THE EFFECT OF A DISCONTINUOUS WEIGHT FOR A CRITICAL SOBOLEV PROBLEM

Imen BAZARBACHA

University of Tunis El Manar, Faculty of Sciences of Tunis, Campus Universitaire 2092 Tunis El Manar, Tunisia imen.bazarbacha@gmail.com

Abstract. Let Ω be a smooth bounded domain of $\mathbb{R}^{N}, 2^{*}=\frac{2 N}{N-2} ; N \geqslant 3$; the critical exponent for the Sobolev embedding
and p be a positive discontinuous function. We study the minimizing problem

$$
\inf \left\{\int_{\Omega} p(x)|\nabla u|^{2} \mathrm{~d} x, u \in H_{0}^{1}(\Omega),\|u\|_{L^{2^{*}}(\Omega)}=1\right\} .
$$

We prove the existence of a minimizer under a geometrical condition on the domain.

Key words: critical Sobolev exponent, lack of compactness, best Sobolev constant, Pohozaev identity.

1. INTRODUCTION

Let Ω be a smooth bounded domain of $\mathbb{R}^{N}, N \geqslant 3$ and $2^{*}=\frac{2 N}{N-2}$ the critical exponent for the Sobolev embedding. Define Ω_{1} and Ω_{2} two disjoint domains such that $\Omega=\Omega_{1} \cup \Omega_{2}$ and the set $V(\Omega)=\left\{u \in H_{0}^{1}(\Omega), \int_{\Omega}|u|^{2^{*}} \mathrm{~d} x=1\right\}$. Denote by $\Gamma=\partial \Omega_{1} \cap \partial \Omega_{2}$, which is not empty, and define the barycenter function

$$
\begin{align*}
\beta: V(\Omega) & \longrightarrow \mathbb{R}^{N} \\
u & \longmapsto \int_{\Omega} x|u|^{2^{*}} \mathrm{~d} x . \tag{1}
\end{align*}
$$

We consider the minimizing problem

$$
\begin{equation*}
S(p)=\inf _{u \in V(\Omega), \beta(u) \in \Gamma} \int_{\Omega} p(x)|\nabla u|^{2} \mathrm{~d} x \tag{2}
\end{equation*}
$$

where p is a discontinuous function defined as follows:

$$
p(x)= \begin{cases}p_{1}(x), & \text { if } x \in \Omega_{1} \tag{3}\\ p_{2}(x), & \text { if } x \in \bar{\Omega}_{2} \cap \Omega\end{cases}
$$

and $p_{i}, i=1,2$ are some positive functions which satisfy the following assumptions.

1. The functions p_{i} are smooth on $\bar{\Omega}_{i}$ for $i=1,2$.
2. For $i=1,2, \alpha_{i}:=\min _{x \in \Omega_{i}} p_{i}(x)$ are strictly positive constants such that $\alpha_{1}<\alpha_{2}$.

The study of this problem has many interesting properties [8, 16] and arising in a geometric problem, namely, Yamabe problem and the prescribe scalar curvature problem [1]. The invariance of the problem under dilation causes a lack of compactness. Besides to the failure of Palais-Smale condition has been the subject of several study of this type of problem. In fact, Bahri et al. in [5] gave positive answer to the Euler equation associated to this problem, when some homology group of the domain with coefficients in $\mathbb{Z} / 2 \mathbb{Z}$ is non trivial. In [7], Brezis el al. studied the following problem

$$
\left\{\begin{align*}
-\operatorname{div}(p(x) \nabla u) & =u^{2^{*}-1}+\lambda u & & \text { in } \Omega, \tag{4}\\
u & >0 & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega,
\end{align*}\right.
$$

where Ω a smooth bounded domain of \mathbb{R}^{N}. Let λ_{1} be the first eigenvalue of $-\Delta$ on Ω with zero boundary condition and λ^{*} denote a positive constant. The authors proved, in the case when p is constant, the existence of a solution of (4); if $n \geqslant 4$, for $\lambda \in] 0, \lambda_{1}[$ and for $\lambda \in] \lambda^{*}, \lambda_{1}$ [, if $n=3$. Further on, Hadiji et al. in [11] extended the previous result to the general case when p is a smooth positive function i.e. $p \in H^{1}(\Omega) \cup C(\bar{\Omega})$. The authors proved that the existence of the solution depends on the parameter λ, on the behavior of p near its minima, and on the geometry of the domain Ω.

In [12] Hadiji et al. studied the existence and the multiplicity of the solution to the problem (4), first, when the set of minimizers for the weight p has a multiple connected component then, when the case when this set has one connected component and has a complex topology.

Recently, in [4] Baraket et al. gave positive answer to the problem (2), in the case when the functions $p_{i}, i \in\{1,2\}$, are positive constants. The authors proved the existence of a minimizers under some assumptions. Our result extends the previous one in the case when $p_{i}, i \in\{1,2\}$, are positive functions.

Remark that without the condition $\beta(u) \in \Gamma$ we have $S(p)=\alpha_{1} S$, as one can verify concentrating an extremal function for the best Sobolev constant S near a point in the interior of the region Ω_{1}. In this case the infimum $S(p)$ is not attained.

2. STATEMENTS AND PROOFS OF RESULTS

We need to recall some results of Baraket et al. in [4], let

$$
S_{\alpha_{1}, \alpha_{2}}=\inf \left\{\alpha_{1} \int_{\mathbb{R}_{+}^{N}}|\nabla u|^{2} \mathrm{~d} x+\alpha_{2} \int_{\mathbb{R}_{-}^{N}}|\nabla u|^{2} \mathrm{~d} x, u \in H^{1}\left(\mathbb{R}^{N}\right), u \neq 0 \text { in } \mathbb{R}_{ \pm}^{N},\|u\|_{L^{*}\left(\mathbb{R}^{N}\right)}=1\right\}
$$

where $\mathbb{R}_{+}^{N}=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N-1} \times\left[0, \infty[\}\right.\right.$ and $\left.\left.\mathbb{R}_{-}^{N}=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N-1} \times\right]-\infty, 0\right]\right\}$. Set

$$
S^{+}=\inf \left\{\int_{\mathbb{R}_{+}^{N}}|\nabla u|^{2} \mathrm{~d} x, \quad u \in H^{1}\left(\mathbb{R}_{+}^{N}\right), u \neq 0 \text { in } \mathbb{R}_{+}^{N},\|u\|_{L^{*}\left(\mathbb{R}_{+}^{N}\right)}=1\right\}
$$

and

$$
S^{-}=\inf \left\{\int_{\mathbb{R}_{-}^{N}}|\nabla u|^{2} \mathrm{~d} x, \quad u \in H^{1}\left(\mathbb{R}_{-}^{N}\right), u \neq 0 \text { in } \mathbb{R}_{-}^{N},\|u\|_{L^{*}\left(\mathbb{R}_{-}^{N}\right)}=1\right\} .
$$

It is easy to verify that (see for example $[9]) S^{+}=S^{-}=\frac{S}{2^{\frac{2}{N}}}$, where S is the best constant of the Sobolev embedding defined by $S=\inf _{u \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}} \frac{\int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x}{\left(\int_{\mathbb{R}^{N}}|u|^{2^{*}} \mathrm{~d} x\right)^{\frac{2}{2^{*}}}}$. We need also to recall the following result from $|4|$

THEOREM 1. The following equality holds

$$
S_{\alpha_{1}, \alpha_{2}}=\left(\frac{\alpha_{1}^{\frac{N}{2}}+\alpha_{2}^{\frac{N}{2}}}{2}\right)^{\frac{2}{N}} S
$$

We state now our main result
THEOREM 2. Let $\Omega, \Omega_{1}, \Omega_{2}$, p be as defined in the Introduction and let $x_{0} \in \Gamma$. Assume that the following geometrical condition (g.c.) on Γ holds: in a neighborhood of x_{0}, Ω_{2} lies on one side of the tangent plane at x_{0} and the mean curvature with respect to the unit inner normal of Ω_{2} at x_{0} is positive.
Then $S(p)$ is attained by some $u \in H_{0}^{1}(\Omega)$.
The following proposition presents a strict lower bound for the minimizing problem
PROPOSITION 3. The following inequality holds

$$
\alpha_{1} S<S(p)
$$

Proof. We have $S(p) \geqslant \min _{x \in \Omega} p(x) S$, so $S(p) \geqslant \alpha_{1} S$. Arguing by contradiction, suppose that $S(p)=\alpha_{1} S$. Assume that the equality holds and consider a minimizing sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$, then for every $n \in \mathbb{N}, u_{n} \in V(\Omega)$, $\beta\left(u_{n}\right) \in \Gamma$ and $\lim _{n \rightarrow+\infty} \int_{\Omega} p(x)\left|\nabla u_{n}\right|^{2} \mathrm{~d} x=\alpha_{1} S$.

Since $\int_{\Omega} p(x)\left|\nabla u_{n}\right|^{2} \mathrm{~d} x \geqslant \alpha_{1} S$ then $\lim _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x=S$. Therefore, there exists $x_{0} \in \bar{\Omega}$ such that, for a subsequence, $\left|\nabla u_{n}\right|^{2} \rightarrow S \delta_{x_{0}}$ and $\left|u_{n}\right|^{2^{*}} \rightarrow \delta_{x_{0}}$, where $\delta_{x_{0}}$ is the Dirac mass in x_{0}, see [14].

Since $\beta\left(u_{n}\right) \in \Gamma$ for every $n \in \mathbb{N}$, it follows that $x_{0} \in \Gamma$ and $p\left(x_{0}\right)=\alpha_{0}>\alpha_{1}$. Therefore $\lim _{n \rightarrow+\infty} \int_{\Omega} p(x)\left|\nabla u_{n}\right|^{2} \mathrm{~d} x=$ $p\left(x_{0}\right) S>\alpha_{1} S$, which gives a contradiction.

If Γ is flat, that is, the mean curvature at any point of Γ is zero, then we have the following non-existence result

PROPOSITION 4. Let $\Omega=B(0, R)$ and consider $\Gamma=\left\{x \in \Omega / x_{N}=0\right\}$ which divides Ω into two subdomains Ω_{1} and Ω_{2}. Then $S(p)$ is not attained.

Proof. Indeed, if (2) is attained by u then $|u|$ is a minimization solution of (2). Let us suppose that $S(p)$ is attained by some positive function $u \geqslant 0$. Then there exists a Lagrange multiplier $\lambda \in \mathbb{R}$ such that u satisfies

$$
\begin{cases}-\operatorname{div}\left(p_{1}(x) \nabla u\right)=\lambda u^{2^{*}-1} & \text { in } \Omega_{1}, \tag{5}\\ -\operatorname{div}\left(p_{2}(x) \nabla u\right)=\lambda u^{2^{*}-1} & \text { in } \Omega_{2}, \\ p_{1}(x) \frac{\partial u}{\partial v_{1}}+p_{2}(x) \frac{\partial u}{\partial v_{2}}=0 & \text { on } \Gamma, \\ u \neq 0 & \text { on } \Gamma \\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

Let us suppose that $S(p)$ is attained by some positive function $u \geqslant 0$, On one hand, if we multiply (5) by $\nabla u \cdot x$ and we integrate on Ω_{i} we obtain

$$
\begin{align*}
\int_{\Omega_{i}}-\operatorname{div}\left(p_{i}(x) \nabla u\right) \nabla u \cdot x \mathrm{~d} x & =-\frac{n-2}{2} \int_{\Omega_{i}} p_{i}(x)|\nabla u|^{2} \mathrm{~d} x-\frac{1}{2} \int_{\Omega_{i}} \nabla p_{i}(x) \cdot x|\nabla u|^{2} \mathrm{~d} x \\
& -\frac{1}{2} \int_{\partial \Omega_{i}} p_{i}(x)\left(x \cdot v_{i}\right)\left|\frac{\partial u}{\partial v_{i}}\right|^{2} \mathrm{~d} s_{x} \tag{6}
\end{align*}
$$

where $i \in\{1,2\}$ and v_{i} denote the outward normal to $\partial \Omega_{i}$. On the other hand, if we multiply

$$
-\operatorname{div}\left(p_{i}(x) \nabla u\right)=u^{2^{*}-1}
$$

by $\frac{n-2}{2} u$ and we integrate over Ω_{i}, we obtain,

$$
\begin{equation*}
\frac{n-2}{2} \int_{\Omega_{i}} p_{i}(x)|\nabla u|^{2} \mathrm{~d} x=\frac{n-2}{2} \int_{\Omega_{i}}|u(x)|^{2^{*}} \mathrm{~d} x \tag{7}
\end{equation*}
$$

Combining (6) and (7) we obtain

$$
\begin{align*}
\frac{n-2}{2} \int_{\Omega_{i}} p_{i}(x)|\nabla u|^{2} \mathrm{~d} x-\frac{1}{2} \int_{\Omega_{i}} \nabla p_{i}(x) \cdot x|\nabla u|^{2} \mathrm{~d} x & -\frac{1}{2} \int_{\partial \Omega_{i}} p_{i}(x)\left(x \cdot v_{i}\right)\left|\frac{\partial u}{\partial v_{i}}\right|^{2} \mathrm{~d} s_{x} \tag{8}\\
& =\frac{n-2}{2} \int_{\Omega_{i}}|u(x)|^{2^{*}} \mathrm{~d} x .
\end{align*}
$$

So, $\int_{\Omega_{i}} \nabla p_{i}(x) \cdot x|\nabla u|^{2} \mathrm{~d} x+\int_{\partial \Omega_{i}} p_{i}(x)\left(x \cdot v_{i}\right)\left|\frac{\partial u}{\partial v_{i}}\right|^{2} \mathrm{~d} s_{x}=0$. On the other hand, we have $\int_{\Omega} \nabla p(x) \cdot x|\nabla u|^{2} \mathrm{~d} x+$ $\int_{\partial \Omega} p(x)(x \cdot v)\left|\frac{\partial u}{\partial v}\right|^{2} \mathrm{~d} s_{x}=0$, where v denote the outward normal to $\partial \Omega$, and $\int_{\Omega} \nabla p(x) \cdot x|\nabla u|^{2} \mathrm{~d} x=\int_{\Omega_{1}} \nabla p_{1}(x)$. $x|\nabla u|^{2} \mathrm{~d} x+\int_{\Omega_{2}} \nabla p_{2}(x) \cdot x|\nabla u|^{2} \mathrm{~d} x$. Then, by combining the above equations we obtain the Pohozaev identity

$$
\int_{\Gamma}\left[p_{1}(x)(x \cdot v)\left|\frac{\partial u}{\partial v}\right|^{2}+p_{2}(x)(x \cdot v)\left|\frac{\partial u}{\partial v}\right|^{2}\right] \mathrm{d} s_{x}=0
$$

Since $B(0, R)$ is star-shaped about 0 then $x \cdot v>0$ on $\partial \Omega$, which gives a contradiction. Therefore $S(p)$ is not attained.

The proof of Theorem 2 follows from the following two Lemmas.
LEMMA 5. Under the hypothesis of Theorem 2, we have: if $\alpha_{1} S<S(p)<S_{\alpha_{1}, \alpha_{2}}$ then the infimum in (2) is attained.

Proof. We follow the arguments of Baraket et al. from [4]. Let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ be a minimizing sequence for (2), that is,

$$
\begin{align*}
\int_{\Omega} p(x)\left|\nabla u_{n}\right|^{2} \mathrm{~d} x & =S(p)+o(1) \tag{9}\\
\left\|u_{n}\right\|_{L^{2^{*}}} & =1 \tag{10}
\end{align*}
$$

and $\beta\left(u_{n}\right) \in \Gamma$. Easily we see that $\left(u_{n}\right)$ is bounded in $H_{0}^{1}(\Omega)$, we may extract a subsequence still denoted by u_{n}, such that $u_{n} \rightharpoonup u$ weakly $\operatorname{in} H_{0}^{1}(\Omega), u_{n} \rightarrow u$ strongly in $L^{2}(\Omega), u_{n} \rightarrow u$ a.e. on Ω, with $\|u\|_{L^{2^{*}}} \leqslant 1$. Set $v_{n}=u_{n}-u$, so that $v_{n} \rightharpoonup 0$ weakly in $H_{0}^{1}(\Omega), v_{n} \rightarrow 0$ strongly in $L^{2}(\Omega), v_{n} \rightarrow 0$ a.e. on Ω. Using 9 we write

$$
\begin{equation*}
\int_{\Omega} p(x)|\nabla u(x)|^{2} \mathrm{~d} x+\int_{\Omega} p(x)\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x=S(p)+o(1) \tag{11}
\end{equation*}
$$

since $v_{n} \rightharpoonup 0$ weakly in $H_{0}^{1}(\Omega)$. On the other hand, it follows from a result of Brezis-Lieb ([6], relation (1)) that $\left\|u+v_{n}\right\|_{L^{2^{*}}}^{2^{*}}=\|u\|_{L^{2^{*}}}^{2^{*}}+\left\|v_{n}\right\|_{L^{2^{*}}}^{2^{*}}+o(1)$, (which holds since v_{n} is bounded in $L^{2^{*}}$ and $v_{n} \rightarrow 0$ a.e.). Thus, by (10), we have

$$
\begin{equation*}
1=\|u\|_{L^{2^{*}}}^{2^{*}}+\left\|v_{n}\right\|_{L^{2^{*}}}^{2^{*}}+o(1) \tag{12}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
1 \leqslant\|u\|_{L^{2^{*}}}^{2}+\left\|v_{n}\right\|_{L^{2^{*}}}^{2}+o(1) \tag{13}
\end{equation*}
$$

Let $x_{0}=\left(x^{\prime}, x_{0 N}\right)$, denote by $\mathbb{R}_{+, x_{0}}^{N}=\left\{x=\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N} / x^{\prime} \in \mathbb{R}^{N-1}, x_{N}>x_{0 N}\right\}$ and $\mathbb{R}_{-, x_{0}}^{N}=\left\{x=\left(x^{\prime}, x_{N}\right) \in\right.$ $\left.\mathbb{R}^{N} / x^{\prime} \in \mathbb{R}^{N-1}, x_{N}<x_{0 N}\right\}$ and using the definition of $S_{\alpha_{1}, \alpha_{2}}$, extending v_{j} by 0 in \mathbb{R}^{N} (still denoted by v_{j}) we obtain

$$
\begin{align*}
\left\|v_{n}\right\|_{L^{2^{*}}}^{2} & \leqslant \frac{1}{S_{\alpha_{1}, \alpha_{2}}}\left[\alpha_{1} \int_{\mathbb{R}_{+, x_{0}}^{N}}\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x+\alpha_{2} \int_{\mathbb{R}_{-,, x_{0}}^{N}}\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x\right] \\
& \leqslant \frac{1}{S_{\alpha_{1}, \alpha_{2}}}\left[\int_{\Omega \cap \mathbb{R}_{+, x_{0}}^{N}} \alpha_{1}\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x+\int_{\Omega \cap \mathbb{R}_{-, x_{0}}^{N}} \alpha_{2}\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x\right] \\
& \leqslant \frac{1}{S_{\alpha_{1}, \alpha_{2}}}\left[\int_{\Omega \cap \mathbb{R}_{+, x_{0}}^{N}} p_{1}(x)\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x+\int_{\Omega \cap \mathbb{R}_{-, x_{0}}^{N}} p_{2}(x)\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x\right] \\
& \leqslant \frac{1}{S_{\alpha_{1}, \alpha_{2}}} \int_{\Omega} p(x)\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x . \tag{14}
\end{align*}
$$

We claim that $u \neq 0$. Indeed, suppose that $u \equiv 0$. From 11 we obtain $\int_{\Omega} p(x)\left|\nabla v_{n}\right|^{2} \mathrm{~d} x=S(p)+o(1)$, then $\lim _{n \rightarrow+\infty} \int_{\Omega} p(x)\left|\nabla v_{n}\right|^{2} \mathrm{~d} x=S(p)$. From 12 we see that $\lim _{n \rightarrow+\infty}\left\|v_{n}\right\|_{L^{2^{*}}}=1$. Or 14 gives that

$$
\left\|v_{n}\right\|_{L^{2^{*}}}^{2} S_{\alpha_{1}, \alpha_{2}} \leqslant \int_{\Omega} p(x)\left|\nabla v_{n}\right|^{2} \mathrm{~d} x
$$

Passing to the limit in the previous inequality we obtain $S_{\alpha_{1}, \alpha_{2}} \leqslant S(p)$. This contradicts the hypothesis $S(p)<S_{\alpha_{1}, \alpha_{2}}$. Consequently, $u \neq 0$. Now, we deduce from (13) and 14) that

$$
\begin{equation*}
S(p) \leqslant S(p)\|u\|_{L^{2^{*}}}^{2}+\frac{S(p)}{S_{\alpha_{1}, \alpha_{2}}} \int_{\Omega} p(x)\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x+o(1) \tag{15}
\end{equation*}
$$

Combining (11) and (15) we obtain

$$
\int_{\Omega} p(x)|\nabla u(x)|^{2} \mathrm{~d} x+\int_{\Omega} p(x)\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x \leqslant S(p)\|u\|_{L^{2^{*}}}^{2}+\frac{S(p)}{S_{\alpha_{1}, \alpha_{2}}} \int_{\Omega} p(x)\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x+o(1)
$$

Thus $\int_{\Omega} p(x)|\nabla u(x)|^{2} \mathrm{~d} x \leqslant S(p)\|u\|_{L^{2^{*}}}^{2}+\left[\frac{S(p)}{S_{\alpha_{1}, \alpha_{2}}}-1\right] \int_{\Omega} p(x)\left|\nabla v_{n}(x)\right|^{2} \mathrm{~d} x+o(1)$. Since $S(p)<S_{\alpha_{1}, \alpha_{2}}$, we deduce

$$
\begin{equation*}
\int_{\Omega} p(x)|\nabla u(x)|^{2} \mathrm{~d} x \leqslant S(p)\|u\|_{L^{2^{*}}}^{2} \tag{16}
\end{equation*}
$$

Therefore $\int_{\Omega} p(x)|\nabla u(x)|^{2} \mathrm{~d} x=S(p)\|u\|_{L^{2^{*}}}^{2}$. It follows that $u_{n} \rightarrow u$ strongly in $L^{2^{*}}(\Omega)$ and $\beta(u) \in \Gamma$. This means that u is a minimum of $S(p)$.

LEMMA 6. Assume that there exists x_{0} in the interior of Γ such that the condition (g.c.) holds. Then

$$
S(p)<S_{\alpha_{1}, \alpha_{2}}
$$

Proof. Let $\left\{\lambda_{i}\left(x_{0}\right)\right\}_{1 \leqslant i \leqslant N-1}$, denote the principal curvatures and $H\left(x_{0}\right)=\frac{1}{N-1} \sum_{i=1}^{N-1} \lambda_{i}\left(x_{0}\right)$ the mean curvature at x_{0} with respect to the unit normal. For simplicity, we suppose that $x_{0}=0$. Therefore we note $\left\{\lambda_{i}\right\}_{1 \leqslant i \leqslant N-1}$
the principal curvatures at 0 and $H(0)=\frac{1}{N-1} \sum_{i=1}^{N-1} \lambda_{i}$. Let $R>0$, such that

$$
\begin{aligned}
B(R) \cap \Omega_{1} & =\left\{\left(x^{\prime}, x_{N}\right) \in B(R) ; x_{N}>\rho\left(x^{\prime}\right)\right\}, \\
B(R) \cap \Omega_{2} & =\left\{\left(x^{\prime}, x_{N}\right) \in B(R) ; x_{N}<\rho\left(x^{\prime}\right)\right\}, \\
B(R) \cap \Gamma & =\left\{\left(x^{\prime}, x_{N}\right) \in B(R) ; x_{N}=\rho\left(x^{\prime}\right)\right\},
\end{aligned}
$$

where $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{N-1}\right)$ and $\rho\left(x^{\prime}\right)$ is defined by $\rho\left(x^{\prime}\right)=\sum_{i=1}^{N-1} \lambda_{i} x_{i}^{2}+O\left(\left|x^{\prime}\right|^{3}\right)$. We notice that the condition (g.c.) implies that $\rho\left(x^{\prime}\right) \geqslant 0$. Let us define, for $\varepsilon>0$ and for $\left.t \in\right] 0,1$ [the function

$$
u_{x^{k}, \xi, t}(x)= \begin{cases}\frac{\varphi(x)}{\left(\varepsilon+\left|\mathbf{x}^{\prime}-\left(\mathbf{x}^{k}\right)\right|^{2}+t^{-\frac{N}{2}}\left(\mathbf{x}_{N}-\mathbf{x}_{N}^{k}\right)^{2}\right)^{\frac{N-2}{2}}} & \text { if } x_{N}>\mathbf{0} \\ \frac{\varphi(x)}{\left(\varepsilon+\left|\mathbf{x}^{\prime}-\left(\mathbf{x}^{k}\right)\right|^{2}+(1-t)^{-\frac{N-2}{2}}\left(\mathbf{x}_{N}-\mathbf{x}_{N}^{k}\right)^{2}\right)^{\frac{N-2}{2}}} & \text { if } x_{N}<\mathbf{0}\end{cases}
$$

where φ is a radial C^{∞}-function such that

$$
\varphi(x)= \begin{cases}1 & \text { if }\left|x-x^{k}\right| \leqslant \frac{R}{4} \\ 0 & \text { if }\left|x-x^{k}\right| \geqslant \frac{R}{2}\end{cases}
$$

$k \in\{1,2\}$ and $p_{k}\left(x_{k}\right)=\min _{\Omega_{k}} p_{k}=\alpha_{k}$. There exists $t_{0}=\frac{\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{\frac{N}{2}}}{1+\left(\frac{\alpha_{1}}{\alpha_{2}}\right)^{\frac{N}{2}}}$ such that

$$
\sup _{t \in[0,1]} \frac{\left(\alpha_{1} t^{\frac{2}{2^{*}}}+\alpha_{2}(1-t)^{\frac{2}{2^{*}}}\right) S}{2^{\frac{2}{N}}}=\frac{\left(\alpha_{1} t_{0}^{\frac{2}{2^{*}}}+\alpha_{2}\left(1-t_{0}\right)^{\frac{2}{2^{*}}}\right) S}{2^{\frac{2}{N}}}=\left(\frac{\alpha_{1}^{\frac{N}{2}}+\alpha_{2}^{\frac{N}{2}}}{2}\right)^{\frac{2}{N}} S
$$

We note $Q(u)=Q_{1}(u)+Q_{2}(u)$ where $Q_{i}(u)=\frac{\int_{\Omega_{i}} p_{i}(x)|\nabla u|^{2} \mathrm{~d} x}{\left(\int_{\Omega}|u|^{2^{*}} \mathrm{~d} x\right)^{\frac{2}{2^{*}}}}$.
In order to obtain the result of Lemma 6, we use $u_{x^{k}, \varepsilon}=:\left(u_{x^{k}, \varepsilon, t_{0}}\right)$ as a test function for $S(p)$. From [2,4], direct computation gives

$$
Q_{1}\left(u_{x^{1}, \varepsilon}\right)= \begin{cases}\frac{p_{1}\left(x^{1}\right) t^{\frac{2}{t^{*}}} S}{2^{2}}+p_{1}\left(x^{1}\right) S H(0) A(N) \varepsilon^{\frac{1}{2}}|\ln (\varepsilon)|+O\left(\varepsilon^{\frac{1}{2}}\right) & \text { if } N=3 \tag{17}\\ \frac{p_{1}\left(x^{1}\right) t_{0}^{\frac{2}{*}}}{} 2^{\frac{1}{N}}+p_{1}\left(x^{1}\right) S H(0) A(N) \varepsilon^{\frac{1}{2}}+O(\varepsilon|\ln (\varepsilon)|) & \text { if } N \geqslant 4\end{cases}
$$

and

$$
Q_{2}\left(u_{x^{2}, \varepsilon}\right)= \begin{cases}\frac{p_{2}\left(x^{2}\right)\left(1-t_{0}\right)^{\frac{2}{2^{2}}} S}{2^{\frac{2}{N}}}-p_{2}\left(x^{2}\right) S H(0) A(N) \varepsilon^{\frac{1}{2}}|\ln (\varepsilon)|+O\left(\varepsilon^{\frac{1}{2}}\right) & \text { if } N=3 \tag{18}\\ \frac{p_{2}\left(x^{2}\right)\left(1-t_{0}\right)^{\frac{2}{2}} S}{2^{\frac{2}{N}}}-p_{2}\left(x^{2}\right) S H(0) A(N) \varepsilon^{\frac{1}{2}}+O(\varepsilon|\ln (\varepsilon)|) & \text { if } N \geqslant 4\end{cases}
$$

where $A(N)$ is a positive constant.

We denote $u_{0, \varepsilon}(x)=u_{0, \varepsilon, t_{0}}(x)$. Combining 17 and 18 we see that,

$$
Q\left(u_{0, \varepsilon}\right)= \begin{cases}\frac{\left(\alpha_{1} t_{0}^{\frac{2}{*}}+\alpha_{2}\left(1-t_{0}\right)^{\frac{2}{2^{*}}}\right) S}{2^{\frac{2}{N}}}-\left(\alpha_{2}-\alpha_{1}\right) H(0) S A(N) \varepsilon^{\frac{1}{2}}|\ln (\varepsilon)|+O\left(\varepsilon^{\frac{1}{2}}\right) & \text { if } N=3 \\ \frac{\left(\alpha_{1} t_{0}^{\frac{2}{*^{*}}}+\alpha_{2}\left(1-t_{0}\right)^{\frac{2}{2^{*}}}\right) S}{2^{\frac{2}{N}}}-\left(\alpha_{2}-\alpha_{1}\right) H(0) S A(N) \varepsilon^{\frac{1}{2}}+O(\varepsilon|\ln (\varepsilon)|) & \text { if } N \geqslant 4\end{cases}
$$

Therefore, using the definition of t_{0}, we obtain

$$
Q\left(u_{0, \varepsilon}\right) \leqslant \begin{cases}\left(\frac{\alpha_{1}^{\frac{N}{2}}+\alpha_{2}^{\frac{N}{2}}}{2}\right)^{\frac{2}{N}} S-\left(\alpha_{2}-\alpha_{1}\right) H(0) S A(N) \varepsilon^{\frac{1}{2}}|\ln (\varepsilon)|+O\left(\varepsilon^{\frac{1}{2}}\right) & \text { if } N=3 \\ \left(\frac{\alpha_{1}^{\frac{N}{2}}+\alpha_{2}^{\frac{N}{2}}}{2}\right)^{\frac{2}{N}} S-\left(\alpha_{2}-\alpha_{1}\right) H(0) S A(N) \varepsilon^{\frac{1}{2}}+O(\varepsilon|\ln (\varepsilon)|) & \text { if } N \geqslant 4\end{cases}
$$

Finally, since $\alpha_{1}<\alpha_{2}$ then we obtain the desired result.

REFERENCES

1. T. AUBIN, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55, pp. 269-296, 1976.
2. ADIMURTHI, G. MANCINI, The Neumann problem for elliptic equation with critical non linearity, 65 th birthday of Prof. Prodi, Scuola Normale Superiore, Pisa, Ed. by Ambrosetti and Marino, 1991.
3. S.L. ADIMURTHI, S.L. YADAVA, Positive solution for Neumann problem with critical non linearity on boundary, Comm. In Partial Diff. Equations, 16, 11, pp. 1733-1760, 1991.
4. S. BARAKET, R. HADIII, H. YAZIDI The effect of a discontinuous weight for a critical Sobolev problem, App. Anal., 97, 14, pp. 2544-2553, 2018.
5. A. BAHRI, J.M. CORON, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math., 41, pp. 253-294, 1988.
6. H. BREZIS, E. LIEB, A relation between pointwise convergence of functions and convergence of functionals, Proc. A.M.S., 88, 3, pp. 486-490, 1983.
7. H. BREZIS, L. NIRENBERG, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 4, pp. 437-477, 1983.
8. J.M. CORON, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sci. Paris Sér. I Math., 299, pp. 209-212, 1984.
9. G. CERAMI, D. PASSASEO, Nonminimizing positive solutions for equations with critical exponents in the half-space, SIAM J. Math. Anal., 28, 4, pp. 867-885, 1997.
10. A.V. DEMYANOV, A.I. NAZAROV, On the existence of an extremal function in Sobolev embedding theorems with critical exponents, Algebra \& Analysis, 17, 5, pp. 105-140, 2005 (Russian); English transl.: St.Petersburg Math. J. 17, 5, pp. 108-142, 2006.
11. R. HADIJI, H. YAZIDI, Problem with critical Sobolev exponent and with weight, Chinese Annal. Math. ser. B, 28, 3, pp. 327-352, 2007.
12. R. HADIJI, R. MOLLE, D. PASSASEO, H. YAZIDI, Localization of solutions for nonlinear elliptic problems with weight, C. R. Acad. Sci. Paris, Séc. I Math., 343, pp. 725-730, 2006.
13. M.F. FURTADO, B.N. SOUZA, Positive and nodal solutions for an elliptic equation with critical growth, Commun. Contemp. Math., 18, 02, 16 p., 2016.
14. P.L. LIONS, The concentration-compactness principle in the calculus of variations, The limit case, part 1 and part 2, Rev. Mat. Iberoamericana, 1, 1, pp. 145-201, 1985 and 1, 2, pp. 45-121, 1985.
15. M. STRUWE, Global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z., 187, pp. 511-517, 1984.
16. G. TALENTI, Best constants in Sobolev inequality, Ann. Mat. Pura Appl., 110, pp. 353-372, 1976.
