
 THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A,
 OF THE ROMANIAN ACADEMY Volume 21, Number 1/2020, pp. 61–68

RELATED-KEY DIFFERENTIAL SLIDE ATTACK AGAINST FOUNTAIN V1

Raluca POSTEUCA

COSIC, KU Leuven, Belgium
Corresponding author: Raluca POSTEUCA, E-mail: raluca.posteuca@esat.kuleuven.be

Abstract. The stream cipher FOUNTAIN was introduced in April 2019 as one of the candidates in
the NIST lightweight crypto standardization process. In this paper we introduce a slide attack that
leads to the construction of 32 relations on key bits, with time complexity around 17×280. The
success of the attack is around 98%. We also present some properties of the internal state transitions
that allow the identification of (key-iv-ad) input data that produce identical ciphertexts, with
probability of 2−32.

Key words: lightweight cryptography, Fountain, slide attacks, internal states collisions, invertible
states transition.

1. INTRODUCTION

Lightweight cryptography represents nowadays a very popular research area due to the necessity of
designing and implementing efficient and secure cryptographic primitives for devices with constrained
resources. During the last years various primitives were designed, having improved properties regarding the
suitability for software and hardware implementation, performance and efficiency.

More details regarding the State of the Art in Lightweight Symmetric Cryptography can be found in [1].
The lightweight cryptography became even more attractive since NIST initiated a process meant to

lead to the standardization of lightweight algorithms that are suitable for usage in constrained environments.
The first round of this competition is on-going, having 56 submissions.

Our contribution. In order to contribute to the public research efforts dedicated to the analysis of
NIST Round 1 candidates, we focused on one of the proposals, the Fountain stream cipher [3]. In this paper
we introduce a slide attack with time complexity around 17×280. The goal of this attack is to construct a
system of 32 low degree equations using the key bits, this being equivalent to recovering 32 bits of the key
(by solving this equation system, the complexity of the exhaustive search is decreased from 2128 to 296). We
have also identified some properties of the internal states transitions that allow the identification of
(, ,)key IV AD input data that produce identical ciphertexts, with probability of 2−32.

Organization of the paper. The paper is organized as follows: the Fountain cipher is briefly described
in Section 2; in Section 3 we present a set of properties of the state update function and present an attack on a
slightly modified version of the cipher Fountain; in Section 4 we present an extension of this attack
applicable to the original description of Fountain; Section 5 presents an algorithm that computes
(, ,)key IV AD tuples that produce identical ciphertexts; the last section concludes our paper.

2. DESCRIPTION OF FOUNTAIN CIPHER

Fountain is a lightweight stream cipher with 16-byte secret key K and 12-byte initialization vector IV.
The input data of the cipher is the quartet (, , ,)K IV AD M , where AD represents the associated data and M
the plaintext. The output of the authenticated encryption is a pair (,)C T where C represents the encryption
of M and T is the authentication tag of AD and M .

62 Raluca POSTEUCA 2

The state update function of Fountain operates on 256 -bits internal states, using 4 LFSRs, 4×4
S-boxes and a Boolean (filter) function used for the generation of keystream bits.

The 4 LFSRs used in Fountain have the same length, but different feedback polynomials:

1LFSR : 64 31 25 12i i i i i+ + + +α = α + α + α + α ,

2LFSR : 64 31 19 9i i i i i+ + + +β = β +β +β +β ,

3LFSR : 64 31 20 14i i i i i+ + + +γ = γ + γ + γ + γ ,

4LFSR : 64 31 10 6i i i i i+ + + +ζ = ζ + ζ + ζ + ζ .

Three S-boxes are used in Fountain: , kg adSR SR and . tagSR At step i, an S-box is applied to the nibble

1 1 1 1i i i i+ + + +ζ γ β α . The output nibble and the component bits are denoted by 1 2 3 4
if f f f f= .

The filter function computes the keystream bits iz such that

3 11 20 5 16 7 29 ()i i i i i i i iz h x+ + + + + + += α + α +β + γ + γ + ζ + ζ + ,

where h is the Boolean function

()0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 0 4 8, , , , , , , ,h x= ⊕ ⊕ ⊕ ⊕ and

() ()0 1 2 3 4 5 6 7 8 2 5 4 11 23 27 24 29 30, , , , , , , , , , , , , , , , i i i i i i i i ix x x x x x x x x + + + + + + + + += ζ α β γ ζ γ β α ζ .

In order to produce an authenticated ciphertext using Fountain, the following phases are performed: the
loading, the initialization phase, the associated data processing, the middle separation, the plaintext processing
and the finalization and tag generation. A complete description of these phases can be found in [3].

In the first phase, the key and the nonce are loaded to the internal state, bit by bit. The 3rd, 6th, 7th and
8th bytes of the 4th LFSR are loaded with the constants 0 FF, 0 FC, 0 00, 0 01x x x x , as described in [3]. We
denote this function by (,)load K IV .

The state update functions corresponding to each of the following phases can be viewed as a function
parameterized by the used S-box and by the function used to compute the feedback of the 4 LFSRs. We
denote the state update function by

, x SRound . The formal description of this function is presented in Fig.1.

,x SRound ()

 Compute the keystream bit iz
 Compute 1 2 3 4f f f f = 1 1 1 1[]S ζ γ β α
 Run the 4 LFSRs 1 step with i jz x f⊕ ⊕ as feedback

Fig. 1 – One round of the cipher, parameterized by the bit x and the Sbox S .

Let
, , ,

 times

n
x S x S x S

n

Round Round Round= … . Then, the cipher’s phases can be written as depicted in Table 1.

Observation 1. After the Middle separation phase, the first bit of the second LFSR is xored with 1:

448 448 1 adLen adLen+ +β = β ⊕ . (1)

The initialization and the middle separation phases use the same state transition function, the only
difference being given by the number of iterations performed (in the initialization phase are performed 384
iterations, while in the middle separation phase are performed only 64 iterations). Moreover, the
initialization, the middle separation and plaintext processing phases use the same S-box. By getting i ip z= ,
where ip is a plaintext bit and iz is a keystream bit, and a null associated data, then the encryption process
is composed by 384 64 pLen+ + identical steps, where pLen denotes the length of the plaintext. In this
case, the ciphertext will be represented by the string 0 pLen .

3 Related-key differential slide attack against Fountain V1 63

Table 1

Fountain phases as a composition of the function ,x SRound and the associated parameters

Phase Description

Initialization 384
0, kgSRRound

Associated Data Processing , i ad
ADlen
ad SRRound

Middle Separation 64
0, kgSRRound

Plaintext Processing , i kg
Plen
c SRRound

Finalization 384
0, tagSRRound

3. PROPERTIES OF THE STATE UPDATE FUNCTION

3.1. Slide-based property of ,
n
x SRound

In this section we introduce a slide-based property of the state update function
,

n
x SRound . Slide attacks

were introduced by Alex Biryukov and David Wagner in 1999 [2]. This type of attacks is based on the
identification of a relation between two inputs that also holds for the corresponding outputs. This relation
could be the composition of a fixed number of rounds, in the case of the block ciphers, or a set of state
transitions, for stream ciphers. The identification of this type of relation may lead to the recovery of some
secret data (key or plaintext bits).

Definition 1. Let 1 1(,)K IV and 2 2(,)K IV be two key-IV pairs. The pairs are called n-slid pairs if

()0, _ 1 1 2 2(,) (,), 0n
SR kgRound load K IV load K IV n= > .

Observation 2. For a pair 1 1(,)K IV and a value n , there exists an n-slid pair if and only if, after
computing ()0, 1 1 (,)

kg
n

SRRound load K IV , the internal state satisfies the same property as a loaded state, i.e. the

3rd, 6th, 7th and 8th bytes of the 4th LFSR are equal to the constants 0 FF, 0 FC, 0 00, 0 01x x x x .

LEMMA 1. The minimum value of n for which there exist n-slid pairs is 47.

Proof. For 47n < , the system of equations (3) is incompatible, i.e. the initial values of the constants directly
influence the values of the bits 16 23 40 63, n n n n+ + + +ζ …ζ ζ …ζ , making the constants pattern impossible. □

For 47,n = we conjecture that the system of equations corresponding to the bits
16 23 40 63, n n n n+ + + +ζ …ζ ζ …ζ is incompatible or that the last 47 bits of the 4th LFSR are not uniformly

distributed, resulting in a very low probability of finding the correct values of the constants.
For 48n = , we have experimentally found n-slid pairs with probability 322− . One such example can be

found in the technical report uploaded by the author on Cryptology ePrint Archive [4].

Observation 3. Since the pair ()2 2,K IV is obtained after 48 rounds, then the following relations will
always hold for a 48-slid pair:

{ }2 14 4 3 , 0,1[] 2[,]K i K i i× = × + ∀ ∈ ;

[] [] { }2 14 4 3 , 0,1,2 ;IV i IV i i× = × + ∀ ∈ ;

2 212 0 00; 13[] [] 0 80K x K x= = .

64 Raluca POSTEUCA 4

Definition 2. Let : n n
q qf →F F and : n n

q qg →F F . We say that two pairs (), ()a f a and (), ()b f b have a

slide-based property with respect to the function g if ()a g b= and ()() ()f a g f b= .

LEMMA 2. Two n-slid pairs 1 1(,)K IV and 2 2(,)K IV define a slide-based property with respect to the
state update function

0, _ , 0m
SR kgRound m∀ > .

Proof. The proof is straightforward for 0, _
n

SR kgf Round= , 2 2(,)a load K IV= and 1 1 (,)b load K IV= . □

3.2. Slide attack on a modified version of Fountain

In this section we present a slide attack on a modified version of Fountain. The scope of the attack is to
prove the existence of collisions of the keystream, independent of the length of the plaintexts.

Let us denote by Fountainwx the cipher Fountain without the Operation (1) and let us use a null AD . In
this case, two 48-slid pairs 1 1(,)K IV and 2 2(,)K IV will generate a slide behavior as follows:

Fig. 2 – Slide behavior of Fountain wx .

The first process will perform the encryption of the plaintext 1 448 495 49 1,... , ,... pLenp z z m m −= using the

pair 1 1(,)K IV , while the second process will encrypt the plaintext 2 49 1,... pLenp m m −= , using the pair

2 2(,)K IV . Note that in both cases the associated data is null.
Since the Initialization and the Middle separation phases use the same parameters of the state update

function, the internal states will satisfy the slide property for 448 rounds, until the first pair finishes the
Middle Separation phase and begins the processing of the plaintext. Since the first 48 bits of the plaintext are
the keystream bits, then, after the encryption of the first 48 bits, the two processes are perfectly synchronized
(have the same internal state). Therefore, after this step, if the two processes are fed with the same plaintext,
no matter the length of it, the corresponding ciphertexts will be equal.

Since the attack assumes the black-box hypothesis, an attacker does not have access to the correct
values of the keystream bits 448 495,...z z . If these 48 bits are uniformly distributed, the probability of correctly
guessing them is 482− . Because the complexity of finding a 48-slid pair is 322− , the probability of finding
this slide behavior of Fountainwx is 802− . So, using approximately 802 data of the type 1 1 448 495(, , ,...K IV z z),
we will be able to find a collision on the ciphertexts.

4. DIFFERENTIAL SLIDE ATTACK ON FOUNTAIN

Using the original description of Fountain, including Operation (1), two 48-slid pairs 1 1(,)K IV and

2 2(,)K IV generate the behavior depicted in Fig.3. Therefore, the behavior of the internal states for the first
448 rounds will remain unchanged. After the first process finishes the Middle separation phase, Operation
(1) is applied, inducing a 1-bit difference between the corresponding internal states. In order to attack the
Fountain cipher, we have analyzed the propagation of the differences induced after applying Operation (1)
on both processes.

5 Related-key differential slide attack against Fountain V1 65

Fig. 3 – Slide behavior of Fountain.

4.1. Differential characteristics of Fountain

In this section we will describe the manner in which we analyzed the distribution of the differences
through the cipher Fountain. Note that one difference can be involved either in a linear manner (in the
computation of a LFSR feedback or the linear part of the keystream bit generation function) or in a non-
linear manner (in the non-linear part of the keystream bit generation function or in the S-box).

1. Linear behavior of the differences
Let be a linear function and let δ be an input difference. The output difference ∆ is computed by

applying the linear function over the input difference: ∆ () () ()x x= ⊕ ⊕δ = δ .
In this case, the probability of computing ∆ knowing δ is 1p = .

2. Non-linear behavior of the differences through the S-box kgSR
The behavior of differences propagation through an S-box are usually analyzed using the Differential

Distribution Table (DDT). For kgSR , the input difference δ is connected to the output difference ∆ , with a

probability of [,∆]
16

DDTp δ
= .

3. Non-linear behavior of the differences through the h function
Let 0 8(, ,)δ = δ … δ be the input difference of h . The output difference is computed as follows:

() ()∆ { } { }i i i i ih x h x= ⊕ ⊕δ

Therefore, for a fixed input difference, the output difference ∆ can be described as a Boolean function
fδ of the input bits { }i ix , the degree of this function being at most 2. Moreover, by observing the value of ∆ ,

the attacker can learn a relation between the input bits { }i ix . For example, let’s assume that only one 1iδ = :
 if { }1 , 3, 5, 7i∈ , then 1∆ ;ix −= 1(∆ 0) (0) 0.5iP P x −= = = = ;
 if 8i = , then 0 4 0 4∆ ; (∆ 0) (0) 0.75x x P P x x= = = = = .

From the analysis of the difference propagation of Fountain, we remark the following:
Operation (1) induces a difference between the internal states on the last bit of the 2nd LFSR. For 33

rounds, the difference will not be involved in any operation.
At Round 34, the difference will be involved, in a linear manner, in the computation of the feedback of

the 2nd LFSR, resulting in the state difference depicted in Fig.4. We denote the 1 difference by “X” and the 0
difference by “–“. At the 41st round, the difference will be involved in the computation of the h function.

Fig. 4 – The state difference pattern at round 34.

66 Raluca POSTEUCA 6

The two possible output differences after 41 rounds are depicted in Fig.5. The actual difference pattern
will be fixed by the value of the 20th position of the second LFSR. If that value is 0, then the difference
pattern will be the first one, thus there will only be two differences between the internal states.

Fig. 5 – The state difference patterns at round 41.

The difference will influence the application of the S-box for the first time at the 63rd round, the input
difference of the S-box being 2δ = . After this step, there will be 24 possible output difference patterns,
having different appearance probabilities.

Observation 4. After computing one output difference pattern after n rounds, we have also generated
the “observable” difference pattern, i.e. the keystream difference pattern used in the common part of the
ciphertexts. The number of such patterns is smaller than the number of state difference patterns since not all
the differences in the state are involved in the computation of the keystream bit difference.

After computing all possible output differences patterns for 102 steps, we obtain 2095680 difference
patterns on the internal state and 83200 difference patterns on the observable part of the keystream. We store
the 83200 difference patterns in a sorted list. Since one entrance in this list has 54 bits, the memory needed
for this is approximately 4.4 MB.

4.2. Differential slide attack on Fountain

Using the observations and properties described in the previous section, we have designed a related-key
differential slide attack on the Fountain cipher. The data needed for this attack is represented by 802 random

1
iIV s and arbitrary 102-bit plaintexts p. The first 48 bits of p are used as the keystream bits 448 495.z z…

We noticed that, after performing 45 rounds, the last bit of every LFSR will contain a nonzero
difference, with probability 1. In order to cancel these differences, the bit [44]p should introduce a
difference in the internal states, so this value should be different from the keystream bit used in the second
process, i.e. 492[44] 1p z= ⊕ . If the first 48 bits of p are correctly guessed, then the first 48 bits of the
ciphertext will satisfy the following conditions:

1 0, 44, 48[]c i i i= ∀ ≠ < and 1 1[44]c = . (2)

The same behavior of differences will also appear after performing 90 rounds. In order to cancel these
differences, we will introduce a difference in the second plaintext in the 42nd position. More precisely, the
second plaintext is defined as { } { }2 [48], 0, 4] 3[5 \ 1p i p i i= + ∀ ∈ .

The hypothesis of this attack is that the attacker has access to an encryption oracle. The oracle will
answer two types of challenges:

• Given an initialization vector IV and a 102-bit plaintext p , the oracle will return the associated
ciphertext c , under the secret key K and the input IV ;

• Given an initialization vector 1IV and a 54-bit plaintext p , the oracle will perform the following
computations

o compute ()48
0, _ 1(,)SR kgs Round load K IV=

o extract ()2 2,i iK IV from s

o return the encryption of p under the input pair ()2 2,i iK IV

7 Related-key differential slide attack against Fountain V1 67

The attack, presented in Fig. 6, works as follows. The attacker generates the list of all possible
ciphertext differences, as described in the previous section. Then, he randomly generates 802 initialization
vectors 1

iIV and asks for the encryption of an arbitrary 102-bit plaintext p . If the first 48 bits of the
ciphertext satisfy (2), then he asks for the encryption of the corresponding 2p . He computes the difference
pattern { }1 2[4][8]i it c i c i= ⊕ + and checks if the pattern is contained in the precomputed list of differences.
If the constraint holds, then the slide property holds.

The data complexity of the attack is 802 , while the time complexity is around 8017 2× . The difference
between the two complexities is explained by the time complexity of the search in the precomputed sorted
list. Since the list contains 1783200 2< and the search in a sorted list can be performed in logarithmic time,
the time complexity of the search is around 17.

For 0i = to 802 1−
 Randomly generate an initialization vector 1

iIV and the arbitrary plaintexts 2, p p

 Ask for the encryption 1c = Fountain 1(, ,)iK IV p

 If []1 0, 45, 48 c i i i= ∀ ≠ < and []1 44 1c =

 Ask for the encryption 2c = Fountain 2 2 2(, ,)i iK IV p

 Compute { }1 2[4][8]i it c i c i= ⊕ +

 If { } i it precomputed list∈

 Return 1
iIV ;

Key-recovery
The pairs 1(,)iK IV and 2 2(,)i iK IV are 48-slid pairs ⇒ 32 equations using the 128 bits
of K

Fig. 6 – The pseudocode of the attack on Fountain.

Success probability. In our attack, in order to filter the right value of 1
iIV , we apply two filters. The

first one is based on the values of 1[]c i , for 48i < . The probability that the condition of this filter is
accomplished is 482− . The second filter is based on the identification of a “good” differential pattern on
{ }i it . The probability of finding such a difference, for a 48-slid pair (if the values of 448 495z z… were

correctly guessed) is 1. The probability that such a difference is obtained for random pairs 1 1(,)K IV and

2 2(,)K IV is 37.662− . Therefore, the probability that the algorithm described above outputs a 1
iIV that was

generated by random input key-IV pairs is 5.662− . Thus, the probability of success of our attack is 0.98.

5. OTHER OBSERVATIONS ON FOUNTAIN

The attack presented above is performed under the hypothesis that the associated data is null. We have
also analyzed the cipher in the hypothesis that the additional data is not null. In this scenario, if the length of
AD is higher than 4 bytes, then the space of the input of the cipher (until the Middle Separation phase) is

128 96len adLen= + + , where adLen defines the length of the associated data. If 32adLen > , then
256len > (the length of the internal state length). So, mathematically, this means that there will be collisions

on the internal state.
We have performed a series of experiments with the goal of finding two input pairs 1 1 1(, ,)K IV AD and

2 2 2(, ,)K IV AD for which the internal state is the same. Such pairs can be found, with probability 322− , using
the algorithm described in Fig. 7. Our algorithm exploits the invertibility of Fountain’s state update function.

68 Raluca POSTEUCA 8

Randomly generate a fixed key , K IV and AD
Compute the internal state s obtained after the loading, initialization and associated data
processing phases
For 0i = to 322 1−
 Generate at random a pair (,)i iIV AD
 Apply the inverse of the Associated Data Processing phase
 If the internal state is a valid loading state (the 32 constant bits are in the correct place)
 Extract and return (,)i iK IV

Fig. 7 – The pseudocode of the algorithm for finding pairs 1 1 1(, ,)K IV AD
 and 2 2 2(, ,)K IV AD that lead to the same internal state.

An example of input data pairs that lead to state collision are the following:

{ }1 iFFK = , { }1 F0 iIV = , { }1 00,01,02,03,04,05,06 AD =

{ }2 DA,7F,A4,1B,D3,0E,1D,EA,9B,CC,C7,AF,E3,3E,83,11K =

{ }2 FF,6F,A7,00,57,AF,EE,A0,94,19,91,CCIV =

{ }2 7F,C1,A5,67,27AD =

6. CONCLUSION AND FUTURE WORK

In this paper we introduce a slide attack on full Fountain. The attack may concern questions regarding
the security margin of the cipher in the related-key scenario. Although the attack involves the identification
of (key, IV) pairs with a particular property, concerns about the structural properties and component
operations arises. We also present (key-IV – associated data) tuples that lead to the same ciphertexts, in the
case of enciphering the same message (the xor sum of the associated tags being equal to the xor sum of the
initial keys).

The work presented can be extended in different directions. For example, it remains to be investigated
if and how the attack presented in this paper can be improved in term of both data and time complexity. It
will also be interesting to identify an attack scenario using the property regarding the internal state collision.
Further research should also consider the analyze of Fountain in the single-key scenario.

ACKNOWLEDGEMENTS

The author would like to thank Vincent Rijmen, Tomer Ashur and all others for all the fruitful
discussions and ideas regarding the cryptanalysis of Fountain.

REFERENCES

A. BIRYUKOV. L. PERRIN, State of the art in lightweight symmetric cryptography, Cryptology ePrint Archive, 2017,
https://eprint.iacr.org/2017/511.pdf.

2. A. BIRYUKOV, D. WAGNER, Slide attacks, Proceeding of FSE’99, LNCS, 1636, pp. 245-259, Springer Verlag, 1999.
3. B. ZHANG, Fountain: A lightweight authenticated cipher (v1), NIST Information Technology Laboratory, CSRC, Lightweight

Cryptography, Round 1 Candidates, https://csrc.nist.gov/projects/lightweight-cryptography/round-1-candidates, June 2019.
4. R. POSTEUCA, Related-key differential slide attack against Fountain V1, Cryptology ePrint Archive, Technical report, August

2019, https://eprint.iacr.org/2019/920.

Received July 10, 2019

