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Abstract. In this article, the aim is to find the solution of fractional order non-linear reaction-
diffusion equation using collocation method through deriving the operational matrix of fractional 
derivative. For this purpose the required definitions of fractional order derivatives, Genocchi 
polynomial and properties of Kronecker product of matrices used for the approximation of arbitrary 
functions are discussed. 
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1. INTRODUCTION 

Fractional calculus is an ancient topic of mathematics with history like as ordinary or integer calculus. 
It is developing progressively now. Theory of fractional calculus has been developed by N.H. Abel and 
J. Liouville. The details can be found in [1,2]. In last few years fractional calculus has attracted attentions of 
the researchers of medical physics, chemistry, biology, engineering and mathematics. Fractional calculus and 
fractional differential equation are found in many applications in different fields. Due to increasing 
applications, the researchers have paid their attention to find numerical and exact solutions of the fractional 
differential equations (FDEs). As there are many difficulties to solve a FDE by analytic method so there is 
need of seeking numerical solutions. There are many numerical methods available in literature viz., eigen-
vector expansion, Adomain decomposition method [3], fractional differential transform method [4,5,6], 
homotopy perturbation method [7,8,9], predictor-corrector method [10] and generalized block pulse 
operational matrix method [11] etc. Some numerical methods based upon operational matrices of fractional 
order differentiation and integration with Legendre wavelets [12], Chebyshev wavelets [13,14,15], sine 
wavelets, Haar wavelets [16] have been developed to find the solutions of FDE and fractional order integro-
differential equations. The functions which are commonly used include Legendre polynomial [17,18], Laguerre 
polynomial [19], Chebyshev polynomial and semi-orthogonal polynomial as Genocchi polynomial [20]. 

Many complicated natural phenomena, such as the spreading of bush fires and epidemics, and the 
nonlinear evolution of a population in a two-dimensional habitat (in which the balance of reaction and 
diffusion are concerned) can be modeled by a two-dimensional reaction-diffusion equation as  

= ( . ) ( )u D u f u
t

∂
∇ ∇ +

∂
μ . (1)

Here ( , )u x t  is a dimensionless temperature or population, u
t

∂
∂

 is the rate of increase of u  with time t ,  ∇  is 

the gradient operator in two-dimensional space, D  is a constant which is second order tensor measuring the 
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diffusivity of the media, and ( )f u  is a nonlinear function of u  representing the effect of reaction or 
multiplication. A constant coefficient μ  has been placed before ( )f u  for convenience. 

The reaction-diffusion equation is one of the most important partial differential equations (PDEs), and 
its applications can be found in many fields, including biology, chemistry, physics, finance, and so on. In 
classical reaction-diffusion equations, the diffusion is described by the standard Laplace operator ∇, 
characterizing the transport mechanics due to the Brownian motion. Recently, it has been suggested that 
many complex (biological and chemical) systems are indeed characterized by the Levy motion, rather than 
the Brownian motion [21,22,23,24]. Hence, the classical reaction-diffusion models fail to describe properly 
the phenomena in those systems. To circumvent such issues, the fractional order reaction-diffusion equations 
were proposed, where the classical Laplace operator is replaced by the fractional Laplacian operator. 
Advective-dispersive theory is used in many physical situations viz., flow through porous media, mass 
transfer in fluids, relaxation in polymer systems, tracer dynamics in polymer networks, spread of 
contaminations in fluids [25,26]. Contaminations occur on the land of surface and permeate into the surface 
through pores. Finally, contaminants are transported into groundwater. 

The following equation represents the solute transport in aquifers, 
2

2
( , ) =c x t c cv d

t x x
∂ ∂ ∂

− +
∂ ∂ ∂

, (2)

where ( , )c x t  is solute concentration, > 0v  represents average fluid velocity and d  represents dispersion 
coefficient. Equation (2) is also called advection-dispersion equation. This equation also describes 
probability function for location of particles in a continuum. The equation (2) is used in groundwater 
hydrology in which the transport of passive tracers is carried by fluid flow in porous media. Reaction-
diffusion process has been investigated since a long time. In the process of reaction- diffusion, reacting 
molecules are used to move through space due to diffusion. This definition excludes other modes of 
transports as convection, drift etc. as those may arise due to presence of externally imposed fields. 

When a reaction occurs within an element of space, molecules can be created or consumed. These 
events are added to the diffusion equation and lead to reaction-diffusion equation of the form 

2= ( , )c D c R c t
t
∂

∇ +
∂

, (3)

where ( , )R c t  denotes reaction term at time t .  The extension of the reaction-diffusion equation in fractional 
order system can be found in the articles [27,28,29,30,31,32,33]. 

Many analytical and numerical techniques on two dimensional diffusion equation have been developed 
[34,35] e.g., Finite Element method [36], Legendre Collocation Method [37] etc. Chen has developed 
method for finding exact analytical solution of two-dimensional advection-diffusion equation in the 
cylindrical coordinates [38]. The numerical methods for the numerical solution of Volterra integral equation 
[39], Hirota-Satsuma coupled-KdV equation [40], Burgers and Sharma-Tasso-Olver equations [41] and weak 
solutions to Dirichlet problem [42] are available in literature. In this present article Genocchi polynomials 
[43,44] have been introduced in collocation method to solve non-linear fractional reaction-diffusion 
equation. After finding the operational matrix of fractional differentiation, we collocate the given non-linear 
fractional equation model and boundary conditions. By collocating a non-linear system of algebraic 
equations is obtained which are solved by using an iteration method called Newton method. The article is 
organized as follows. 

In the section 2, the definitions, mathematical preliminaries of fractional calculus, Genocchi numbers, 
Genocchi polynomial, their properties and Kronecker product of two matrices are given. It also continues the 
function order approximation for operational matrix of fractional differentiation by Genocchi polynomial. 
The error bound and stability analysis have been done in section 3 . In section 4,  a drive has been taken to 
solve the proposed model using the operational matrix with Genocchi polynomials. The validation of the 
method through a comparison of the numerical results with the existing analytical results for two particular 
cases and also illustrations of numerical results of the proposed model through graphical presentations are 
given in section 5 . The conclusion of overall work is presented in section 6 . 
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2. PRELIMINARIES 

Here, few definitions and important properties of fractional calculus have been introduced. It is well 
known that the Riemann-Liouville definition has disadvantages when it comes for modeling of real world 
problems. But definition of fractional differentiation given by M. Caputo is more reliable regarding 
application point of view. 

2.1. Definition of R-L order derivative and integration 

Fractional order integration of Riemann-Liouville type of a given order ϑ  of a function ( )f t  is given by 

1

0

1( ) = ( ) ( ) d , > 0,
( )

t
I f t t f t Rϑ ϑ− +− ω ω ω ϑ∈

Γ ϑ ∫ . (4)

Fractional order derivative of the Riemann-Liouville type of order > 0ϑ  is defined as 

( )d= ( )( ), ( > 0, 1 < < )d
m

m
lD I f t m mt
ϑ −ϑ ϑ − ϑ . (5)

2.2. Definition of Caputo derivative 

Fractional derivative of order > 0ϑ  in Caputo sense is defined as 

1

0

d ( ) =
d=
1 ( ) ( ) d 1 < < .
( )

l

l

c t l l

f t l N
tD

t f l l

ϑ

−ϑ−

⎧
ϑ ∈⎪⎪

⎨
⎪ − η η η − ϑ
⎪Γ ϑ⎩ ∫

 (6)

Here, l  is an integer, > 0t . 
Basic properties of caputo fractional derivative are 

= 0cD Cϑ , (7)

where C  is a constant and 
0, 0 and <

= (1 ) , 0 and or and > ,
(1 )

c

N
D t

t N N
ϑ σ

−ϑ+σ

σ∈ ∪ σ ϑ⎧
⎪

Γ + σ⎨ σ∈ ∪ σ ≥ ϑ σ∉ σ ϑ⎢ ⎥⎣ ⎦⎪Γ −ϑ+ σ⎩

 (8)

where ϑ⎢ ⎥⎣ ⎦  is floor function. 

The operator cDϑ  is linear, since 

( ( ) ( )) = ( ) ( )c c cD Af t BG t AD f t BD g tϑ ϑ ϑ+ + , (9)

where A  and B  are constants. 
Caputo operator and Riemann-Liouville operator have a relation given as follows 

1

=0

( )( ) = ( ) (0 ) , 1 <
!

l k
k

c
k

tI D g t g t g l l
k

−
ϑ ϑ +− − ϑ ≤∑ . (10)

2.3. Kronecker product of two matrices 

Suppose F  is a field like as R  and C .  If m nF ×∈A  and p qF ×∈B  are any matrices then their Kronecker 
product denoted as ⊗A B  is defined as [22] 



396 Sachin KUMAR, Prashant PANDEY, Subir DAS, E.-M. CRACIUN 4 

 

11 12 1

21 22 2

1 2

=

n

n

m m mn

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥⊗
⎢ ⎥
⎢ ⎥
⎣ ⎦

B B B
B B B

A B

B B B

, 

Some properties of Kronecker product are given as follows 
    • ( )α ⊗A B = ( )⊗ αA B = ( )α ⊗A B  
    • ( ) =+ ⊗ ⊗ + ⊗A B C A C B C  
    • ( ) = ( )⊗ ⊗ ⊗ ⊗A B C A B C  
    • = ( )( ) = ( )( )p n m q⊗ ⊗ ⊗ ⊗ ⊗A B A I I B I B A I  
    • ( )( ) =⊗ ⊗ ⊗A B C D AC BD  

    • 1 1 1( ) =− − −⊗ ⊗A B A B  

where ,  ,  ,  m n n p q r r sF F F F× × × ×∈ ∈ ∈ ∈A C B D . 

2.4. Genocchi polynomial and its properties 

Genocchi polynomials and numbers have been applied in lot of branches of physics and mathematics 
like homotopy theory, number theory, quantum physics, differential topology. Genocchi number nG  and 
Genocchi polynomial ( )nG x  can be derived respectively by the following exponential generating functions. 

=0

2 = , (| | )
!1

n

nx
n

x xG x
ne

∞

< π
+ ∑ , (11)

=0

2 = ( ) , (| | )
!1

tx n

nx
n

xe xG t x
ne

∞

< π
+ ∑ , (12)

where ( )nG t  is Genocchi polynomial of degree n  given by 

=0

( ) =
l

k
n l k

k

l
G t G t

k −
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ . (13)

Here, l kG −  is the Genocchi number. 
Some properties of Genocchi polynomial are given below: 

1

0

2( 1) ! !( ) ( )d = , , 1
( )!

l

n m m l
m lG t G t t G l m

m l +
−

≥
+∫ , (14)

(1) (0) = 0, > 1n nG G n+ , (15)

1
d ( ) = ( ), 1

d
l

l
G t l G t l

t − ≥ . (16)

2.5. Approximation of an arbitrary function 

Let us Suppose 2
1 2{ ( ), ( ),....., ( )} [0,1]MG t G t G t L⊂  is the set of Genocchi polynomials. A function 

( )u t  which belongs to 2[0,1]L  can be expressed as 
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T

=1

( ) = ( ) = ( )
M

l l
l

u t c G t C G t∑ , (17)

where = ( ( ), ( ))l lc u t G t  and (.) denotes the inner product. C  and G(t) are column vectors. 

Similarly, an arbitrary function ( , , )u x y t  belongs to 2 2 2[0,1] [0,1] [0,1]L L L× ×  of three variables can be 
expressed in terms of Genocchi polynomials as 

T

=1 =1 =1

( , , ) = ( ) ( ) ( ) = ( ). .( ( ) ( ))
M M M

lmn m l n
l m n

u x y t c G t G x G y t x y⊗∑∑∑ ψ V ψ ψ , (18)

where 2= [ ]lmn M M
c

×
V  and ⊗  denotes Kronecker product. 

LEMMA [41]. Let us consider ( )jG x  be the Genocchi polynomial, then ( ) = 0jD G xϑ  for = 1, ,j ϑ , 

> 0ϑ . 

2.6. Genocchi operational matrix of fractional derivative 

THEOREM [41]. Let T
1 2( ) = ( ( ), ( ),... ( ))Ny G y G y G yψ  is the Genocchi vector and > 0ϑ . Then 

( ) = ( )D y yϑ ϑψ Q ψ , (19)

where ϑQ  is an M M×  operational matrix of fractional derivative of order ϑ .  
It is defined as, 
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Here i kG −  is Genocchi numbers and jh  can be obtained by 

1 2

1 2

Gram ( ( ), ( ),..... ( ))
=

Gram( ( ), ( ),..... ( ))
j N

j
N

G y G y G y
h

G y G y G y
, (21)
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1 1 1 2 1

2 1 2 2 2
1 2

1 2
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( ), ( ) ( ), ( )    ( ), ( )

Gram( ( ), ( ),..... ( )) =
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. 

Here, 1 2Gram ( ( ), ( ),..... ( ))j MG y G y G y  can be obtained by replacing the j-th column of 

1 2Gram( ( ), ( ),..... ( ))MG y G y G y  by a column whose elements are 

1 2( ), ( ) ,  ( ), ( ) ,  ,  ( ), ( )MG t f y G y f y G y f y〈 〉 〈 〉 〈 〉  

3. CONCLUSION 

The preliminary definitions of fractional order derivative duly supported by suffcient literature review 
on fractional caculus and diffusion equation have been provided. The approximation of arbitrary function of 
three variables in terms of Kronecker product of matrices with the help of Genocchi polynomials has also 
been dicussed. The derivation of operational matrix of fractional order derivative is the important feature of 
the present contribution. The error bound, method of the solution of space-time fractional two-dimensional 
non-linear reaction-diffusion model and also the study of this model for different particular cases will be 
dicussed in the following article (part II). 
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