{2}\right),
$$

can be reduced modulo 16 as follows:

$$
\begin{aligned}
\bar{p}(8 n+5) & \equiv 2 \sum_{k=1}^{R(n)}\left(\bar{p}\left(8 n+5-\left(2 x_{k}+1\right)^{2}\right)-\bar{p}\left(8 n+5-\left(2 y_{k}\right)^{2}\right)\right) \\
& \equiv 2 \sum_{k=1}^{R(n)}\left(\bar{p}\left(\left(2 y_{k}\right)^{2}\right)-\bar{p}\left(\left(2 x_{k}+1\right)^{2}\right)\right) \equiv 2 \sum_{k=1}^{R(n)}(6-2) \equiv 8 R(n) \quad(\bmod 16) .
\end{aligned}
$$

Due to Jacobi [9], we know that the number of representation of $8 n+5$ as the sum of two squares is

$$
4\left(d_{1}(n)-d_{3}(n)\right)
$$

where $d_{\ell}(n)$ is the number of positive divisors of $8 n+5$ of the form $4 k+\ell$.
Thus we obtain that

$$
R(n)=\frac{d_{1}(n)-d_{3}(n)}{2} .
$$

Moreover, we see that $R(n)$ and $\tau_{\text {odd }}(8 n+5) / 2$ have the same parity. In a similar way, considering that $R\left(2^{\alpha} n\right)=R(n)$, we obtain

$$
\bar{p}\left(2^{\alpha}(8 n+5)\right) \equiv 8 R(n) \quad(\bmod 16) .
$$

This concludes the proof.

5. PROOF OF THEOREM 1.5

Let $R_{1}(n)$ be the number of positive integer solutions of the equation

$$
x^{2}+y^{2}=8 n+1 .
$$

If (x, y) is an integer solution of this equation, the x and y have different parities. Let $x_{1}, x_{2}, \ldots, x_{R_{1}(n)}$ and $y_{1}, y_{2}, \ldots, y_{R_{1}(n)}$ be positive integers such that

$$
\left(2 x_{k}+1\right)^{2}+\left(2 y_{k}\right)^{2}=8 n+1, \quad k=1,2, \ldots, R_{1}(n) .
$$

Let $R_{2}(n)$ be the number of positive integer solutions of the equation

$$
z^{2}+2 w^{2}=8 n+1 .
$$

If (z, w) is an integer solution of this equation, the z is odd. Let $z_{1}, z_{2}, \ldots, z_{R_{2}(n)}$ and $w_{1}, w_{2}, \ldots, w_{R_{2}(n)}$ be positive integers such that

$$
\left(2 z_{k}+1\right)^{2}+2 w_{k}^{2}=8 n+1, \quad k=1,2, \ldots, R_{2}(n) .
$$

If $8 n+1$ is a square, then considering (6), the expression

$$
\bar{p}(8 n+1)=2 \sum_{j=1}^{\lfloor\sqrt{8 n+1}\rfloor}(-1)^{j+1} \bar{p}\left(8 n+1-j^{2}\right),
$$

can be reduced modulo 16 as follows:

$$
\begin{aligned}
\bar{p}(8 n+1) & \equiv 2 \sum_{k=1}^{R_{1}(n)}\left(\bar{p}\left(8 n+1-\left(2 x_{k}+1\right)^{2}\right)-\bar{p}\left(8 n+1-\left(2 y_{k}\right)^{2}\right)\right)+2 \sum_{k=1}^{R_{2}(n)} \bar{p}\left(8 n+1-\left(2 z_{k}+1\right)^{2}\right)+2 \bar{p}(0) \equiv \\
& \equiv 2 \sum_{k=1}^{R_{1}(n)}\left(\bar{p}\left(\left(2 y_{k}\right)^{2}\right)-\bar{p}\left(\left(2 x_{k}+1\right)^{2}\right)\right)+2 \sum_{k=1}^{R_{2}(n)} \bar{p}\left(2 w_{k}^{2}\right)+2 \equiv \\
& \equiv 2 \sum_{k=1}^{R_{1}(n)}(6-2)+2 \sum_{k=1}^{R_{2}(n)} 4+2 \equiv 8\left(R_{1}(n)+R_{2}(n)\right)+2 \quad(\bmod 16) .
\end{aligned}
$$

In a similar way, when $8 n+1$ is not a square we obtain:

$$
\bar{p}(8 n+1) \equiv 8\left(R_{1}(n)+R_{2}(n)\right) \quad(\bmod 16) .
$$

According to Dirichlet [5] and Jacobi [9], we have

$$
d_{1}(n)-d_{3}(n)+d_{5}(n)-d_{7}(n)= \begin{cases}2 R_{1}(n)+1, & \text { if } 8 n+1 \text { is a square } \\ 2 R_{1}(n), & \text { otherwise }\end{cases}
$$

and

$$
d_{1}(n)+d_{3}(n)-d_{5}(n)-d_{7}(n)= \begin{cases}2 R_{2}(n)+1, & \text { if } 8 n+1 \text { is a square } \\ 2 R_{2}(n), & \text { otherwise }\end{cases}
$$

where $d_{\ell}(n)$ is the number of positive divisors of $8 n+1$ of the form $8 k+\ell$. Thus, we deduce

$$
\bar{p}(8 n+1) \equiv \begin{cases}8 \tau_{1}(8 n+1)+10 \quad(\bmod 16), & \text { if } 8 n+1 \text { is a square } \\ 8 \tau_{1}(8 n+1) \quad(\bmod 16), & \text { otherwise }\end{cases}
$$

where $\tau_{1}(n)$ counts the positive divisors of n congruent to $\pm 1 \bmod 8$. In a similar way, we obtain the following two congruences:

$$
\bar{p}\left(2^{2 \alpha+1}(8 n+1)\right) \equiv \begin{cases}8 \tau_{1}(8 n+1)+12 \quad(\bmod 16), & \text { if } 8 n+1 \text { is a square } \\ 8 \tau_{1}(8 n+1) \quad(\bmod 16), & \text { otherwise }\end{cases}
$$

and

$$
\bar{p}\left(2^{2 \alpha+2}(8 n+1)\right) \equiv \begin{cases}8 \tau_{1}(8 n+1)+6(\bmod 16), & \text { if } 8 n+1 \text { is a square } \\ 8 \tau_{1}(8 n+1) \quad(\bmod 16), & \text { otherwise. }\end{cases}
$$

On the other hand, if $8 n+1$ is a square, then it is of the form $(8 k \pm 1)^{2}$ or $(8 k \pm 3)^{2}$. It is not difficult to prove that $\tau_{1}(8 n+1)$ is odd if and only if $8 n+1$ is a square of the form $(8 k \pm 1)^{2}$. The proof follows easily.

REFERENCES

1. W.Y.C. CHEN, L.H. SUN, R.-H. WANG, L. ZHANG, Ramanujan-type congruences for overpartitions modulo 5, J. Number Theory, 48, pp. 62-72, 2015.
2. W.Y.C. CHEN, Q.-H. HOU, L.H. SUN, L. ZHANG, Ramanujan-type congruences for overpartitions modulo 16, Ramanujan J, 40, pp. 311-322, 2016.
3. S. CHERN, M.G. DASTIDAR, Some congruences modulo 5 and 25 for overpartitions, Ramanujan J., 47, pp. 435-445, 2018.
4. S. CORTEEL, J. LOVEJOY, Overpartitions, Trans. Amer. Math. Soc., 356, pp. 1623-1635, 2004.
5. P.G.L. DIRICHLET, J. Math., 21, 3,6, Werke pp. 463,466, 1840.
6. D.Q.J. DOU, B.L.S. LIN, New Ramanujan type congruences modulo 5 for overpartitions, Ramanujan J., 44, pp. 401-410, 2017.
7. J.-F. FORTIN, P. JACOB, P. MATHIEU, Jagged partitions, Ramanujan J., 10, pp. 215-235, 2005.
8. M.D. HIRSCHHORN, J.A. SELLERS, Arithmetic relations for overpartitions, J. Combin. Math. Combin. Comp., 53, pp. 65-73, 2005.
9. C.G.J. JACOBI, Fundamenta Nova Theoriae Functionum Ellipticarum, 107, Werke I pp. 162-163, 1829.
10. B. KIM, The overpartition function modulo 128, Integers, 8, \#A38, 2008.
11. B. KIM, A short note on the overpartition function, Discrete Math., 309, pp. 2528-2532, 2009.
12. J. LOVEJOY, R. OSBURN, Quadratic forms and four partition functions modulo 3, Integers, 11, \#A4, 2011.
13. K. MAHLBURG, The overpartition function modulo small powers of 2, Discrete Math., 286, pp. 263-267, 2004.
14. E.X.W. XIA, Congruences modulo 9 and 27 for overpartitions, Ramanujan J, 42, pp. 301-323, 2017.
15. X. XIONG, Overpartition function modulo 16 and some binary quadratic forms, Int. J. Number Theory, 12, pp. 1195-1208, 2016.
16. O.X.M. YAO, E.X.W. XIA, New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions, J. Number Theory, 133, pp. 1932-1949, 2013.
