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Abstract. We present an analog of Molien’s formula for gradings, involving power series with 
coefficients in a group algebra. As an application we obtain a proof of a necessary condition for the 
homogeneous component of trivial degree to be generated by algebraically independent polynomials, 
analogous to the original proof of Chevalley-Shephard-Todd theorem. 
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1. INTRODUCTION 

Throughout the paper k  is a field and [ ]1, , mA k x x= …  is the k-algebra of polynomials in m  variables. 
By V  we denote the k-linear space spanned by 1, , mx x… . Recall that a k-linear automorphism of V  is called 
a pseudo-reflection if it has a finite order and its fixed subspace has codimension 1. Our motivation comes 
from a fundamental result of invariant theory, Chevalley-Shephard-Todd theorem. 

THEOREM 1.1 (Shephard and Todd [8], Chevalley [1]). Let G be a finite subgroup of ( )GL V . In the 

case of char 0k > , assume additionally that G  is not divisible by char k . The following conditions are 
equivalent: 
 (i)  the subalgebra of invariants GA  is generated by algebraically independent polynomials, 
 (ii)  the group G is generated by pseudo-reflections. 

In this paper we follow the exposition of Chevalley-Shephard-Todd theorem’s proof given in [4] 
and [9]. For more information we refer the reader to a survey article [10]. 

Let G  be a group with a multiplicative notation. Recall that a decomposition of the k-algebra A  as a 
direct sum of k-linear subspaces g

g G
A A

∈
=∑  is called a grading if ghuw A∈  for every ,g hu A w A∈ ∈  

with ,g h G∈ . There are some basic analogies between group actions on algebras and group gradings, see 
the Introduction in [6] for a detailed discussion. In the situation of graded algebras, the analog of the 
subalgebra of invariants is the homogeneous component of trivial degree the neutral element of G. The 
action of the group G  on A  in the above theorem is linear in the sense that it is induced by linear 
transformations on V. An analog of a linear action for gradings is a linear grading in the sense that there is a 
k-linear basis of V  consisting of elements, which are homogeneous with respect to this grading. For details 
we refer the reader to [3]. A grading g

g G

A A
∈

= ∑  is linear if and only if after a linear change of coordinates: 

1
1 , ,  mgg

mx A x A∈ … ∈  (*)

for some 1, , mg g G… ∈ . Gradings defined by (*) are called good gradings in [2]. In particular, see 
[2], Proposition 3.4 for the basic properties of such gradings. 

The following is an analog of Chevalley-Shephard-Todd theorem for gradings. 
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THEOREM 1.2 ([3], Theorem 5.1). Let G be a finite group with the neutral element e. Consider 
a grading 

g

g G

A A
∈

= ∑  

of the polynomial algebra [ ]1, , mA k x x= …  over a field k , such that 1
1 , ,  mgg

mx A x A∈ … ∈  for some 

1, , mg g G… ∈ . Put 1 1r g= 〈 〉 , ..., m mr g= 〈 〉 . Moreover, put 0 1 1, , 1, 1, ,
m
i i i mG g g g g= … − + …〈 〉=∩ . Then the 

following conditions are equivalent: 
 (i)  eA  is generated by algebraically independent polynomials, 
 (ii)  1

1 , , mrre
mA k x x = …  , 

 (iii)  the inner product of subgroups 1 mg g〈 〉 ⋅…⋅ 〈 〉  is direct, 
 (iv)  { }0G e= . 
 

In the Chevalley-Shephard-Todd theorem for group actions (Theorem 1.1) the proof of implication 
( )i (ii)→  is based on properties of Hilbert-Poincaré series of the algebra of invariants. Molien’s formula 
([5], see [4], 17.2; [9], 4.1.3): 

( ) ( )0

1 1dim  
det Id

G n
k n

n G V

A T
G T

∞

= ϕ∈

=
− ϕ∑ ∑  

plays a central role in the proof (T  is an indeterminate, IdV  denotes the identity operator on V ). 
In this paper we present an analog of Molien’s formula for G-gradings of polynomial algebras 

(Theorem 2.3) in which we combine Hilbert-Poincaré series of all components into a single series with 
coefficients in the group algebra GZ  over the ring of integers. In Remark 2.5 we explain in detail why this is 
a generalization of the classical Hilbert-Poincaré series. In Section 3 we provide examples, which show that 
this formula allows to compute dimensions of all components at once. 

The paper has a precise Hopf-algebraic motivation connected with the fact that group algebras and 
their duals serve as two main examples of Hopf algebras. Their Hopf algebra actions on algebras correspond 
to group actions and group gradings, respectively. Many properties of group actions can be generalized to 
Hopf algebra actions. A crucial test whether a property can be generalized is if it has an analog for gradings. 
In Section 4 we show that Chevalley-Shephard-Todd theorem passes this test. The key steps in the proof of 
the necessity part of Theorem 1.1 are two formulas involving degrees of generators of GA  ([4], 17.4, 
Theorem A, [9], 4.1.5, 4.1.6). In Section 4, using Molien’s formula, we obtain analogs of these formulas for 
gradings (Propositions 4.2 and 4.3), and we perform the full proof of the necessity part of Theorem 1.2 via 
formal series. Let us point out that Theorem 1.2 can be proved directly (see [3]), without formal series, but 
everything we obtain in Section 4 is a clear argument in favor of the possibility to generalize the proof of the 
necessity part of Chevalley-Shephard-Todd Theorem for Hopf algebra actions. Let us stress however that the 
paper is not about Hopf algebras, they are only mentioned without any technicalities as a common 
generalization of group actions and group gradings. 

2. AN ANALOG OF MOLIEN’S FORMULA 

Recall that [ ]1, , mA k x x= …  is the k-algebra of polynomials over a field k .  We have a natural  

0N -grading of A  defined by the degree of a polynomial: 

0
n

n

A A
∞

=

=∑ , 

where 0N  denotes the semigroup of non-negative integers and nA  is the k-linear space of homogeneous 
polynomials of degree n . 
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Let G  be a finite group with a multiplicative notation. Consider a G-grading of the k-algebra A : 
g

g G

A A
∈

= ∑  

defined by 1
1 , ,  mgg

mx A x A∈ … ∈  for some 1, , mg g G… ∈ . Then, for any g G∈ , we have a k-linear basis of 
gA  formed by the monomials 1

1
mll

mx x… , which exponents 1, , ml l…  satisfy the condition  1
1

mll
mg g g… = . 

For simplicity we may assume that 1, , mg g…  generate the group G .  In this case G  is a commutative group 
([3], Proposition 2.1). 

For g G∈  and 0,1,2,n = …  we put g g
n nA A A= ∩ . Then we obtain a natural 0N -grading as a vector 

space of each component gA , where g G∈ : 

0

g g
n

n

A A
∞

=

=∑ , 

for details see [3], Propositions 3.2 and 3.3. Denote by ( )gs T  an arbitrary Hilbert-Poincaré series of the 

component gA : 

( ) [ ]
0

dim  ( ) [ ]g n
g k n

n

s T A T T
∞

=

= ∈∑ Z . 

Now we can introduce a series with coefficients in the group algebra GZ  that will be the main tool to 
work with our grading. 

Definition 2.1. Put: 

( ) [ ]
0

( ) dim  [ ]g n
k n

n g G

s T A gT G T
∞

= ∈

= ∈Ζ∑∑ , 

and call ( )s T  a Hilbert-Poincaré formal sum associated to the given G-grading of A .  
For simplicity we consider [ ][ ]TZ  as a subring of [ ][ ]G TZ , that is, we identify the integer 1 with the 

neutral element of G .  When we consider [ ][ ]G TZ  as a free [ ][ ]TZ -module with G  as a basis, then the 
Hilbert-Poincaré series of all components are simply coefficients of a decomposition. 

COROLLARY 2.2. The following identity holds in [ ][ ]G TZ : 

( ) ( )g
g G

s T s T g
∈

= ⋅∑ . 

The next theorem presents an analog of Molien’s formula for gradings of the algebra of polynomials. 

THEOREM 2.3. The following identity holds in [ ][ ]G TZ : 

1

1( )  
1

m

ii

s T
g T=

=
−∏ . 

Proof. Monomials 1
1

mll
mx x…  such that 1 ... ml l n+ + =  and 1

1
mll

mg g g… =  form a k-linear basis of g
nA . 

Hence, 

( ) ( ) ( )1

1

1
1 1 0 , , 0

1
1

i m

i m

m m
l ll

i m
ii i l l l

g T g T g T
g T

∞

= = = … ≥

= = ⋅…⋅
−∏ ∏∑ ∑  

( ) ( )1

1

1
11

1
, , 00 0

 

dim  ( )m

m

m
ll mm

ll n g n
m k n

l ln g G n g G
l l n

g g g

g g T A g T s T
∞ ∞

… ≥= ∈ = ∈
+…+ =

… =

= ⋅…⋅ = =∑∑ ∑ ∑∑ . □ 
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As an immediate consequence of the above theorem we obtain an explicit presentation of ( )s T  in the 

form of a quotient with a denominator belonging to [ ][ ]TZ . 

THEOREM 2.4. The following identity holds in [ ][ ]G TZ : 

( ) 1

1

1 ...
( )

1

i

i

rm
i i

r
i

g T g T
s T

T

−

=

+ + +
=

−∏ , 

where i ir g= 〈 〉  for 1,...,i m= . 

Proof. In Theorem 2.3 we can transform each factor further: 

( ) ( ) 11 1 ...1 1
1 1 1 1

i i

i i

r r
i i i

r r
i i

g T g T g T
g T g T T T

−− + + +
= ⋅ =

− − − −
. □ 

Remark 2.5. Note that the series ( )s T  introduced in Definition 2.1 is an adaptation of Hilbert-Poincaré 
series to the case we consider. Suppose we are given a k-algebra B  and a semigroup G .  The idea is to 
assign to a G-grading g

g G

B B
∈

= ∑  the formal sum ( )dim  g
k

g G

B g
∈
∑ . In particular, when we take the semigroup 

{ }0 1 2, , ,...T T T  as a multiplicative realization of 0N , we assign to an 0N -grading 
0

n
n

B B
∈

= ∑
N

 the formal 

infinite sum ( )
0

dim n
k n

n

B T
∈
∑

N

. In this paper we consider 0G ×N -gradings (where G  is a finite group), so we 

take { }0, ,ngT g G n∈ ∈N  as a multiplicative realization of 0G ×N , and we assign to a grading 

( ) 0,

g
n

g n G

B B
∈ ×

= ∑
N

 the formal infinite sum 
( )

( )
0,

dim g n
k n

g n G

B gT
∈ ×
∑

N

. 

3. EXAMPLES 

In this section we provide examples of linear gradings and compute their Hilbert-Poincaré formal sums 
using Molien’s formula. Recall that k  is a field. Recall also that we identify integer 1 with the neutral 
element of G .  

Example 3.1. Let { }2| 1 1,G g g g= 〈 = 〉 = . Consider a G-grading of [ , ]A k x y=  such that , gx y A∈ . 
Then 

2 2 2 2

2 2 2 2 2 2

1 1 1 2 (1 ) 2( )
(1 ) 1 (1 ) (1 )

gT gT g T T T gs T
gT T T T

+ + + + + ⋅ = = = = − − − − 
. 

When char 2k = , the above example presents a 2Z -grading of [ ],k x y  defined by the Euler derivation 

d x y
x y
∂ ∂

= +
∂ ∂

 (for details about gradings defined by derivations see e.g. [3], Section 8). In this case the 

neutral element’s component is the kernel of d :  

[ ]{ } 2 2, : ( ) 0 , ,f k x y d f k x y xy ∈ = =   . 

It is a 2 2,k x y   -algebra generated by a single polynomial, which illustrates Proposition 4.2 from [7]. 
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Example 3.2. Let { }3 2| 1 1, ,G g g g g= 〈 = 〉 = . Consider a G-grading of [ ],A k x y=  such that , gx y A∈ . 

Then 

( ) ( )

22 2 2 2 4 4 2 2 3 3

2 3 23

1 1 1 2 2 2( )
11 1

gT g T g T g T gT g T g Ts T
TgT T

 + + + + + + +
= = = = 

−−   −
 

                                                  
( ) ( )

( )

3 4 2 2

23

1 2 2 3

1

T T T g T g

T

+ + + ⋅ + ⋅
=

−
. 

When char 3k = , the above example presents a 3Z -grading of [ ],k x y  defined by the Euler derivation 

d x y
x y
∂ ∂

= +
∂ ∂

. The kernel of d :  

[ ]{ } 3 3 2 2, : ( ) 0 , , ,f k x y d f k x y x y xy ∈ = =    

is not a 3 3,k x y   -algebra generated by a single polynomial, which was observed in [7], Example 4.3. 

Example 3.3. Let { }6 2 3 4 5| 1 1, , , , ,G g g g g g g g= 〈 = 〉 = . Consider a G-grading of [ ],A k x y=  such that 
2gx A∈ , 3gy A∈ . Then 

( )( )
( )( )

( )( )
2 4 2 3

2 3 3 2

1 11( )
1 1 1 1

g T g T g T
s T

g T g T T T

+ + +
= = =

− − − −
 

                                                         
( )( )

3 2 3 4 2 5 2

3 2

1
1 1

gT g T g T g T g T
T T

+ + + + +
=

− −
. 

The above example presents a 6Z -grading of [ ],k x y  satisfying the conditions of Theorem 1.2. 

In particular, 3 2,k x y    is the neutral element’s component. 

Example 3.4. Let { }4 2 3| 1 1, , ,G g g g g g= 〈 = 〉 = . Consider a G  -grading of [ ], ,A k x y z=  such that 

, gx z A∈ , 2gy A∈ . Then 

               
( ) ( )

( ) ( )
( ) ( )

22 2 3 3 2

2 22 4 2

1 11( )
1 1 1 1

gT g T g T g T
s T

gT g T T T

+ + + +
= = =

− − − −
 

                       
( ) ( ) ( )( )( )

( ) ( )

4 5 2 6 2 3 3 2

24 2

1 3 2 2 3 4 1

1 1

T T T g T T g g T g T

T T

+ + + + + + +
= =

− −
 

( ) ( ) ( ) ( )
( ) ( )

3 4 7 4 5 2 5 6 2 2 3 6 3

24 2

1 3 3 2 4 2 3 3 2 4 2

1 1

T T T T T T g T T T T g T T T g

T T

+ + + + + + + + + + + + +
=

− −
. 

The above example presents a 4Z -grading of [ ], ,k x y z  considered in [2], Example 3.2, where the 
authors proved that the neutral element’s component is of the form 

4 2 4 2 2 2 2 3 3, , , , , , , ,k x y z x y yz x z x z xz xyz   . 
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4. THE MAIN APPLICATION 

In this section we use an analog of Molien’s formula for gradings (Theorem 2.3) to provide a proof of 
a necessary condition for the neutral element’s component to be generated by algebraically independent 
polynomials (implication (i ) (iv)→  in Theorem 1.2). We follow as close as possible all elements of the 
respective proof of Chevalley-Shephard-Todd theorem for group actions given in [4] and [9]. 

Recall that [ ]1, , mA k x x= …  is the algebra of polynomials over a field k ,  and G  is a finite 
commutative group with multiplicative notation and neutral element 1. We consider a grading 

g

g G

A A
∈

= ∑  

such that 1
1 , , mg

m
gx A x A∈ … ∈  for some 1, , mg g G… ∈ . We assume that 1, , mg g…  generate the group G  

and denote their ranks by 1, , mr r… , respectively. Moreover, we put 0 1 m
i iG G==∩ , where iG  is the subgroup 

generated by 1, , 1, 1, ,i i mg g g g… − + … , and we denote by it  the index of iG  in G . 

Assume that 1A  is generated by m  algebraically independent homogeneous polynomials 1, , mu u…  of 
degrees 1, , md d… , respectively. Moreover, A  is integral over 1A  since 1i

i
rx A∈  for 1, ,i m= … , therefore the 

number of generators is m . In this case the Hilbert-Poincaré series of the component 1A  can be expressed in 
the following way. 

PROPOSITION 4.1 ([4, 17.1; 9, 2.5.5]). The following identity holds in [ ][ ]TZ : 

1
1

( ) 1
1 i

m

d
i

s T
T=

=
−∏ . 

In the proofs of the next two propositions we will use the following computational technique. We will 

transform a formal series from [ ][ ]G TZ  to a form ( )
( )

a T
b T

 with polynomials [ ]( ) [ ]a T G T∈Z  and 

[ ]( ) [ ]b T T∈Z  such that (1) 0b ≠ . Then we will substitute 1T =  in ( )
( )

a T
b T

 and we will treat it as a “value” of 

( )s T  at 1T = : 

1
(1)( )
(1)T

as T G
b=

= ∈Q . 

This definition is correct since it does not depend on the presentation as a quotient: if ( ) ( )
( ) ( )

a T c T
b T d T

=  with 

[ ]( ), ( ) [ ]a T c T G T∈Z , [ ]( ), ( ) [ ]b T d T T∈Z , (1), (1) 0b d ≠ , then (1) (1)
(1) (1)

a c
b d

=  in GQ . 

The following formula is an analog of [4], 17.4, Theorem A (i) and [9], 4.1.5. 

PROPOSITION 4.2. 
1

m

i
i

G d
=

=∏ . 

Proof. From Corollary 2.2 and Theorem 2.4 we obtain 
1

1

1 ... ( )
1

( )
i

i

rm
i i

gr
i g G

g T g T gs T
T

−

= ∈

+ + +
=

−∏ ∑ , 

so 
1

1
1

1 ... ( ) (1 )
1

( )
...

i

i

rm
mi i

gr
i g G

g T g T g T s T
T T

−

−
= ∈

+ + +
= −

+ + +∏ ∑ . (1)
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We have 
1 1

1
1 11

1 ... ( ) 1 ...
1 ...

i i

i

r rm m
i i i i

r
ii iT

g T g T g g
rT T

− −

−
= ==

+ + + + + +
=

+ + +∏ ∏ . (2)

Observe that the following identity holds in the group algebra GQ : 
1

1

1 ... 1im r
i i

ii g G

g g g
r G

−

= ∈

+ + +
=∏ ∑ . (3)

We can prove (3) by induction on m .  For 1m =  we have a trivial case of a cyclic group G .  Assume the 
identity for m  and consider a group G  generated by 1m +  elements 1 1, , mg g +… . Let G'  be a subgroup of G  
generated by 1, , mg g… , put ( ):t G G'= . Then: 

1

1

1

1 1 1
1 1

11

1
1

1 10

1 11

1 1 1                                  .

i m

m

l
m

m r r
i i m m

i mi g G

r
m

m ml g G g Gg g G

g g g gg
r G r

rg g g
r G r G t G

+

+

+

+ − −
+ +

+= ∈

−
+

+ += ∈∈

′

∈′

+ +…+
′

+ +…+
= ⋅ =

= ⋅
′ ′

= ⋅ ⋅ =

∏ ∑

∑ ∑ ∑ ∑
 

By Proposition 4.1, we have the following coefficient from [ ][ ]TZ  at the neutral element on the right-
hand side of (1): 

1 1
1 1

1 1(1 )  
1 1 ..

( )
.i i

m m
m

d d
i i

TT s
T T

T
T −

= =

−
− = =

− + + +∏ ∏ , 

so 

1 1
1

( ) 1(1 )  
m

m
T

ii

T s T
d=

=

− =∏ . (4)

Finally, comparing coefficients at the neutral element on both sides of (1) and substituting 1T = , by (2), (3) 
and (4) we obtain 

1

1 1m

iiG d=

=∏ . □ 

The following formula is an analog of [4], 17.4, Theorem A (ii) and [9], 4.1.6. 

PROPOSITION 4.3. 
1 1

( 1) ( 1)
m m

i i
i i

t d
= =

− = −∑ ∑ . 

Proof. Denote ( ) ( )(1 )m
g gw T T s T= − . By (1) from the proof of Proposition 4.2 we have 

1

1
1

1 ... ( ) ( )
1 ...

i

i

rm
i i

gr
i g G

g T g T g w T
T T

−

−
= ∈

+ + +
=

+ + +∏ ∑ . (5)

By differentiating the left-hand side and substituting 1T = , we obtain: 

( ) ( ) ( ) ( )
( )

1

1
1

1

1 2 1 2 12

21
1

1 ... ( )
1 ...

2 ... ( 1) 1 ... 1 2 ... ( 1) 1 ... ( )

1 ...

i

i

i i i i i

i

rm
i i

r
i

T

r r r r rm
i i i i i i i

r
i

'
g T g T

T T

g g T r g T T T T r T g T g T

T T

−

−
=

=

− − − − −

−
=

 + + +
= + + + 

+ + + − ⋅ + + + − + + + − ⋅ + + +
= ⋅

+ + +

∏

∑
 



102 Piotr JĘDRZEJEWICZ 8 

1 11

1
1 111

1 ... ( ) 1 ...(1 ) (3 ) ... ( 1)
   .

21 ...

j ji

j

r rm rm m
j j j ji i i i i

r
i jj jiTj i j i

g T g T g gr r g r g
r rT T

− −−

−
= ===≠ ≠

+ + + + + +− + − + + −
⋅ = ⋅

+ + +
∑∏ ∏  

Applying the identity (3) from the proof of Proposition 4.2 for the group iG  we have: 

( ) ( )

11

1

1 1

0 0

1

0 0

1 ...(1 ) (3 ) ... ( 1)
2

1 1 1    1 2 1 2
2 2

1 2 1 2( )1 1    
2 2 2

ji

i i

li i i

i

l
i i

rr m
j ji i i i i

i jj
j i

r r
l

i i i
i i i il g G l g g G

t
i i i i i

i i il lg g G

g gr r g r g
r r

r l g g r l g
r G r G

r l r l r t r g
r G t G

−−

=
≠

− −

= ∈ = ∈

−

= =∈

+ + +− + − + + −
⋅ =

= ⋅ − + ⋅ ⋅ = ⋅ − + =

− + + − + + −
= ⋅ ⋅ ⋅ =

∏

∑ ∑ ∑ ∑

∑ ∑ ( )
1

1 2 .
i

l
i i

t

i
g g G

t l g
−

∈

− +∑ ∑

 

We have obtained the following:  

( )
11

1
1 0

1

1 ... ( ) 1 1 2
21 ...

ii

i
l

i i

trm
i i

ir
i l g g G

T

'
g T g T t l g

GT T

−−

−
= = ∈

=

 + + +
= − +  + + + 

∏ ∑ ∑ . (6)

Now, by differentiating the coefficient at the neutral element on the right-hand side of (5) and 
substituting 1T = , we obtain:  

( )

( )

1 1
1 1

1

2

11
1 1 1 1

1

1
1 ...

1 2 ... ( 1) ( 1)1 1                    .
1 ... 21

(

.

)

..

i

i

ji

m

d
T i

T

dm m m m
i i

dd
ji j i j

j i T

'
'w T

T T

T d T d
T T dT T

−
= =

=

−

−−
= = = =

≠ =

 
= = 

+ + + 

− + + + − − −
= ⋅ = ⋅

+ + + + + +

∏

∑ ∏ ∑ ∏
 

Comparing with the respective coefficient on the left-hand side of (5), by (6) we have: 

( ) ( )
1 1 1

11 11
2 2

m m m
i

i
ji i j

d
t

G d= = =

− −
− = ⋅∑ ∑ ∏ . 

Recall that 
1

m

i
i

G d
=

=∏  (Proposition 4.2), so, finally 

( ) ( )
1 1

1 1
m m

i i
i i

t d
= =

− = −∑ ∑ . □ 

Now we can prove implication (i) (iv)→  of Theorem 1.2 by the analogy with [4, 18.5] and [9, 
4.2.11]. Our motivation is connected with the problem of possible generalization for Hopf algebra actions, so 
in the proof below we don’t use the equivalence (i) (ii)↔  of Theorem 1.2, which is specific for the case of 
gradings. 

Observe that { }1 0 0 0/ / 1 m
i iG G G G= = =∩ , where { }1  is a class of 1 in 0G G . For a 0G G -grading 

obtained from the given G-grading we can apply implication (iv) (i)→  of Theorem 1.2. We infer that 1A  is 
generated by m  algebraically independent homogeneous polynomials. 
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Homogeneous generators 1, , mu u…  of 1A  have degrees 1, , md d… , respectively. Let 1, , mv v…  be 

algebraically independent homogeneous generators of 1A , with degrees 1, , md d′ ′… . For the 0G G -grading 
we have ( ) ( )0 0 :i i i it G G G G G G t′ = = = , so by Propositions 4.2 and 4.3 we obtain: 

1 1 1 1m m m md d t t t t d d′ ′ ′ ′+…+ = +…+ = +…+ = +…+  

and 

1 0 1m md d G G G d d′ ′⋅…⋅ = ≤ = ⋅…⋅ . 

Moreover, 1A  is a subalgebra of 1A . Reasoning analogously like in [4], 18.5 or [9], 4.2.11, we obtain 
 i id d′ =  for 1,...,i m= , so 0G G G= , and { }0 1G = . 
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