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Abstract. Let Ω be a smooth bounded domain of RN ,2∗ = 2N
N−2 ;N > 3; the critical exponent for the Sobolev embedding

and p be a positive discontinuous function. We study the minimizing problem

inf
{∫

Ω

p(x)|∇u|2dx, u ∈ H1
0 (Ω), ‖u‖L2∗ (Ω) = 1

}
.

We prove the existence of a minimizer under a geometrical condition on the domain.
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1. INTRODUCTION

Let Ω be a smooth bounded domain of RN , N > 3 and 2∗ = 2N
N−2 the critical exponent for the Sobolev embedding.

Define Ω1 and Ω2 two disjoint domains such that Ω=Ω1∪Ω2 and the set V (Ω)=

{
u ∈ H1

0 (Ω),
∫

Ω

|u|2∗dx = 1
}

.

Denote by Γ = ∂Ω1∩∂Ω2, which is not empty, and define the barycenter function

β : V (Ω) −→ RN

u 7−→
∫

Ω

x |u|2∗dx.
(1)

We consider the minimizing problem

S(p) = inf
u∈V (Ω), β (u)∈Γ

∫
Ω

p(x)|∇u|2dx, (2)

where p is a discontinuous function defined as follows:

p(x) =

{
p1(x), if x ∈Ω1,

p2(x), if x ∈Ω2∩Ω,
(3)

and pi, i = 1,2 are some positive functions which satisfy the following assumptions.

1. The functions pi are smooth on Ω̄i for i = 1,2.

2. For i = 1,2, αi := min
x∈Ωi

pi(x) are strictly positive constants such that α1 < α2.
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The study of this problem has many interesting properties [8, 16] and arising in a geometric problem,
namely, Yamabe problem and the prescribe scalar curvature problem [1]. The invariance of the problem under
dilation causes a lack of compactness. Besides to the failure of Palais-Smale condition has been the subject
of several study of this type of problem. In fact, Bahri et al. in [5] gave positive answer to the Euler equation
associated to this problem, when some homology group of the domain with coefficients in Z/2Z is non trivial.
In [7], Brezis el al. studied the following problem

−div(p(x)∇u) = u2∗−1 +λu in Ω,

u > 0 in Ω

u = 0 on ∂Ω,

(4)

where Ω a smooth bounded domain of RN . Let λ1 be the first eigenvalue of −∆ on Ω with zero boundary
condition and λ ∗ denote a positive constant. The authors proved, in the case when p is constant, the existence
of a solution of (4); if n > 4, for λ ∈]0,λ1[ and for λ ∈]λ ∗,λ1[, if n = 3. Further on, Hadiji et al. in [11]
extended the previous result to the general case when p is a smooth positive function i.e. p ∈ H1(Ω)∪C(Ω).
The authors proved that the existence of the solution depends on the parameter λ , on the behavior of p near its
minima, and on the geometry of the domain Ω.

In [12] Hadiji et al. studied the existence and the multiplicity of the solution to the problem (4), first, when
the set of minimizers for the weight p has a multiple connected component then, when the case when this set
has one connected component and has a complex topology.

Recently, in [4] Baraket et al. gave positive answer to the problem (2), in the case when the functions
pi, i∈ {1,2}, are positive constants. The authors proved the existence of a minimizers under some assumptions.
Our result extends the previous one in the case when pi, i ∈ {1,2}, are positive functions.

Remark that without the condition β (u) ∈ Γ we have S(p) = α1S, as one can verify concentrating an
extremal function for the best Sobolev constant S near a point in the interior of the region Ω1. In this case the
infimum S(p) is not attained.

2. STATEMENTS AND PROOFS OF RESULTS

We need to recall some results of Baraket et al. in [4], let

Sα1,α2 = inf
{

α1

∫
RN
+

|∇u|2dx+α2

∫
RN
−

|∇u|2dx, u ∈ H1(RN), u 6= 0 in RN
±,‖u‖L2∗ (RN) = 1

}
,

where RN
+ =

{
(x′,xN) ∈ RN−1× [0, ∞[

}
and RN

− =
{
(x′,xN) ∈ RN−1×]−∞, 0]

}
. Set

S+ = inf
{∫

RN
+

|∇u|2dx, u ∈ H1(RN
+), u 6= 0 in RN

+, ‖u‖L2∗ (RN
+)

= 1
}

and

S− = inf
{∫

RN
−

|∇u|2dx, u ∈ H1(RN
−), u 6= 0 in RN

−, ‖u‖L2∗ (RN
−)

= 1
}
.

It is easy to verify that (see for example [9]) S+ = S− =
S

2
2
N

, where S is the best constant of the Sobolev

embedding defined by S = inf
u∈H1(RN)\{0}

∫
RN
|∇u|2dx(∫

RN
|u|2∗dx

) 2
2∗

. We need also to recall the following result from [4]
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THEOREM 1. The following equality holds

Sα1,α2 =

α
N
2

1 +α
N
2

2
2

 2
N

S.

We state now our main result

THEOREM 2. Let Ω, Ω1, Ω2, p be as defined in the Introduction and let x0 ∈ Γ. Assume that the following
geometrical condition (g.c.) on Γ holds: in a neighborhood of x0 , Ω2 lies on one side of the tangent plane at
x0 and the mean curvature with respect to the unit inner normal of Ω2 at x0 is positive.

Then S(p) is attained by some u ∈ H1
0 (Ω).

The following proposition presents a strict lower bound for the minimizing problem

PROPOSITION 3. The following inequality holds

α1 S < S(p).

Proof. We have S(p) > min
x∈Ω

p(x)S, so S(p) > α1 S. Arguing by contradiction, suppose that S(p) = α1 S.

Assume that the equality holds and consider a minimizing sequence (un)n∈N, then for every n ∈ N, un ∈V (Ω),

β (un) ∈ Γ and lim
n→+∞

∫
Ω

p(x)|∇un|2dx = α1 S.

Since
∫

Ω

p(x)|∇un|2dx > α1 S then lim
n→+∞

∫
Ω

|∇un|2dx = S. Therefore, there exists x0 ∈ Ω̄ such that, for a

subsequence, |∇un|2→ Sδx0 and |un|2
∗ → δx0 , where δx0 is the Dirac mass in x0, see [14].

Since β (un)∈Γ for every n∈N, it follows that x0 ∈Γ and p(x0)=α0 >α1. Therefore lim
n→+∞

∫
Ω

p(x)|∇un|2dx=

p(x0)S > α1 S, which gives a contradiction.

If Γ is flat, that is, the mean curvature at any point of Γ is zero, then we have the following non-existence
result

PROPOSITION 4. Let Ω = B(0,R) and consider Γ = {x ∈ Ω/xN = 0} which divides Ω into two subdo-
mains Ω1 and Ω2. Then S(p) is not attained.

Proof. Indeed, if (2) is attained by u then |u| is a minimization solution of (2) . Let us suppose that S(p) is
attained by some positive function u > 0. Then there exists a Lagrange multiplier λ ∈ R such that u satisfies

−div(p1(x)∇u) = λ u2∗−1 in Ω1,

−div(p2(x)∇u) = λ u2∗−1 in Ω2,

p1(x)
∂u
∂ν1

+ p2(x)
∂u
∂ν2

= 0 on Γ,

u 6= 0 on Γ

u = 0 on ∂Ω.

(5)

Let us suppose that S(p) is attained by some positive function u > 0, On one hand, if we multiply (5) by ∇u · x
and we integrate on Ωi we obtain∫

Ωi

−div(pi(x)∇u)∇u · x dx = −n−2
2

∫
Ωi

pi(x)|∇u|2dx− 1
2

∫
Ωi

∇pi(x) · x|∇u|2dx

− 1
2

∫
∂Ωi

pi(x) (x ·νi)
∣∣ ∂u
∂νi

∣∣2dsx,
(6)
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where i ∈ {1,2} and νi denote the outward normal to ∂Ωi. On the other hand, if we multiply

−div(pi(x)∇u) = u2∗−1

by n−2
2 u and we integrate over Ωi, we obtain,

n−2
2

∫
Ωi

pi(x)|∇u|2dx =
n−2

2

∫
Ωi

|u(x)|2∗dx. (7)

Combining (6) and (7) we obtain

n−2
2

∫
Ωi

pi(x)|∇u|2dx− 1
2

∫
Ωi

∇pi(x) · x|∇u|2dx − 1
2

∫
∂Ωi

pi(x)(x ·νi)
∣∣ ∂u
∂νi

∣∣2dsx

=
n−2

2

∫
Ωi

|u(x)|2∗dx.

(8)

So,
∫

Ωi

∇pi(x) · x|∇u|2dx+
∫

∂Ωi

pi(x)(x ·νi)
∣∣ ∂u
∂νi

∣∣2dsx = 0. On the other hand, we have
∫

Ω

∇p(x) · x|∇u|2dx+∫
∂Ω

p(x)(x ·ν)
∣∣ ∂u
∂ν

∣∣2dsx = 0, where ν denote the outward normal to ∂Ω, and
∫

Ω

∇p(x) ·x|∇u|2dx=
∫

Ω1

∇p1(x) ·

x|∇u|2dx+
∫

Ω2

∇p2(x) · x
∣∣∇u
∣∣2dx. Then, by combining the above equations we obtain the Pohozaev identity

∫
Γ

[
p1(x)(x ·ν)

∣∣ ∂u
∂ν

∣∣2 + p2(x)(x ·ν)
∣∣ ∂u
∂ν

∣∣2]dsx = 0.

Since B(0,R) is star-shaped about 0 then x ·ν > 0 on ∂Ω, which gives a contradiction. Therefore S(p) is not
attained.

The proof of Theorem 2 follows from the following two Lemmas.

LEMMA 5. Under the hypothesis of Theorem 2, we have: if α1S < S(p)< Sα1,α2 then the infimum in (2)
is attained.

Proof. We follow the arguments of Baraket et al. from [4]. Let (un) ⊂ H1
0 (Ω) be a minimizing sequence

for (2), that is, ∫
Ω

p(x)|∇un|2dx = S(p)+o(1), (9)

‖un‖L2∗ = 1, (10)

and β (un) ∈ Γ. Easily we see that (un) is bounded in H1
0 (Ω), we may extract a subsequence still denoted by

un, such that un ⇀ u weakly inH1
0 (Ω), un → u strongly in L2(Ω), un → u a.e. on Ω, with ‖u‖L2∗ 6 1. Set

vn = un−u, so that vn ⇀ 0 weakly in H1
0 (Ω), vn→ 0 strongly in L2(Ω), vn→ 0 a.e. on Ω. Using (9) we write∫

Ω

p(x)|∇u(x)|2dx+
∫

Ω

p(x)|∇vn(x)|2dx = S(p)+o(1), (11)

since vn ⇀ 0 weakly in H1
0 (Ω). On the other hand, it follows from a result of Brezis-Lieb ( [6], relation (1))

that ‖u+ vn‖2∗
L2∗ = ‖u‖2∗

L2∗ +‖vn‖2∗
L2∗ +o(1), (which holds since vn is bounded in L2∗ and vn→ 0 a.e.). Thus, by

(10), we have
1 = ‖u‖2∗

L2∗ +‖vn‖2∗
L2∗ +o(1) (12)

and therefore
1 6 ‖u‖2

L2∗ +‖vn‖2
L2∗ +o(1). (13)



5 The effect of a discontinuous weight for a critical Sobolev problem 307

Let x0 = (x′,x0N), denote by RN
+,x0

=
{

x = (x′,xN) ∈ RN / x′ ∈ RN−1, xN > x0N
}

and RN
−,x0

=
{

x = (x′,xN) ∈
RN / x′ ∈ RN−1, xN < x0N

}
and using the definition of Sα1,α2 , extending v j by 0 in RN (still denoted by v j) we

obtain

‖vn‖2
L2∗ 6

1
Sα1,α2

[
α1

∫
RN
+,x0

|∇vn(x)|2dx+α2

∫
RN
−,x0

|∇vn(x)|2dx

]

6
1

Sα1,α2

[∫
Ω∩RN

+,x0

α1|∇vn(x)|2dx+
∫

Ω∩RN
−,x0

α2|∇vn(x)|2dx

]

6
1

Sα1,α2

[∫
Ω∩RN

+,x0

p1(x)|∇vn(x)|2dx+
∫

Ω∩RN
−,x0

p2(x)|∇vn(x)|2dx

]

6
1

Sα1,α2

∫
Ω

p(x)|∇vn(x)|2dx. (14)

We claim that u 6≡ 0. Indeed, suppose that u ≡ 0. From (11) we obtain
∫

Ω

p(x)|∇vn|2dx = S(p)+ o(1), then

lim
n→+∞

∫
Ω

p(x)|∇vn|2dx = S(p). From (12) we see that lim
n→+∞

‖vn‖L2∗ = 1. Or (14) gives that

‖vn‖2
L2∗Sα1,α2 6

∫
Ω

p(x)|∇vn|2dx.

Passing to the limit in the previous inequality we obtain Sα1,α2 6 S(p). This contradicts the hypothesis
S(p)< Sα1,α2 . Consequently, u 6≡ 0. Now, we deduce from (13) and (14) that

S(p)6 S(p)‖u‖2
L2∗ +

S(p)
Sα1,α2

∫
Ω

p(x)|∇vn(x)|2dx+o(1). (15)

Combining (11) and (15) we obtain∫
Ω

p(x)|∇u(x)|2dx+
∫

Ω

p(x)|∇vn(x)|2dx 6 S(p)‖u‖2
L2∗ +

S(p)
Sα1,α2

∫
Ω

p(x)|∇vn(x)|2dx+o(1).

Thus
∫

Ω

p(x)|∇u(x)|2dx 6 S(p)‖u‖2
L2∗ +

[
S(p)

Sα1,α2

−1
]∫

Ω

p(x)|∇vn(x)|2dx+o(1). Since S(p) < Sα1,α2 , we

deduce ∫
Ω

p(x)|∇u(x)|2dx 6 S(p)‖u‖2
L2∗ , (16)

Therefore
∫

Ω

p(x)|∇u(x)|2dx= S(p)‖u‖2
L2∗ . It follows that un→ u strongly in L2∗(Ω) and β (u)∈ Γ. This means

that u is a minimum of S(p).

LEMMA 6. Assume that there exists x0 in the interior of Γ such that the condition (g.c.) holds. Then

S(p)< Sα1,α2 .

Proof. Let {λi(x0)}16i6N−1, denote the principal curvatures and H(x0) =
1

N−1

N−1

∑
i=1

λi(x0) the mean curva-

ture at x0 with respect to the unit normal. For simplicity, we suppose that x0 = 0. Therefore we note {λi}16i6N−1
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the principal curvatures at 0 and H(0) =
1

N−1

N−1

∑
i=1

λi. Let R > 0, such that

B(R)∩Ω1 =
{
(x′, xN) ∈ B(R); xN > ρ(x′)

}
,

B(R)∩Ω2 =
{
(x′, xN) ∈ B(R); xN < ρ(x′)

}
,

B(R)∩Γ =
{
(x′, xN) ∈ B(R); xN = ρ(x′)

}
,

where x′ = (x1,x2, ...,xN−1) and ρ(x′) is defined by ρ(x′) =
N−1

∑
i=1

λix2
i +O(|x′|3). We notice that the condition

(g.c.) implies that ρ(x′)> 0. Let us define, for ε > 0 and for t ∈]0, 1[ the function

uxk,ε,t(x) =


ϕ(x)

(ε+|x′−(xk)′|2+t−
N−2

2 (xN−xk
N)

2
)

N−2
2

if xN > 0

ϕ(x)

(ε+|x′−(xk)′|2+(1−t)−
N−2

2 (xN−xk
N)

2
)

N−2
2

if xN < 0,

where ϕ is a radial C∞-function such that

ϕ(x) =

{
1 if |x− xk|6 R

4

0 if |x− xk|> R
2 ,

k ∈ {1,2} and pk(xk) = min
Ωk

pk = αk. There exists t0 =
(α1

α2
)

N
2

1+(α1
α2
)

N
2

such that

sup
t∈[0,1]

(α1 t
2

2∗ +α2 (1− t)
2

2∗ )S

2
2
N

=
(α1 t

2
2∗
0 +α2 (1− t0)

2
2∗ )S

2
2
N

=

α
N
2

1 +α
N
2

2
2

 2
N

S.

We note Q(u) = Q1(u)+Q2(u) where Qi(u) =

∫
Ωi

pi(x)|∇u|2dx(∫
Ω

|u|2∗dx
) 2

2∗
.

In order to obtain the result of Lemma 6, we use uxk,ε =: (uxk,ε,t0) as a test function for S(p).
From [2, 4], direct computation gives

Q1(ux1,ε) =


p1(x1)t

2
2∗

0 S

2
2
N

+ p1(x1)SH(0)A(N)ε
1
2 | ln(ε)|+O(ε

1
2 ) if N = 3

p1(x1)t
2

2∗
0 S

2
2
N

+ p1(x1)SH(0)A(N)ε
1
2 +O(ε| ln(ε)|) if N > 4

(17)

and

Q2(ux2,ε) =


p2(x2)(1−t0)

2
2∗ S

2
2
N

− p2(x2)SH(0)A(N)ε
1
2 | ln(ε)|+O(ε

1
2 ) if N = 3

p2(x2)(1−t0)
2

2∗ S

2
2
N

− p2(x2)SH(0)A(N)ε
1
2 +O(ε| ln(ε)|) if N > 4

(18)

where A(N) is a positive constant.
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We denote u0,ε(x) = u0,ε,t0(x). Combining (17) and (18) we see that,

Q(u0,ε) =


(α1 t

2
2∗

0 +α2 (1−t0)
2

2∗ )S

2
2
N

− (α2−α1)H(0)SA(N)ε
1
2 | ln(ε)|+O(ε

1
2 ) if N = 3

(α1 t
2

2∗
0 +α2 (1−t0)

2
2∗ )S

2
2
N

− (α2−α1)H(0)SA(N)ε
1
2 +O(ε| ln(ε)|) if N > 4.

Therefore, using the definition of t0, we obtain

Q(u0,ε)6



(
α

N
2

1 +α

N
2

2
2

) 2
N

S− (α2−α1)H(0)SA(N)ε
1
2 | ln(ε)|+O(ε

1
2 ) if N = 3

(
α

N
2

1 +α

N
2

2
2

) 2
N

S− (α2−α1)H(0)SA(N)ε
1
2 +O(ε| ln(ε)|) if N > 4.

Finally, since α1 < α2 then we obtain the desired result.
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