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Abstract. We study the solutions of the Dirac equation in the background of a static black string in 
four dimensions. We point out the presence of an additional term which was omitted in previous 
studies in the literature. We show how the Dirac equation can be separated for massive fermions. 
Finally, in the massless case, we obtain an exact solution of the Dirac equation in terms of the general 
Heun functions. 

Key words: Dirac equation, Heun functions, cylindrical black holes. 

1. INTRODUCTION 

The cylindrically symmetric black hole solution of Einstein’s field equations with a negative 
cosmological constant [1] has a rich geometrical structure, which can be explored both at the quantum and 
the classical level. Such black strings solutions have also been studied in the rotating and charged cases 
in [2]. These solutions can only exist in presence of a negative cosmological constant, such that their 
asymptotic structure in radial direction is that of the anti- de Sitter geometry. 

The main purpose of the present paper is to extend the analysis developed in [3], devoted to the study 
of Dirac massless particles in black strings backgrounds, in the following three directions. Firstly, we are 
using a coordinate-free method, based on Cartan’s formalism, in which the {γ i} matrices have the same form 
as on the Minkowskian background. We point out the presence of an additional term that is expressing the 
spin-connection and is missing in the analysis developed in [3,4,5]. Secondly, the Dirac equation is 
separated for massive particles into its angular and radial parts. Finally, in the case of massless fermions, it 
turns out that the radial equations can be exactly solved, their solutions being expressed in terms of the Heun 
general functions [6,7]. 

Such studies are currently a very active area of research due to their observational significance since 
the so-called quasinormal modes can be used for the detection of black holes [8,9,10]. One should note at 
this point that Heun functions [11] are often encountered when studying fields propagations on black holes 
backgrounds (with or without cosmological constant) (see for instance [12-17] and references therein). 

Our paper is organized as follows: in the next section, we write down the Dirac equation using the 
Cartan formalism. We show that, in the background of a non-rotating black string, the Dirac equation is 
separable. In section 3, we prove that, for massless Dirac fermions, the solution of the Dirac equation can be 
further solved exactly in terms of the general Heun functions. The final section is dedicated to conclusions 
and avenues for further work. 

2. THE SO(3,1) – GAUGE COVARIANT DIRAC EQUATION 

In [14], for the general static metric of the form 
2 2 2 2 2 2 2 2 2 2 2d d d d df p q hs e r a e b e e t= + θ + ϕ − , (1)
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where the functions f, p, q and h  depend only on the coordinates r  and θ ,  we have defined the pseudo-
orthonormal frame ( 1,4){ }a aE = , i.e. 

1 2 3 4,   ,   ,   
p q

f h
r t

e eE e E E E e
a b

− −
− −

θ ϕ= ∂ = ∂ = ∂ = ∂ , (2)

whose corresponding dual base is 
1 2 3 4d ,   d ,   d ,   df p q he r ae be e tω = ω = θ ω = ϕ ω = , 

so that the metric (1) turns into the Minkowskian form 2d a b
abs = η ω ω , where diag[1,1,1, 1]abη = − . 

Using the first Cartan’s equation, 

.[ ]d a a b c
bcω = Γ ω ∧ω , (3)

with 1 ≤ b < c ≤ 4  and .[ ] . .
a a a
bc bc cbΓ = Γ −Γ , we obtain the following connection one-forms c
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In the case under consideration in this paper, we start from the following metric: 

2 2 2 2 2 2 2 21d d d d ds r r r z F t
F

= + θ + α −  (5)

where ( )F F r= , so that the relations (2) and (4) lead to the following simple expressions: 

1 2 3 4
1 1 1,   ,   ,   r z tE F E E Er r Fθ= ∂ = ∂ = ∂ = ∂

α
, (6)

and 

122 133 144,    
2

'F F
r F

Γ = Γ = − Γ = , (7)

where 'F  means the derivative with respect to r .  
The massive spinor of mass µ, minimally coupled to gravity, is described by the SO(3,1)  gauge-

covariant Dirac equation 

1 0
4

a a b c
a bcaEγ Ψ + Γ γ γ γ Ψ +µΨ = , (8)

which, in view of the relations (6) and (7), gets the explicit form 

1 2 3 41 1 1 1 0
4
FF

r F r r z tF
′  ∂Ψ ∂Ψ ∂Ψ ′γ Ψ + + Ψ + γ + γ + γ + µΨ =   ∂θ α ∂ ∂  

. (9)

In order to simplify the above equation, we take the wave function as 
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1 4F r
− φ

Ψ = , (10)

and, since the cylindrically symmetric spacetime admits z∂  and t∂  as Killing vectors, we can assume that 

( ) ( ), i k z tG r e α −ωφ = θ , (11)

so that one gets the following equation 

1 2 3 41 0ik iG GF G
r r r F

ω ∂ ∂γ + γ + γ − γ + µ = ∂ ∂θ  
. (12)

For the bi-spinor G  written in terms of two components spinors as 

( , )
( , )

( , )
r

G r
r

ζ θ 
θ =  χ θ 

, (13)

in the Weyl’s representation for the iγ  matrices, 

1 3 2 1 3 2 4,   ,   ,   i i i iγ = − βα γ = − βα γ = − βα γ = − β , (14)

with 

50 0 0
,   ,   

0 00

I I
I I

µ
µ

µ

 σ −   
α = β = γ =       − −−σ     

, 

where µσ  denotes the usual Pauli matrices, the equation (12) leads to the following system of coupled 
equations for the spinors ζ  and χ :  

3 1 2

3 1 2

0,

0.

i rr F ik i r
r F

i rr F ik i r
r F

∂ζ ∂ζ ω
σ + σ + σ ζ − ζ − µ η =

∂ ∂θ
∂η ∂η ω

σ + σ + σ η− η+ µ ζ =
∂ ∂θ

 (15)

Next, by applying the separation ansatz 

1 1 1 2 2 2 1 2 1 2 1 2( ) ( ),   ( ) ( ),   ( ) ( ),   ( ) ( )R r T R r T R r T R r Tζ = θ ζ = θ η = θ η = θ , (16)

one gets the system 
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F

i rr F R T k R T i rR T
F

θ

θ

θ

θ

ω ∂ − + ∂ + − µ =  
ω ∂ + − ∂ − + µ =  
ω ∂ + + ∂ + + µ =  
ω ∂ − − ∂ − − µ =  

 (17)

which can be separated in the radial and angular parts as: 

( ) ( )

[ ] [ ]

1 2 2 1

1 2 2 1

,   ,

,   ,

r r
i r i rr F R i r R r F R i r R

F F
k T T k T Tθ θ

ω ω   ∂ − = λ + µ ∂ + = λ − µ      
∂ − = λ ∂ + = −λ

 (18)
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where λ  is a separation constant. 
The solutions for the first-order angular equations being given by 

1 2,   im imk imT Ae T Aeθ θ−= = −
λ

, (19)

where 2 2 2m kλ = + , the radial equations in (18) lead to the following second-order differential equation for 
1R , 

2 2 2
21 1

12 2
d d1 1 1 0

2 d 2d
R RiF Fi R

r F i r r F F r F i rr r
 µ µω′ ′  ω λ + + − + − ω − − − −µ =   λ + µ λ + µ    

 (20)

and, similarly, for 2R . The general equation (20) cannot be analytically solved in general. However, in the 
massless case we show in the next section that one can find an exact solution. 

3. THE MASSLESS CASE 

For the massless case, the equation (20) gets the simpler form: 
2 2 2 2

1 1
12 2

d d1 1 1 0
2 d 2d

R RF F m ki R
r F r F F r Fr r

 ′ ′ω +   + + + − ω − − =       
, (21)

which depends on the explicit form of the function ( )F r . 
Let us consider the solution of Einstein’s field equations with a negative cosmological constant Λ ,  for 

which / 3α = −Λ , which describes the cylindrically symmetric black string spacetime, with the mass M  the 
only parameter. In this case, ( )F r is given by the expression 

2 2( ) MF r r
r

= α − , (22)

pointing out the event horizon location at 
1 3

* 2
Mr  =  α 

. 

Using the dimensionless variable *x r r= , the function (22) becomes 

( ) ( )( )( )3

* *

( ) 1 1M MF x x x x a x b
r x r x

= − = − − −  (23)

with 
1 3 1 3,   

2 2
i ia b− + − −= = , 

and the explicit form of the equation (21) reads 
2 2 23 2 2

1 1 * * *
12 3 3 3

d d4 1 3 0
d 2d 2 ( 1) ( 1) 1

R R r r r xx i m k R
x M xx x x M x x

  ω ω− ++ + + − =   − − −   
. (24)

Using Maple [11] one can check that the equation (24) can be analytically solved, its solutions being 
expressed in terms of Heun general functions [6,7] as: 

( )

{ }

2 2 2
* * *( 3) 3

3 6 6
1

1 1 1 1 1 1 1 2 2 2 2 2 2 2

( ) ( 1) ( ) ( )

           Heun , , , , , , Heun , , , , , ,

i r r r
i i

M M MR x x x a x b

C G a q C G a q

ω ω ω
− − − +

= − − − ×

× α β γ δ ζ + ζ α β γ δ ζ      

 (25)
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of variable 
(1 )x a
x a
−

ζ =
−

, 

and parameters: 

( )2 2
*

1 1

2 2
* *

1 1 1 1

1 3 ,    ,
2 3

( 3 )1 1 1 20,    ,    ,    .
2 3 2 2 3

i r m kia q
M

r ri i
M M

+−= =

ω ω−
α = β = − γ = δ = +

 (26)

and 

2 1 2 1

2 1 2 1 2 2 1

3,    ( 3 ),
8

1 1 3,    ,    ,   .
2 2 2

a a q q i= = + −

α = α + β = β + γ = δ = δ
 (27)

Due to the large number of applications in a variety of fields, the Heun differential equations in either 
the general or confluent forms have been intensively studied in the last two decades [12,13]. However, it is 
difficult to find closed-form solutions of these equations in terms of simpler functions, especially for 
complex values of the parameters. 

4. CONCLUSIONS 

In the present paper we have used a coordinate-free approach, based on the Cartan formalism to write 
down the Dirac equation in the background of a static black string in four dimensions. We point out the 
presence of an additional term expressing the spin-connection, namely the second term in (8), which was 
missing in previous studies of the Dirac equation in this background. We showed that the massive Dirac 
equation can be separated into its angular and radial parts. In general, the radial equation cannot be solved 
analytically and it should be approached numerically. In the massless case, we have been able to find an 
exact solution, which can be expressed using the general Heun functions. 

As avenues for further work, using the same method, one should be able to obtain and study new 
solutions of the Dirac equation in the background of a rotating black string, with or without electric charge [2]. 
Work on these issues is in progress and it will be published elsewhere. 
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