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Abstract. We consider a novel photon-limited image restoration technique in this research paper. The 

proposed denoising approach uses a hyperbolic nonlinear fourth-order partial differential equation-

based model that is treated mathematically here, its well-posedness being demonstrated. Its weak and 

unique solution is then computed numerically, by solving the proposed PDE model using a finite 

difference method-based numerical approximation algorithm. The obtained iterative approximation 

scheme provides an effective Poisson noise removal, our successful restoration experiments being 

also described. 
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1. INTRODUCTION 

The photon image devices capture the images by counting the photon detections at various spatial 

locations over a certain period of observation. Since this photon emission and detection process is 

characterized by an inherently discrete nature, the signal-dependent errors of the image acquisition systems 

generate the so called quantum or shot noise [1]. 

This type of noise deteriorates seriously the captured images both quantitatively and qualitatively, 

producing the so called photon-limited images. The quantum noise is modelled as a Poisson process, obeying 

a Poisson law. For this reason, it is also called Poison noise, being characterized by the next Poisson 

probability distribution [2]: 
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Many photon-limited image restoration techniques have been developed in the last decades. Some 

classic nonlinear filters, such as the 2D median filter [3], can be used for the shot noise removal, but they are 

not effective enough and may affect the essential image features. So, some much more effective quantum 

denoising approaches have been introduced. They include the Non-Local Mean – NLM Poisson filter [4], the 

Poisson Reducing Bilateral Filter – PRBF [5], the Multi Scale Variance Stabilizing Transform (MS-VST) 

[6], the moving average filter and the wavelet-based filtering methods [7]. 

The partial differential equation (PDE) – based models have been widely used for image denoising and 

restoration in the last 35 years, in both variational and non-variational form. While most of them represent 

powerful additive Gaussian noise removal solutions [8], some PDE-based shot noise filtering algorithms 

have been also developed. 

The variational quantum denoising schemes are based on the total variation (TV) regularization [9,10]. 

While these models provide an effective Poisson noise filtering and conserve the boundaries, they may 

generate the undesired image staircasing. 

Fourth-order PDE models deal successfully with this unintended staircase effect. So, we consider here 

a non-variational and nonlinear fourth-order PDE-based quantum noise removal framework that preserves 

the essential image details and overcomes the undesirable effects. 
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We have conducted a high amount of research in the variational and diffusion-based image restoration 

domain in the last 12 years, developing numerous effective white additive Gaussian noise filtering 

techniques based on parabolic and hyperbolic PDE models of second and fourth order [11-13]. The novel 

fourth-order differential model proposed in the next section is hyperbolic and also has a well-posed 

character, the existence of a unique weak solution being treated in the third section. 

Then, the proposed model is discretized by applying a numerical approximation algorithm that is 

consistent to it and is constructed by using the finite difference method [14]. This iterative discretization 

scheme proposed in the fourth section has been successfully tested on many photon-limited images, the shot 

denoising experiments being discussed in the fifth section. The conclusions of this work are drawn in the 

final section. 

2. NONLINEAR HYPERBOLIC FOURTH-ORDER PDE-BASED RESTORATION MODEL 

A novel nonlinear hyperbolic PDE model for photon-limited image restoration is proposed in this 

section. It is composed of the following fourth-order partial differential equation and several boundary 

conditions: 
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where the coefficients are ( , , , , 0,1     , 2R  represents the image domain and ( )2
0u L   is the 

observed photon-limited image. Here 
2 =  . 

We propose the following diffusivity function of this nonlinear partial differential equation-based 

model: 
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where the coefficients are ( 0.5,1 , ( 0,1  and 3k  , and the conductance parameter ( , , )x y t  

represents a positive function that depends on the coordinates and the statistics of the evolving image. It will 

be computed by using an algorithm which is described in the following sections. 

The function given by (3) is properly modelled for a detail-preserving restoration process [8], being 

positive, monotonically decreasing and convergent to zero. It is also a Lipschitz function, since its derivative 

is bounded, because it exists a constant C > 0 such that 

( ) ( )( ) 0, Lip' s C R  =  . (4) 

The detail-preserving denoising is also assured by the hyperbolic character of the fourth-order PDE 

model (2). So, the presence of the second-order time derivative in the partial differential equation (2) 

provides much sharper image boundaries, thus enhancing the essential details. 

This nonlinear hyperbolic PDE-based model is non-variational, since it cannot be obtained from the 

minimization of an energy cost functional, but it is well-posed, admitting a unique variational solution. Its 

validity is treated mathematically in the next section, where the existence and unicity of that weak solution is 

demonstrated. 
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3. A MATHEMATICAL TREATMENT ON THE VALIDITY OF THE PDE MODEL 

The well-posedness of the proposed fourth-order hyperbolic PDE restoration model is investigated in 

this section. Let us set ( ) ( ) ( )2 2 1
0,  H L V H H=  =    and note that V H  with dense and compact 

embedding. Here ( )2H   and ( )1
0H   represent standard Sobolev spaces. Also, the Lipschitz property of the 

function   is important to this mathematical treatment [15]. 

The function  : 0,u T R→  is said to be a variational solution to the hyperbolic equation (2) if the 

following conditions hold: 
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As regards the equation (2) we have the following existence result: 

 

PROPOSITION 1. Under above assumptions there is a unique variational (weak) solution u .  
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By applying Theorem 1.1 described in [15], it follows that for any 1nu −  there is a unique weak solution 

nu  to (6). Then, one can prove the convergence of  nu  to a variational solution u  for the PDE-based model 

(1), by proving just that  nu  and  ( )n tu  are bounded in ( )2 0, ;L T V  and  ( )n ttu  is bounded in 

( )2 0, ;L T H , and so  nu  and  ( )n tu  are compact in ( )2 0, ;L T H . 

Indeed, by multiplying the equation in (6) by nu , and then integrating on  0,t  , we get after some 

calculation: 
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and therefore 
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where c  is a positive constant and independent of n .  Next, we multiply (6) by ( )n tu  and then integrate it on 

 0,t   to get the following estimate: 
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Finally, multiplying by nu  and ( )n tu  and using (8) and (9), we get: 
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as claimed. 

4. NUMERICAL APPROXIMATION ALGORITHM 

The proposed differential model is solved numerically by applying an effective numerical 

approximation scheme that is developed using the finite difference method [14]. A grid of space size h  and 

time step t  is used for this purpose. 

Thus, the space coordinates are quantized as    ,  ,  1,..., ,  1,...,x ih y jh i I j J= =    and the time 

coordinate is quantized as  ,  1,...,t n t n N=   , where the support image is  Ih Jh . The partial differential 

equation in (1) is approximated by using the finite differences [14]. It can be written as follows: 
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The left term of the equation (11) is then discretized, by applying the central differences [14], as 

following: 
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that leads to 
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if one considers 1t = . 

The right term of (11) is then approximated numerically. First, one computes ( ), ,
n
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Therefore, from (3) we get: 
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where the conductance parameter is computed by using the next algorithm: 
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where ( 0,1  and  returns the average of the argument. Thus, one obtains the following discretization for 

the right term in (7): 
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Therefore, by choosing 1h t=  = , we obtain the following iterative explicit numerical approximation 

algorithm: 
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The finite difference-based numerical approximation scheme given by (19) and corresponding to the 

proposed nonlinear hyperbolic fourth-order PDE-based model (2) converges fast to its variational solution 

representing the restored image, 
1Nu +

, because the number of the iterations required by an optimal quantum 

denoising process, N, is quite low. This iterative approximation algorithm has been successfully tested on 

numerous photon-limited images, the restoration experiments being disscused in the following section. 

5. NUMERICAL SIMULATIONS 

A lot of numerical experiments have been performed on hundreds of photon-limited images, applying 

the described filtering algorithm on them. Well-known image collections, such as the volumes of the USC-

SIPI database, have been used for our restoration tests. 

The proposed nonlinear hyperbolic PDE-based shot denoising approach removes properly this type of 

noise and overcomes also unintended effects like blurring or staircasing, preserving well the edges, corners 

and other features. It has a quite low execution time, given its fast-converging numerical approximation 

algorithm described in the previous section, which reach the optimal restoration after few iterations. 

However, the number of the required processing steps and, as a result, the running time depend on the size of 

the photon-limited image and the amount of the Poisson noise that affects it. 

Method comparison have been also performed. The quantum denoising framework proposed here 

outperforms both the conventional filtering algorithms, such as the 2D median filter, and the PDE-based 

smoothing approaches, such as the total variation (TV) based models adapted for the shot noise, producing 

better restoration results and also running much faster. 
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The performance of the developed technique has been assessed using various similarity measures, such 

as PSNR (Peak Signal to Noise Ratio), SNR (Signal to Noise Ratio) and MSE (Mean-Squared Error) [16]. 

We have found that the proposed Poisson denoising approach provides better values for these performance 

metrics. As one can see in the Table 1, the described hyperbolic fourth-order PDE-based Poisson denoising 

approach achieves higher average PSNR values (in decibels) than other shot filtering techniques. 

 

Table 1 

Average PSNRs for several quantum denoising models 

Restoration method Average PSNR value 

The proposed hyperbolic PDE model 34.3541 (dB) 

Median filter 27.9572 (dB) 

TV model for Poisson noise  31.4754 (dB) 

Bilateral 2D filter 29.8968 (dB) 

NLM filter 28.4369 (dB) 

 

A method comparison example is displayed in Fig. 1. Thus, the original [384 × 512] Peppers image 

displayed in Fig. 1a is corrupted by adding a high amount of Poisson noise, its photon-limited version being 

represented in Fig. 1b. The denoising results produced by several well-known shot filtering techniques are 

displayed in the next images. 

The restoration result obtained by our hyperbolic PDE-based algorithm after N = 25 iterations is 

depicted in Fig. 1c. It is closer to original than the results achieved by the 2D Median, NLM and Bilateral 2D 

filters and by the variational TV-based model for Poisson noise (after 40 processing steps), which are 

described in Fig. 1d to Fig. 1g, and it is also produced in a lower running time, comparing to the other image 

restoration results. 

6. CONCLUSIONS 

A novel photon-limited image restoration framework has been described in this article. The considered 

partial differential equation-based technique provides an effective shot denoising and overcomes the 

undesired effects, preserving the edges and other features. 

The nonlinear hyperbolic fourth-order PDE-based denoising model proposed here and its mathematical 

investigation represent the main contributions of this research. Unlike other PDE-based Poisson noise 

filtering approaches that represent variational schemes and are based on second-order equations, our 

restoration model has a non-variational character and a higher order. Its well-posedness is rigorously treated 

here, the existence and unicity of a variational solution of this nonlinear hyperbolic PDE model being 

demonstrated. 

Another contribution of this work is the iterative finite difference-based numerical approximation 

algorithm constructed for this model. The proposed numerical discretization scheme of the PDE model 

converges quite fast to its weak solution. 

The iterative discretization scheme has been successfully applied in the Poisson denoising tests 

performed by us, which illustrate the effectiveness of the described method. Our photon-limited image 

restoration approach outperforms numerous existing shot noise filtering models, providing much better 

denoising results, and also executing faster than those conventional and PDE-based quantum noise removal 

algorithms. 
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Fig. 1 – A photon-limited image denoised by several filtering models. 
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