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Abstract. In this paper a scaling method for similar Unmanned Aerial Vehicles (UAV) is presented. 
The ultimate purpose is to generate reduced model plane geometric and mass parameters that can be 
modified so that the full-scale UAV would have the same dynamic behavior as the model plane. This 
is achieved by using the relative density factor similitude criteria. Doing so, the result from test flights 
of the model plane can be extrapolated to the dynamic behavior of the full-scale UAV. This paper is 
using the dynamic model from Etkin [1], with additions from Nelson [2] and Pârvu [3], in order to 
obtain a dynamic behavior assessment for a model plane (low Reynolds number). The model plane 
dynamic assessment includes the step response for 1-degree elevator deflection applied to the 
reference movement – horizontal rectilinear unaccelerated flight, fixed control surfaces. 
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1. INTRODUCTION 

Different aircraft behave differently during flight. A large transport aircraft flies in a different manner 
than a fighter jet. A business jet flies in a different manner than a small unmanned aerial vehicle. Even two 
different transport aircraft fly differently. Things like the mass of the aircraft, the geometry of the wings, the 
distribution of mass in the aircraft, the type of propulsion, the shape of the control surfaces and many other 
factors affect how a certain aircraft behaves during flight. It is important to be able to understand how a 
certain aircraft fly. This topic is studied in the field of flight dynamics. 

In recent years, development in use and versatility of UAVs, generated need of rapidly developing for 
improved performances, especially greater payload, and range. This can be achieved by scaling existing 
successfully flown configurations, but the downsize is the possibility to deteriorate the flying qualities. To 
preserve the good flying qualities of the flown configuration, similitude criteria must be applied. This will 
assure also less effort in designing the autopilot. 

Plane scaling involves geometric scaling in all aspects including the gaps between the command 
surfaces. Similitude criteria are summarized in reference [4]. Currently there are many authors that use 
Froude similitude in order to scale a plane. But also, Reynolds number must be observed for similar 
aerodynamic forces and moments. The similarity of the Reynolds number must be fulfilled in order to have 
the same transition point on the airfoil, the thickness of the boundary layer and possible interference by the 
interaction of the Reynolds number with Mach number (compressibility effects). As distribution of mass 
properties on a given configuration is subjected to many restrictions, the two mentioned criteria cannot be 
met, usually, only by scaling. 

One important aspect in defining airplanes dynamics is the correct determination of the stability and 
command derivatives [5]. For UAVs this determination can be done with low cost sensors, using extended 
Kalman filters, as explained in [6], or using Genetic Algorithm Optimized Method, as in [7]. 

In this paper we will consider only the most usual movements of airplanes, horizontal level flight, 
climb and descend and takeoff and landing. More complex movements, as the ones described in [8], are not 
considered. The research done in this paper follows the general guidelines of aircraft design depicted in [9]. 
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Due to the complexity of the autopilot design, as described in [10], rapid prototyping of a whole series 
of similar UAVs can benefit of the results of this research if we can obtain same stability and control 
matrices, which are inputs in the process of design and optimization of the control system, as shown in [11]. 

In this paper the relative density factor is used, because the model plane obtained has the same 
damping factor ζ sp as the reference plane. This is demonstrated only for short period mode. In order to 
evaluate the dynamic behavior, step response was considered. Model plane considered parameters are: fs 
(scale factor), p1 (mass ratio) and p2 (inertia moment ratio). The mathematical model was obtained from [1] 
with additions from [2], [12] and [3]. The longitudinal movement equations are shown in equations (1). The 
lateral-directional equations used are shown in (2). 
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It’s also necessary, for the scaling, that the angle of attack, the lateral side-slip angle, the position of the 
control surface to be the same, which leads to a convenient choice for the reference movement: horizontal, 
rectilinear unaccelerated flight. In this case, one can express the variation of stability derivatives with the 
Reynolds number or, for same speed, the variation of the stability derivatives with the model scale. 

2. RELATIVE DENSITY FACTOR SCALING 

As shown in the reference [4], the relative density factor, 3
m
lρ

 is a basic similitude parameter in the 

aerodynamic forces. This factor is important in studying the phenomenon of flutter, but also in studying the 

characteristics of stability and control. The relative moment of inertia, 5
I
lρ

 has the same significance for the 

equations of the moment as the relative density factor has for the equations of the forces. Starting from: 

21
2y mI q V ScC=  (3)

in dimensional format it follows: 
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For the scaled model to have the same moment coefficient as the full-scale UAV, the relative moment of 

inertia, 5
I
lρ

, and the reduced angular acceleration, 
2

2
Ωl
V

, must be identical. For a rigid airplane, the moment 

of inertia can be adjusted by redistributing the masses inside the airplane in order to have the same K/L  
ratio, if the relative density factor is already met. In this case, this criterion provides us with a relation 
between airplane scale (parameter fs) and the airplane mass (parameter p1). 

1 2
3 3
1 2

m m
l l
=

ρ ρ
, where 2 1 1m m p= ⋅ , 2 1 sl l f= ⋅ . (6)

Thus, we have a relation between fs  and p1 : 
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From this relation it results a method for scaling the UAVs by fulfilling the relative density factor criteria. 
This relation is added to the equations system and it is to be seen how mass distribution varies. Using 
MATLAB formulation can solve the system of equations for p2 . For example, for a scale factor of 2, to 
comply with the relative density criteria, we will obtain a value for p2  of 8 (see (5)–(6)). 

3. SHORT-PERIOD MODE HYPOTHESIS SCALING 

If we consider the short-period mode equations, as illustrated in the reference [13], the following 
formulas are obtained for spζ  – the damping factor and nspω  – undamped natural frequency. If our purpose 
is to have the same dynamic behavior both for the model plane and for the full-scale UAV, then we should 
have the same values for spζ  and nspω . Having the results for the full-scale UAV, then we can determine the 
model parameters sf , 1p  and 2p  for the same spζ  and nspω  values in short-period mode approximation. 
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Here 2ζ  and 2nω  are the values for the full-scale UAV (input values), and 1ζ  and 1nω  for the scaled model. 
Knowing that: 
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with the following relations, we obtain spζ  and nspω  as a function of sf , 1p  and 2p : 
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A quick conclusion is that if 2p  is fixed and the relations between sf  and 1p  complies with relative density 

similitude criteria ( 3
1 sp f= ), then the damping factor ( spζ ) does not depend on the plane scale, which 

represents a first step in the behavior evaluation of the dynamic similitude between the full scale UAV and 
the scaled model. This fact is represented in the formula (15), 
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4. ESTIMATION OF 1p  AND 2p  PARAMETERS 

In this chapter we will estimate 1p  and 2p  of the model for a fixed scale sf . Using step response 
dynamic of the full-scale UAV, this method estimates the model parameters sf , 1p  and 2p  using two 
methods. 

First method is using the short-period mode approximation and the input equalities involves that spζ  
(damping factor) and nspω  (undamped natural frequency) of the model have the same value as the spζ  and 
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nspω  of the full-scale UAV. First method, although is having a theoretical basis, is an approximate method 
because it uses only short period mode from longitudinal channel (only 2×2 matrix – [13]). 

Second method uses full dynamic model. This implies use of both longitudinal and lateral-directional 
channel, each of which implies a 4×4 matrix. So, in total we have four roots for each channel. For a stable 
plane, in longitudinal case we have four complex roots n i wλ = ± ⋅ , and in lateral-directional case we have 
two real roots (roll and spiral mode) and two complex roots (Dutch roll). In order to have the same dynamic 
behavior, eigenvalues (λ ) need to be the same, i.e. to have equality between the real parts and the imaginary 
parts. Considering the above it results 8 equalities that needs to be fulfilled (longitudinal and lateral channel). 
In the first method there are only two equalities. 

In both situations, for solving the nonlinear system a MATLAB program is used. Dynamic model was 
implemented, and a first observation would be that if we keep the same scale factor for gravity center 
position, then certain aerodynamic coefficients remain quasi-constants. This aspect is illustrated in Fig. 1 and 
we can say that the coefficients 0, , L L LC C Cα , , , , e e

L m m mC C C Cδ α δ  do not change with the scale variation. It also 
helps that the studied aircraft is a flying wing and the difference in drag resulted from Reynolds variation 
does not significantly influence the moment coefficient. In order to illustrate Reynolds influence in airplane 
scale the polars (L DC C ) were estimated in XFLR for various airplane scales. If the scaling method used 
obeys relative density factor, then an increase in airplane scale means and increase in Reynolds number, thus 
resulting in a lower drag coefficient. Since a dynamic model evaluation was considered depending on the 
step response, thus resulting in equality of the eigenvalues, dynamic model forces and moments needed to be 
estimated depending on the Reynolds number. 
 

 
Fig. 1 – Model plane aerodynamic characteristics at various scales. XFLR polars. 

4.1. Estimation of 1p  and 2p  parameters – short-period mode approximation 

In Table 1 the results from MATLAB program are summarized. Since the reference airplane is the 
model plane, 1sf =  is considered for the model plane. Equality conditions nspω  and spζ  are also calculated 
depending on the plane model parameters and the scale of the full-scale UAV. To better illustrate this, let’s 
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look to an example: if you have a 2× scale ratio between the real UAV and the model plane, then, in order to 
have the same values for nspω  and spζ , the model mass is multiplied by 1 2.75p =  and the inertia moment 

yI  is multiplied by 2.25. The values can be used to obtain a model plane, this plane can be used to conduct 
flight tests, in order to validate the theoretical results. 
 

Table 1 

Scaling parameter values 

Plane model ( 1sf = ) Equality conditions Real Airplane (scaled) 

1p  2p  nspω  spζ  sf  full-scale UAV 1p  full-scale UAV ( 2 1p = ) 

1 1 7.08328 0.700643 1 1 
1.8831 1.6398 5.7835 0.700643 1.5 3.375 
2.7451 2.2524 5.0086 0.700643 2 8 
3.6035 2.8585 4.4799 0.700643 2.5 15.625 
4.4607 3.4618 4.0895 0.700643 3 27 
5.3173 4.0638 3.7862 0.700643 3.5 42.875 
6.1737 4.6651 3.5416 0.700643 4 64 

 
From Table 1, we can say that the real UAV, built by scaling the model plane used in flight tests, has 

the same damping factor spζ  and the same natural undamped frequency nspω . An important observation is 
that the variation of the parameters 1p and 2p  with sf  is quasi-linear, which means that the method can be 
extrapolated with very small errors. 

4.2. Estimation of 1p  and 2p  parameters – full dynamic model 

In this chapter the same concept is considered but the equality conditions include all the eigenvalues, 
both on longitudinal and lateral-directional channel. Table 2 has the results from the MATLAB code. As 
expected, for perturbations corresponding to the short-period mode ( , )u q , the results are similar with errors 
less than 1%. If we refer to the perturbation evolution related to the phugoid mode, then the differences are 
slightly larger and reach up to 17%. These differences are best illustrated in the example above on the 
numeric values of the eigenvalues λ, but also in Fig. 3 – Fig. 5. 

As input data, we have the UAV geometry multiplied by the scale factor, at which we add the mass and 
the moment of inertia weighted by the parameters 1p  and 2p . In addition to the Etkin dynamic model, that 
was implemented, we also have the equalities conditions that the MATLAB function “Lsqnonlin” is trying to 
satisfy. This means that we have not been able to achieve equality but only the best approximation of the 
terms of equality within the meaning of the smallest squares method thus resulting the output variables 1p  
and 2p  for the model plane. What is interesting is that although the solution is an approximate one, for 
various values of sf  we obtain a linear variation for 1p  and 2p . 
 

Table 2 
Scaling coefficients, complete matrices 

Model plane ( 1sf = ) Real Airplane (scaled) 

1p  2p  nspω  spζ  sf  Real airplane 1p  Real Airplane ( 2 1p = ) 

1 1 7.08328 0,700643 1 1 
1.3409 1.4782 5.970743 0,789368 1.5 3.375 
1.6633 1.9503 5.268417 0,840095 2 8 
1.9986 2.4235 4.769694 0,869236 2.5 15.625 
2.3344 2.8959 4.391543 0,888891 3 27 
2.6702 3.3679 4.091659 0,903106 3.5 42.875 
3.0064 3.8394 3.846285 0,913834 4 64 
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Fig. 2 – Variation of parameters 1p  and 2p  with scale factor – Complete matrices. 

 
In order to further illustrate the methodology used we will take as an example the multiplication factor 

1.5 ( 3
1 23,375,  1sp f p= = = ), resulting in a real plane with the following specifications: 

Table 3 
Full-scale airplane specifications 

Properties Value U.M. 
Airplane mass 110.517 35.5p⋅ =  kg  

Wing surface 21.577 3.55sf⋅ =  2m  

Wingspan 4 6sf⋅ =  m 

Moment of inertia yI  2
1 21.35 10.25sf p p⋅ ⋅ ⋅ =  2kg m⋅  

 
For this generated plane, the following eigenvalues resulted: 

L LD

3.283056 5.612509i 0.068694 1.585213i
3.283056 5.612509i 0.068694 1.585213i

λ ,    λ .
0.020659 0.615824i 0.141647
0.020659 0.615824i 0.0000148

− + − +⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− − − −⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬− + −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪− − −⎩ ⎭ ⎩ ⎭

 

For this full-scale aircraft, we have the following specifications for the scaled model. The multiplier 
coefficients were presented in Table 4. 

Table 4 
Model plane specifications 

Properties Value U.M. 
Airplane mass 10.517 1.3409 14.1⋅ =  kg  

Wing surface 1.577  2m  
Wingspan 4  m 

Moment of inertia yI  1.35 1.3409 1.4782 2.676⋅ ⋅ =  2kg m⋅  
 

The resulting eigenvalues are: 

L LD

3.2596 5.6153i 0.0584963 1.5984166i
3.2596 5.6153i 0.0584963 1.5984166i

λ ,    λ
0.0249 0.6594i 0.151769
0.0249 0.6594i 0.00000929

− + − +⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− − − −⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬− + −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪− − −⎩ ⎭ ⎩ ⎭
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The major differences in the eigenvalues between the model and the actual plane are those related to 
phugoid mode, a percentage difference of not more than 17%. The best approximation is obtained for the 
short-period mode with differences of less than 1%, which is above the errors and approximations that have 
gathered along the way. 

        
Fig. 3 – Step response comparison – q perturbations. 

 

        
Fig. 4 – Step response comparison – u perturbations. 

 

 
Fig. 5 – Step response comparison – v perturbations. 

5. CONCLUSIONS 

With additional inputs, the scaling method can be applied to any plane configuration, not only flying 
wing but also taking into consideration the error margin. The step response difference is insignificant 
regarding to the short period mode. 
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The method is more suitable for creating multiple versions of the same airplane at different scales. This 
greatly reduces the research and development costs. However, the method is less adequate for high scale 
ratios because the step response differences are also high. 

Ultimately, the purpose is to perform fly tests using the same model plane with desired scale and mass 
parameters in order to validate the theoretical results. This paper supplies the model plane parameters to 
achieve this goal. 
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