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Abstract. In a previous paper a non conventional model for fluid-saturated porous nanocrystals was derived in the
framework of non-equilibrium thermodynamics introducing in the thermodynamic state vector, as internal variables
describing the porous tubes, a structural permeability tensor à la Kubik, ri j, its gradient, ri j,k, and its flux, Vi jk.
Here, we work out for nanocrystals with porous channels filled by fluid flow, in the anisotropic and linear case, the
constitutive relations for the stress tensor, the entropy density, the chemical potentials for the concentration of the fluid
and for the porosity field, and the rate equations for ri j, Vi jk, the fluid-concentration and the heat fluxes, describing
disturbances propagating with finite velocity. Also, the closure of the system of equations describing the behaviour
of these nanosystems is discussed, presenting the linearized temperature and internal energy equations. The obtained
results may have relevance in important advanced studies on nanostructures, where their porous defects have a direct
influence on mechanical and transport properties, in particular on thermal conductivity. Inside these nanomaterials there
are situations of high-frequency waves propagation and the phenomena are fast.

Key words: non-equilibrium thermodynamics, internal variables, porous media, constitutive relations.

1. INTRODUCTION

The description of phenomena accompanying flows of mass in porous structures finds applications in
materials science, such as in miniaturized systems, and also in medical sciences, biology and geology. Here, we
use a thermodynamic approach based on the extended irreversible thermodynamics (see [1–8]). The influence of
porous channels on the other fields occurring inside nanocrystals is illustrated by the introduction of a stuctural
permeability tensor à la Kubik [9] (see also [10]), giving a macroscopic geometrical characterization of a porous
structure, coming from the use of volume and area averaging procedures at microscopic level. Models for porous
media, with some applications, were developed in [11–15]. In this paper, using the model formulated in [11] (see
also [12]), we consider the anisotropic case. Porous channels modify the thermal conductivity. Understanding
their influence on mechanical and transport properties in miniaturized systems is an interesting topic in “defect
engineering”, because by experimental and theoretical studies it was found that the porous density has a minor
effect on the thermal conductivity for porous defects densities smaller than a characteristic value dependent
on the material and temperature, but for higher values, the thermal conductivity decreases, and this situation
influences the nanodevice performances. Nanostructures can present metallurgical defects (for example porous
channels, inclusions, cavities, microfissures, dislocations), that sometimes can self propagate because of some
conditions and surrounding conditions that are favorable. A relatively high temperature gradient could produce,
for instance, a migration of defects inside the system. In [16–25], models, with some applications for media
with defects such as piezoelectric, elastic, semiconductor and superlattice structures, were also formulated using
the methods of non-equilibrium thermodynamics and introducing an internal variable, its gradient and its flux,
describing the defects inside the media under consideration. In [26–30] non-equilibrium temperatures and
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heat equation were studied in media with internal variables, in the framework of non-equilibrium thermodynamics.
In this paper we describe the behaviour of nanocrystals with defects, where the rate of variation of the properties
of the system is faster than the time scale characterizing the relaxation of the fluxes towards their respective
local-equilibrium value. In these nanosystems, there are situations of high-frequency waves propagation. Then,
in extended thermodynamics it is essential to incorporates the fluxes among the state variables. Micro- and
nanomaterials are characterized by the property that their volume element size L along some directions is so small
that it becomes comparable (or smaller than) the free mean path l of the heat carriers (representing the average
distance traveled by the phonons between two successive collisions), i.e. L≤ l. Then, at this scale the Knudsen
number l

L is such that l
L ≥ 1 (see [26] and [31]). In Sections 2 and 3 in the frame of extended irreversible

thermodynamics with internal variables, a model formulated in [11] is presented for media with porous channels
filled by fluid flow, where the geometrical internal structure is described by a structural permeability tensor [9],
its gradient and its flux. The very thin porous tubes can self propagate and influence mechanical and transport
properties of these porous media. In Sections 4, 5 and 6 in the anisotropic and linear case, the constitutive
theory is derived, developing the free energy around a particular thermodynamic equilibrium state, and the
rate equations for the structural permeability tensor, its flux, the heat and the fluid fluxes are worked out,
describing disturbances with finite velocity and fast phenomena. According to the extended thermodynamics
generalized Maxwell-Cattaneo-Vernotte and Fick-Nonnenmacher transport equations for the heat and fluid
fluxes, respectively, are derived, from which it is seen the influence of the porous channels on the transport
properties of the medium. Finally, the closure of the system of equations describing the behaviour of these
media is discussed, presenting the linearized temperature and internal energy equations. The obtained results
have a technological interest in the production of very miniaturized systems (nanotechnology) and the study of
high-frequency processes.

2. A MODEL FOR POROUS NANOCRYSTALS

In this section, we present a model for fluid-satured porous nanocrystals, developed in [11], in the framework
of extended irreversible thermodynamics with internal variables, where, among the various descriptions of
porous structures, that one based on the consideration of a structural permeability tensor ri j à la Kubik [9] is
used, and the tensor ri j, its gradient and its flux are introduced in the thermodynamic state vector (see [10]).

The tensor ri j is symmetric and describes a structure of very thin porous channels inside the medium under
consideration [9]. To describe as the porosity field evolves (see [11]), we introduce in the thermodynamic state
vector the structural permeability field ri j, its gradient ri j,k and its flux Vi jk. We assume that the mass of the
fluid filling the porous channels inside the crystal and the same crystal form a two-components mixture. We
indicate by ρ1 the mass of the fluid transported through the elastic porous solid of density ρ2. Furthermore,
the fluid flow is described by two variables: the concentration of the fluid c = ρ1

ρ
, its gradient c,i and its

flux jc
i . Thus, we have the following expression: ρ = ρ1 +ρ2. For the mixture of continua as a whole and

also for each constituent the following continuity equations are satisfied: ρ̇ +ρvi,i = 0, ∂ρ1
∂ t +(ρ1v1i),i = h1,

∂ρ2
∂ t +(ρ2v2i),i = h2, where a superimposed dot denotes the material derivative, h1 and h2 are the source terms,

that in the following are not taken into consideration, v1i and v2i are the velocities of the fluid particles and the
particles of the elastic body, respectively. We introduce the barycentric velocity and the fluid-concentration
flux as follows: ρvi = ρ1v1i +ρ2v2i, jc

i = ρ1(v1i− vi). The thermal field is described by the temperature T ,
its gradient T,i and the heat flux qi. The mechanical field is described by the symmetric total stress tensor τi j,
referred to the whole system considered as a mixture, and by the small strain tensor εi j =

1
2(ui, j +u j,i), being uuu

the displacement vector. We choose the following

thermodynamic vector space C = {εi j,c,T,ri j, jc
i ,qi,Vi jk,c,i,T,i,ri j,k}, (1)

where we have ignored the viscous effects. The processes occurring inside the considered nanocrystals are governed
by two sets of laws. The first set deals with the classical balance equations (the balance of mass, the momentum
balance and the internal energy balance), having, respectively, the following form:
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ρ ċ+ jc
i,i = 0, ρ v̇i− τ ji, j− fi = 0, ρ ė− τ jivi, j +qi,i−ρh = 0, (2)

where fi denotes a body force, e is the internal energy density, h is the energy source density, and vi, j is the
gradient of the velocity of the body, given by vi, j = wi j +

dεi j
dt , with wi j =

1
2(vi, j− v j,i) the antisymmetric part

of vi, j and dεi j
dt = 1

2(vi, j + v j,i) the symmetric part. In the following fi and h will be neglected.
The second set of laws concerns the evolution equations of the structural permeability field ri j, its flux Vi jk,

the fluid-concentration flux jc
i and the heat flux qi. These rate equations are constructed obeying the objectivity

and frame-indifference principles (see [32], [33] and [34]). Thus, these rate equations are chosen having the
form

∗
ri j +Vi jk,k−Ri j(C) = 0,

∗
jc
i − Jc

i (C) = 0,
∗
qi−Qi(C) = 0,

∗
V i jk−Vi jk(C) = 0, (3)

where the symbol (∗) denotes the Zaremba-Jaumann derivative defined for a general rank tensor as follows
∗
ai j...m = ȧi j...m−wipap j...m−w jpaip...m− . . .−wmpai j...p, Ri j(C) is the source-like term dealing with the creation
or annihilation of porous channels, Jc

i (C) is the fluid-concentration flux source, Qi(C) is the heat flux source and
Vi jk(C) is the source term for the structural permeability field flux. Ri j, Jc

i , Qi and Vi jk are constitutive functions
of the independent variables (see (1)). In (3) the flux terms of ri j, jc

i , qi and Vi jk are not present, in order to close
the system of equations describing the considered media, and the expression wi j = vi, j−

∂εi j
∂ t is used to obtain

linear relations.

3. ANALYSIS OF ENTROPY PRODUCTION

For the purpose that our investigations concern real physical processes occurring in the considered porous
structure filled by a fluid flow, all the admissible solutions of the proposed evolution equations should be
restricted by the following entropy inequality ρ Ṡ+φi,i− ρh

T = σ (s) ≥ 0, where S is the entropy density, σ (s)

is the internal entropy production, φi is the entropy flux and
ρh
T

is the external entropy production source,
that will be neglected in the sequel. Furthermore, the total mass density ρ of the considered nanocrystals is
supposed constant. Let us consider the following set of constitutive functions (dependent functions on the
set (1)): W = {τi j,e,Ri j,Jc

i ,Qi,Vi jk,S,φi,Π
c,Πr

i j,Π
jc

i ,Π
q
i ,Π

V
i jk} (with Πc the chemical potential of the fluid

concentration field, Πr
i j a potential related to the structural permeability field and Π

jc

i , Π
q
i , ΠV

i jk the generalized
affinities conjugated to the respective fluxes jc

i , qi and Vi jk), having the general form W = W̃ (C), where both
C and W are evaluated at the same point and time. In [11] Liu’s theorem [35], that considers all balance and
evolution equations as mathematical constraints for the general validity of the entropy inequality, was applied,
and the following results and some others were obtained, introducing the free energy density F = e−T s and
the flux vector Kk = ρFvk−T φk :
• the state laws (defining the constitutive functions via the partial derivatives of the free energy with respect

to the respective conjugate variables):

τi j = ρ
∂F
∂εi j

, S =−∂F
∂T

, Π
c =

∂F
∂c

, Π
r
i j = ρ

∂F
∂ ri j

,
∂F
∂c,i

= 0,
∂F
∂T,i

= 0,
∂F

∂ ri j,k
= 0; (4)

- the generalized affinities: Π
jc

i = ρ
∂F
∂ jc

i
, Π

q
i = ρ

∂F
∂qi

, Π
ν
i jk = ρ

∂F
∂Vi jk

; (5)

- the residual inequality T
∂φi

∂c
c,i +T

∂φi

∂T
T,i +T

∂φi

∂ r jk
r jk,i−Π

r
i jRi j−Π

jc

i Jc
i −Π

q
i Qi−Π

ν
i jkVi jk ≥ 0; (6)

the entropy flux φk =
1
T (qk−Πc jc

k−Πr
i jVi jk), the form for the free energy F as F = F(εi j,c,T,ri j, jc

i ,qi,Vi jk),
and the symmetry for the stress tensor τi j (see (4)1).
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4. CONSTITUTIVE RELATIONS AND GENERALIZED AFFINITIES

In this Section, we derive in the anisotropic case and in the linear approximation the constitutive theory
for the system under consideration. We recall that the total mass density ρ has been assumed to be constant.
We apply the potential method and we expand the free energy F(εi j,c,T,ri j, jc

i ,qi,Vi jk) up the second-order
approximation around a thermodynamic equilibrium state indicated by “0”. Introducing the deviations of the
independent variables from this reference state, in particular: θ = T −T0, with

∣∣∣ θ

T0

∣∣∣� 1, ẽ = e− e0, with∣∣∣ ẽ
e0

∣∣∣� 1, C = c− c0, with
∣∣∣C

c0

∣∣∣� 1, S = S−S0, with
∣∣∣S

S0

∣∣∣� 1, Ri j = ri j− r0i j, with
∣∣∣ Ri j

r0i j

∣∣∣� 1,

assuming (εi j)0 = 0, (τi j)0 = 0, (ri j)0 = r0i j, (ui)0 = u0i, (vi)0 = v0i, (7)

and taking into account that

(Vi jk)0 = 0, (qi)0 = 0, ( jc
i )0 = 0,

(
Π

r
i j
)

0 = 0, (Πc)0 = 0,
(
Π

ν
i jk
)

0
= 0,

(
Π

jc

i

)
0 = 0,

(
Π

q
i

)
0 = 0,

(8)
we obtain

F = F0−S0θ +
1

2ρ
ci jlmεi jεlm−

λ θε
i j

ρ
θεi j +

λ rε
i jlm

ρ
εi jRlm−

λ cε
i j

ρ
C εi j−

1
2

cv

T0
θ

2 +
λ rθ

i j

ρ
Ri jθ +

λ θc

ρ
θC +

λ rc
i j

ρ
Ri jC

+
λ rr

i jlm

2ρ
Ri jRlm +

λ c

2ρ
C 2 +

λ νν
i jklmn

2ρ
Vi jkVlmn +

λ
ν jc

i jkl

ρ
Vi jk jc

l +
λ

νq
i jkl

ρ
Vi jkql +

1
2ρ

λ
qq
i j qiq j +

1
2ρ

λ
jc jc

i j jc
i jc

j +
1
ρ

λ
jcq

i j jc
i q j,

(9)

where ci jkl = ρ

(
∂ 2F

∂εi j∂εkl

)
0
, λ c = ρ

(
∂ 2F
∂c2

)
0
, cv = −T0

(
∂ 2F
∂T 2

)
0
, λ jc jc

= ρ

(
∂ 2F

∂ jc
i ∂ jc

k

)
0
, λ θε

i j = −ρ

(
∂ 2F

∂εi j∂T

)
0
,

λ νν
i jklmn = ρ

(
∂ 2F

∂Vi jk∂Vlmn

)
0
, λ

νq
i jkl = ρ

(
∂ 2F

∂qi∂V jkl

)
0
, λ rr

i jkl = ρ

(
∂ 2F

∂ ri j∂ rkl

)
0
, λ θc = ρ

(
∂ 2F

∂c∂T

)
0
, λ rc

i j = ρ

(
∂ 2F

∂c∂ ri j

)
0
,

λ
qq
i j = ρ

(
∂ 2F

∂qi∂q j

)
0
, λ cε

i j =−ρ

(
∂ 2F

∂εi j∂c

)
0
, λ

jcq
ik = ρ

(
∂ 2F

∂ jc
i ∂qk

)
0
, λ rθ

i j = ρ

(
∂ 2F

∂T ∂ ri j

)
0
, λ rε

i jkl = ρ

(
∂ 2F

∂εi j∂ rkl

)
0
,

λ
ν jc

i jkl = ρ

(
∂ 2F

∂ jc
i ∂V jkl

)
0
.

In (9) we have called the second partial derivatives of free energy with respect to the considered independent
variables using the name of the phenomenological coefficients, measurable by experiments, coming from their
physical interpretation. In (9) cv denotes the specific heat, ci jlm is the elastic tensor, λ θε

i j are the thermoelastic
constants and the other phenomenological coefficients express simple and coupled effects which can manifest
among the fields themselves or the different fields acting during interactions. Also, we have taken into consid-
eration the physical dimensions of the physical quantities and the invariance of F under time reversal, so that
the terms containing the fluxes at first order are null. Furthermore, the introduction of the minus sign comes
from physical reasons and the constant phenomenological coefficients satisfy the following symmetric relations
(because they are defined in terms of second derivatives of F and the tensors εi j and ri j are symmetric):
ci jlm = clmi j = c jilm = ci jml = c jiml = cmli j = cml ji = clm ji, λ cε

i j = λ cε
ji , λ rθ

i j = λ rθ
ji , λ

ν jc

i j = λ
ν jc

ji ,

λ rε
i jlm = λ rε

lm ji = λ rε
lmi j = λ rε

jilm = λ rε
i jml = λ rε

jiml = λ rε
ml ji = λ rε

mli j, λ
qq
i j = λ

qq
ji , λ rc

i j = λ rc
ji , λ

jcq
i j = λ

jcq
ji λ

jc jc

i j = λ
jc jc

ji ,

λ rr
i jlm = λ rr

lmi j = λ rr
i jml = λ rr

jilm = λ rr
jiml = λ rr

lm ji = λ rr
mli j = λ rr

ml ji, λ θε
i j = λ θε

ji , λ νν
i jklmn = λ νν

lmni jk, λ
νq
i jkl = λ

νq
li jk.

From (9), using equations (4) and (5), we obtain the constitutive functions τi j, S, Πr
i j, Πc and the generalized

affinities ΠV
i jk, Π

q
i , Π

jc

i :
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τi j = ci jlmεlm−λ
θε
i j θ +λ

rε
i jlmRlm−λ

cε
i j C , S = S0 +

λ θε
i j

ρ
εi j +

cv

T0
θ −

λ rθ
i j

ρ
Ri j−

λ θc

ρ
C , (10)

Π
r
i j = λ

rε
i jlmεlm +λ

rθ
i j θ +λ

rr
i jlmRlm +λ

rc
i j C , Π

c =−
λ cε

i j

ρ
εi j +

λ θc

ρ
θ +

λ rc
i j

ρ
Ri j +

λ c

ρ
C , (11)

Π
V
i jk = λ

νν
i jklmnVlmn +λ

νq
i jklql +λ

ν jc

i jkl jc
l , Π

q
i = λ

νq
i jklV jkl +λ

qq
i j q j +λ

q jc

i j jc
j, Π

jc

i = λ
ν jc

i jkl V jkl +λ
jcq

i j q j +λ
jc jc

i j jc
j.

(12)

5. RATE EQUATIONS

The residual inequality (6) imposes some relations among the source terms Ri j, Jc
i , Qi, Vi jk and Πr

i j, Π
jc

i ,
Π

q
i and Πν

i jk, respectively. In this Section we work out the rate equations for the heat and fluid fluxes for the
structural permeability tensor and its flux. In particular, expressing the source terms Ri j, Jc

i , Qi and Vi jk as linear
polynomials with constant coefficients in terms of the independent variables, and in the case where we may use
the material derivative instead of Zaremba-Jaumann derivative we obtain

q̇i = α
1
i j jc

j +α
2
i jq j +α

3
i jklV jkl +α

4
i jc, j +α

5
i jT, j +α

6
i jklr jk,l, (13)

j̇c
i = η

1
i j jc

j +η
2
i jq j +η

3
i jklV jkl +η

4
i jc, j +η

5
i jT, j +η

6
i jklr jk,l, (14)

ṙi j +Vi jk,k = β
1
i jklεkl +β

2
i jklrkl +β

3
i jk jc

k +β
4
i jkqk +β

5
i jklmVklm +β

6
i jkc,k +β

7
i jkT,k +β

8
i jklmrkl,m, (15)

V̇i jk = γ
1
i jkl jc

l + γ
2
i jklql + γ

3
i jklmnVlmn + γ

4
i jklc,l + γ

5
i jklT,l + γ

6
i jklmnrlm,n. (16)

Equations (13)-(16) contain coupled effects among the different fields and describe propagation of disturbances
with finite velocity, following the philosophy of extended thermodynamics. In these rate equations the fields qi,
jc
i , ri j and Vi jk present a relaxation time. The rate equation (13) for the heat flux generalizes Maxwell-Vernotte-

Cattaneo relation for the thermal disturbances with finite velocity and denoting by τ
q
i j a relaxation times tensor

associated to the heat flux, it takes the form

τ
q
i jq̇ j = χ

1
i j jc

j−qi +χ
3
i jklV jkl +χ

4
i jc, j−χ

5
i jT, j +χ

6
i jklr jk,l. (17)

In (17) we have used the following notations χ1
ik = τ

q
i jα

1
jk, δik = −τ

q
i jα

2
jk, χ3

iklm = τ
q
i jα

3
jklm, χ4

ik = τ
q
i jα

4
jk,

χ5
ik =−τ

q
i jα

5
jk, χ6

iklm = τ
q
i jα

6
jklm, where χ1

i j is the thermodiffusive kinetic tensor, χ4
i j is the thermodiffusive tensor

and χ5
i j is the heat conductivity tensor.

Equation (17) becomes τ
qq̇i +qi = χ

1
i j jc

j +χ
3
i jklV jkl +χ

4
i jc, j−χ

5
i jT, j +χ

6
i jklr jk,l when τ

q
i j = τ

q
δi j. (18)

In the case where the coefficients χχχs (s = 1,3,4,6) are negligible, equation (17) has the form

τ
q
i jq̇ j +qi =−χ

5
i jT, j , (19)

that is the anisotropic Maxwell-Cattaneo-Vernotte equation. In the isotropic case χ5
i j = χδi j and τ

q
i j = τqδi j and

we obtain the well known Maxwell-Cattaneo equation τqq̇ j +qi =−χT,i. When the thermal propagation has
infinite velocity, equation (19) becomes the anisotropic Fourier law qi =−χ5

i jT, j, having in the isotropic case
the classical form qi =−χT,i, with χ the thermal conductivity.
Furthermore, the rate equation (14) for the fluid flux generalizes the Fick-Nonnenmacher law, that, introducing
the fluid flux relaxation time tensor τ

jc

i j , has the form

τ
jc

i j j̇c
j =− jc

i +ξ
2
i jq j +ξ

3
i jklV jkl−ξ

4
i jc, j +ξ

5
i jT, j +ξ

6
i jklr jk,l, (20)
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where δik = −τ
jc

i j η1
jk, ξ 2

ik = τ
jc

i j η2
jk, ξ 3

iklm = τ
jc

i j η3
jklm, ξ 4

ik = −τ
jc

i j η4
jk, ξ 5

ik = τ
jc

i j η5
jk, ξ 6

iklm = τ
jc

i j η6
jklm. The

quantities ξ 4
ik and ξ 5

ik are the diffusion tensor and the thermodiffusive tensor, respectively. In the case where the
coefficients ξ 2

i j, ξ 3
i jkl , ξ 5

i j and ξ 6
i jkl are null equation (20) represents the anisotropic Fick-Nonnenmacher law.

Equation (20) becomes τ
jc

j̇c
i + jc

i = ξ
2
i jq j+ξ

3
i jklV jkl−ξ

4
i jc, j+ξ

5
i jT, j+ξ

6
i jklr jk,l, when τ

jc

i j = τ
jc

δi j. (21)

6. LINEARIZED TEMPERATURE EQUATION AND BALANCE INTERNAL ENERGY EQUATION

In [10], starting from the free energy F = e− T S, calculating its material derivative and taking into
consideration the balance energy equation ρ ė = τi jε̇i j−qi,i (where the expression for the velocity gradient
vi, j = ε̇i j +wi j has been used), we have deduced ρT Ṡ = τi jε̇i j− qi,i−ρṪ S−ρḞ . Furthermore, expliciting
the material derivative of the free energy F in terms of its independent variables, using the state laws (4), the
definitions of the affinities (5), and linearizing the equation around the equilibrium state defined by (7) and
(8) we have obtained ρ(T0 +θ)(Ṡ0 + Ṡ ) =−qi,i−Πr

i j[(ṙ0i j)+ Ṙi j]−Πc(ċ0 + Ċ )−ΠV
i jkV̇i jk−Π

jc

i j̇c
i −Π

q
i q̇i,

and than
ρT0Ṡ =−qi,i, τ

q
ρT0S̈ =−τ

qq̇i,i, (22)

where second order infinitesimal terms have been neglected. In (22) the superimposed dot indicates the linearized
time derivative d

dt =
∂

∂ t +v0 ·grad and the deviations of the fields from the thermodynamic equilibrium state
have been indicated by the same symbols of the fields themselves. Furthermore, in (22) we have used the rate
equation (18) for the heat flux linearized around the considered equilibrium state and, from equations (10)2, (18)
and (22)2, we have deduced

τ
qT̈ + Ṫ = ki jT,i j−γi j(τ

q
ε̈i j + ε̇i j)+ϕ(τqc̈+ ċ)+ηi j(τ

qr̈i j + ṙi j)−ν
1
i j jc

j,i−ν
3
i jklV jkl,i−ν

4
i jc, ji−ν

6
i jklr jk,li, (23)

where ν1
i j =

χ1
i j

ρcv
, ν3

i jkl =
χ3

i jkl
ρcv

, ν4
i j =

χ4
i j

ρcv
, ν6

i jkl =
χ6

i jkl
ρcv

, ki j =
χ5

i j
ρcv

, γi j =
T0

ρcv
λ θε

i j , ϕ = T0
cv

λ θc, ηi j =
T0

ρcv
λ rθ

i j , that
generalizes the telegraph equation in the anisotropic case.

Here, we linerize the first law of thermodynamics. From (22)1, using the relations ẽ = e− e0, and (10)2,
considering the case where we may replace the material derivative by the partial time derivative, we obtain

ρ ė+T0λ
θε
i j ε̇i, j +ρcvθ̇ −T0λ

rθ
i j Ṙi j−T0λ

θcĊ = 0, i.e. ρ ė =−T0λ
θε
i j u̇i, j−ρcvṪ +T0λ

rθ
i j ṙi j +T0λ

θcċ. (24)

In (24) the second order term τi jvi, j has been neglected. Linearizing around the equilibrium state (see (7) and
(8)), the balance equations (2)1 and (2)2 (where we insert the constitutive equations (10)1), the rate equations
(15), (16), (18) and (21), taking into account the linearized temperature equation (23) and the linearized internal
energy balance equation (24)2, and using the definitions of εi j and vi = u̇i, we obtain a closed system of 45
equations for 45 unknowns: 1 for c, 3 for ui, 1 for T , 1 for e, 6 for ri j, 27 for Vi jk, 3 for qi and 3 for jc

i .

7. CONCLUSIONS

In this article a model for porous nanocrystals filled by a fluid flow proposed in a previous paper, in the
framework of rational extended irreversible thermodynamics with internal variables, is used to study the thermal,
mechanical and transport properties of these materials. It is assumed that the medium under consideration has
mass density constant, the body force and heat source distribution are negligible and the structural permeability
tensor, its gradient, its flux, the heat flux and the fluid flow are independent variables besides the small strain
tensor, the concentration of the fluid and its gradient, the temperature and its gradient. The constitutive equations
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and the affinities are deduced, and the rate equations for dissipative fluxes and for the structural permeability
tensor are worked out and it is seen that porous channels in nanocrystals influence mechanical and transport
properties. In particular the generalized equations Maxwell-Vernotte-Cattaneo and Fick-Nannemaker are
obtained. The obtained results have applications in nanotechnology and other fields of applied sciences.
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