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Abstract. In 2016, X. Xiong provided a complete determination of the overpartition function ( )p n  

modulo 16 by relating it to some binary quadratic forms. In this paper, we approach the 
characterization of ( )p n  modulo 16 considering the relations of the form 

( ) ( )2 (8 ) mod16 ,p n r+ ≡α  

with 0α  and {1,3,5,7}∈ . 
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1. INTRODUCTION 

Recall [4] that an overpartition of the positive integer n  is an ordinary partition of n  where the first 
occurrence of parts of each size may be overlined. Let ( )p n  denote the number of overpartitions of n .  For 
example, the overpartitions of the integer 3 are: 

3, 3, 2 1, 2 1, 2 1, 2 1  ,1 1 1 and  1 1 1.+ + + + + + + +  

We see that (3) 8p = . It is well-known that the generating function of ( )p n  is given by 
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Because the infinite product ( ; )a q ∞  diverges when 0a ≠  and | | 1q , whenever ( ; )a q ∞  appears in a 
formula, we shall assume that | | 1q < . 

In the recent years many congruences for the number of overpartitions have been discovered. For more 
information and references, see Chen [1], Chen, Hou, Sun and Zhang [2], Chern and Dastidar [3], Dou and 
Lin [6], Fortin, Jacob and Mathieu [7], Hirschhorn and Sellers [8], Kim [10,11], Lovejoy and Osburn [12], 
Mahlburg [13], Xia [14], Xiong [15] and Yao and Xia [16]. 

It seems that the first Ramanujan-type congruences modulo power of 2  for ( )p n , was founded in 
2003 by Fortin, Jacob and Mathieu [7]. For all n  that cannot be written as a sum of s  or less squares, they 
obtained that 

( )1( ) 0 mod 2sp n +≡ . (1)

This result is meaningful only for 4s <  since, by Lagrange’s four-square theorem, all numbers can be 
written as a sum of four squares. So considering that 8 7n +  cannot be written as a sum of three or less 
squares, they derived the following congruence modulo 16: 
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 ( )(8 7) 0 mod16p n + ≡ . (2)

The following Ramanujan-type congruence for ( )p n  modulo 16 was founded in 2013 by Yao and Xia 
[16] using dissection techniques: 

 ( )(24 17) 0 mod16p n + ≡ , 

 ( )(48 14) 0 mod16p n + ≡ , (3)

 ( )(96 68) 0 mod16p n + ≡ , 

 ( )(96 92) 0 mod16p n + ≡ , (4)

 ( )(72 21) 0 mod16p n + ≡ , 

 ( )(72 51) 0 mod16p n + ≡ , 

and 
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is either of the k-th generalized pentagonal numbers. 
Three years later, Chen, Hou, Sun and Zhang [2] gave a 16-dissection of the generating function for 

( )p n  modulo 16 and showed that: 

( )(4 ) ( 1) ( ) mod16np n p n≡ −  
and 

( ) ( )4 (16 14) 0 mod16p nα + ≡ . (5)

We see that this congruence is a generalization of (3). In addition, applying the 2-adic expansion of the 
generating function for ( )p n  according to Mahlburg, they obtain that 

( )2( ) 0 mod16 ,p n r+ ≡  

where ( )1 mod8≡ −  is an odd prime and r  is a positive integer coprime to . 
In 2016, Xiong [15] considered some binary quadratic forms and provided a complete determination of 

overpartition function modulo 16. For 1n , 2 ( )r n′  is the number of representations of n  as sum of two 

squares 2 2m l+ , with , 1m l  and m l≠ . For 1n , 2 ( )e n  is the number of representations of n  as the form 

of 2 22m l+ , with , 1m l . 
 
 THEOREM 1.1.  For 1n , we have: 
 ( )( ) 0 mod16p n ≡  if n is neither a square nor a double square and  ( )2 2( ) ( ) mod 2e n r n′≡ , 

 ( )( ) 2 mod16p n ≡  if n is a square of an odd number and  ( )2 2( ) ( ) mod 2e n r n′≡ , 

 ( )( ) 4 mod16p n ≡  if n is a double of a square and  ( )2 2( ) ( ) mod 2e n r n′≡ , 

 ( )( ) 6 mod16p n ≡  if n is a square of an even number and  ( )2 2( ) ( ) mod 2e n r n′≡/ , 

 ( )( ) 8 mod16p n ≡  if n is neither a square nor a double square and  ( )2 2( ) ( ) mod 2e n r n′≡/ , 
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 ( )( ) 10 mod16p n ≡  if n is a square of an odd number and  ( )2 2( ) ( ) mod 2e n r n′≡/ , 

 ( )( ) 12 mod16p n ≡  if n is a double of a square and  ( )2 2( ) ( ) mod 2e n r n′≡/ , 

 ( )( ) 14 mod16p n ≡  if n is a square of an even number and  ( )2 2( ) ( ) mod 2e n r n′≡ . 
 
THEOREM 1.1 reduces the determination of overpartition function ( )p n  modulo 16 to the 

calculations of 2 ( )r n′  and 2 ( )e n . More details can be found in [15, Theorems 1.2 and 1.3]. 
In this paper, we shall provide a complete characterization of Ramanujan-type congruences modulo 16 

for ( )p n  considering the identities of the form 

( ) ( )2 (8 ) mod16p n rα + ≡ , 

with 0α  and {1,3,5,7}∈ . Having 

( ){ }0
0

2 8 ,n n
∞

α

α=

= + ∈∪A  

we note that [ ]1 3 5 7, , ,A A A A  is a partition of the set .  
The first result is a generalization of (2), (4) and (5). 
 

 THEOREM 1.2.  For , 0n α , 

( ) ( )2 (8 7) 0 mod16p nα + ≡ . 

 
Surprisingly, this congruence went unobserved so far. It is clear that the congruence (5) is the case α  

odd of this theorem. Replacing n  by 3 2n +  and α  by 2  in Theorem 1.2, we obtain (4). 
The following two results provide new Ramanujan-type congruences that combines the overpartition 

function ( )p n  and the divisor function odd ( )nτ  that counts the odd positive divisors of n .  
 

 THEOREM 1.3.  For , 0n α , 
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 THEOREM 1.4.  For , 0n α , 
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If n  is a square or twice of a square, then the following result shows that ( )p n  is congruent to 2 , 4 , 

6 , 10, 12 or ( )14 mod16 . 
 

 THEOREM 1.5. Let n  and α  be nonnegative integers. 
i. If 8 1n +  is not a square, then 

( ) ( )2 (8 1) 0 mod16p nα + ≡ . 

ii. If 8 1n +  is a square, then it is of the form 2(8 1)k ±  or 2(8 3)k ± . We have 
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and 
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The following linear homogeneous recurrence relation [7, Corollary 4] 
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with (0) 1p = , provides a simple and reasonably efficient way to compute the value of ( )p n . In order to prove 
Theorems 1.3-1.5, we consider this recurrence relation and the following characterization of Ramanujan-type 
congruences modulo 8 for the overpartition function ( )p n  provided by Kim [11, Theorem 3]: 

( )
( )
( )
( )

2 mod8 , if   is a square of an odd number, 
mod8 , if   is a double of a square,          

( )
mod8 ,  if    is a square of an even number,
mod8 , otherwise.                                       
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2. PROOF OF THEOREM 1.2 

We need to prove only the case α  even. First we point out that 22 (8 7)nα +  is not a square. 
The fundamental theorem on sums of two squares claims that a natural number N  is a sum of two 

squares if and only if all prime factors of N  of the form 4 3m +  have even exponent in the prime 
factorization of N .  It is clear that 

( )2 22 (8 7) 2 4(2 1) 3n nα α+ = + +  

cannot be written as a sum of two squares.  
On the other hand, Legendre’s three-square theorem states that a natural number N  can be represented 

as the sum of three squares of integers if and only if N  is not of the form 22 (8 7)nα + . 
Thus we deduce that 22 (8 7)nα +  cannot be written as a sum of three or less squares. Considering (1), 

we obtain 

( ) ( )22 (8 7) 0 mod16p nα + ≡ . 

This concludes the proof. 

3. PROOF OF THEOREM 1.3 

We remark that an integer of the form 8 3n +  cannot be a square. For all integers a  and b ,  we have  

( )2 2 0,1 or 2 mod 4a b+ ≡ . 

Thus we deduce that 8 3n +  cannot be written as a sum of two squares. 
Let ( )R n  be the number of nonnegative integer solutions to the equation 

2 22 8 3x y n+ = + . 

Moreover, if ( , )x y  is an integer solution of this equation, then x  and y  are odd integers. 
Let 1 2 ( ), , , R nx x x…  and 1 2 ( ), , , R ny y y…  be nonnegative integers such that 
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2 2(2 1) 2(2 1) 8 3, 1,2, , ( )k kx y n k R n+ + + = + = … . 

Considering (6), the expression 
8 3
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(8 3) 2 ( 1) (8 3 )
n
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can be reduced modulo 16 as follows: 

( ) ( ) ( )
( ) ( ) ( )
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1 1 1

(8 3) 2 8 3 (2 1) 2 2(2 1) 2 4 8 ( ) mod16 
R n R n R n

k k
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= = =

+ ≡ + − + ≡ + ≡ ≡∑ ∑ ∑ . 

On the other hand, due to Dirichlet [5], we know that the number of representation of 8 3n +  as the 
sum of a square and twice a square is given by 

( )1 3 5 72 ( ) ( ) ( ) ( )d n d n d n d n+ − − , 

where ( )d n  is the number of positive divisors of 8 3n +  of the form 8k + . It is clear that 

1 3 5 7( ) ( ) ( ) ( )( )
2

d n d n d n d nR n + − −
= . 

Moreover, we see that ( )R n  and odd (8 3) / 2nτ +  have the same parity. In addition, having (2 ) ( )R n R nα = , 
we obtain 

( ) ( )2 (8 3) 8 ( ) mod16p n R nα + ≡  

and the proof is finished. 

4. PROOF OF THEOREM 1.4 

Firstly we remark that the equations of the form 
2 22 2 (8 5)x y nα+ = +  

do not have integer solutions. Let ( )R n  be the number of positive integer solutions to the equation 
2 2 8 5x y n+ = + . 

If ( , )x y  is an integer solution of this equation, then we remark that x  and y  have different parities. 
Let 1 2 ( ), , , R nx x x…  and 1 2 ( ), , , R ny y y…  be nonnegative integers such that 

2 2
1(2 1) (2 ) 8 5, 1,2, , ( )k kx y n k R n+ + = + = … . 

Considering (6), the expression 
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can be reduced modulo 16 as follows: 
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Due to Jacobi [9], we know that the number of representation of 8 5n +  as the sum of two squares is 

( )1 34 ( ) ( )d n d n− , 
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where ( )d n  is the number of positive divisors of 8 5n +  of the form 4k + . 
Thus we obtain that 

1 3( ) ( )( ) .
2

d n d nR n −
=  

Moreover, we see that ( )R n  and odd (8 5) / 2nτ +  have the same parity. In a similar way, considering that 
(2 ) ( )R n R nα = , we obtain 

( ) ( )2 (8 5) 8 ( ) mod16p n R nα + ≡ . 

This concludes the proof. 

5. PROOF OF THEOREM 1.5 

Let 1( )R n  be the number of positive integer solutions of the equation 
2 2 8 1x y n+ = + . 

If ( , )x y  is an integer solution of this equation, the x  and y  have different parities. Let 
11 2 ( ), , , R nx x x…  and 

11 2 ( ), , , R ny y y…  be positive integers such that 
2 2

1(2 1) (2 ) 8 1, 1,2, , ( )k kx y n k R n+ + = + = … . 

Let 2 ( )R n  be the number of positive integer solutions of the equation 
2 22 8 1z w n+ = + . 

If ( , )z w  is an integer solution of this equation, the z  is odd. Let 
21 2 ( ), , , R nz z z…  and 

21 2 ( ), , , R nw w w…  be 
positive integers such that 

2 2
2(2 1) 2 8 1, 1,2, , ( )k kz w n k R n+ + = + = … . 

If 8 1n +  is a square, then considering (6), the expression  
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can be reduced modulo 16 as follows: 
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In a similar way, when 8 1n +  is not a square we obtain: 

( ) ( )1 2(8 1) 8 ( ) ( ) mod16p n R n R n+ ≡ + . 

According to Dirichlet [5] and Jacobi [9], we have 

1
1 3 5 7

1

2 ( ) 1, if  8 1  is a square
( ) ( ) ( ) ( ) .

2 ( ), otherwise
R n n
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and 
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1 3
2

5 7
22 ( ) 1, if 8 1  is a square

( ) ( ) ( ) ( ) ,
2 ( ), otherwise

R n n
d n d n d n d n

R n
+ +⎧

+ − − = ⎨
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where ( )d n  is the number of positive divisors of 8 1n +  of the form 8k + . Thus, we deduce 

( )
( )

1

1

8 (8 1) 10 mod16 , if  8 1 is a square
(8 1)

8 (8 1) mod16 , otherwise,
n n

p n
n

⎧ τ + + +⎪+ ≡ ⎨ τ +⎪⎩
 

where 1( )nτ  counts the positive divisors of n  congruent to 1 mod8± . In a similar way, we obtain the 
following two congruences: 

( ) ( )
( )
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1

8 (8 1) 12 mod16 , if  8 1 is a square
2 (8 1)

8 (8 1) mod16 , otherwise
n n

p n
n

α+ ⎧ τ + + +⎪+ ≡ ⎨ τ +⎪⎩
 

and 

( ) ( )
( )

12 2

1

8 (8 1) 6 mod16 , if 8 1 is a square
2 (8 1)

8 (8 1) mod16 , otherwise.
n n

p n
n

α+ ⎧ τ + + +⎪+ ≡ ⎨ τ +⎪⎩
 

On the other hand, if 8 1n +  is a square, then it is of the form 2(8 1)k ±  or 2(8 3)k ± . It is not difficult to prove 
that 1(8 1)nτ +  is odd if and only if 8 1n +  is a square of the form 2(8 1)k ± . The proof follows easily. 
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