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Abstract. Previous results on the existence of solutions of a nonlinear evolution equation formulated in an AL-
space, by abstracting common properties of collisional kinetic models, are extended to the setting of a partially
ordered Banach space with norm additive on the positive cone, which is not necessarily a Banach lattice. An
application is sketched in the case of a simple nonlinear von Neumann equation in the space of trace class
self-adjoint operators on a separable Hilbert space.
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1. INTRODUCTION

Let X be a real separable Banach space, (partially) ordered by the order relation ≤, for which the positive
cone X+ := {g : g ∈ X ;0≤ g} is closed and generating (i.e., X = X+−X+), and the norm is additive on X+, i.e.,

‖g+h‖= ‖g‖+‖h‖ ∀g,h ∈ X+. (1)

Following [1, p. 30] (see also, [2], and [3]), X will be called abstract state space. A first example of such
a space is an AL-space (abstract Lebesgue space), i.e. a Banach lattice whose norm is additive on its positive
cone. However, an abstract state space is not necessarily a Banach lattice, e.g., the space of trace class self-
adjoint operators on some separable Hilbert space, with the trace norm, and the canonical order of the bounded
self-adjoint operators1.

In X , consider the Cauchy problem

d f (t)
dt

= A f (t)+Q+(t, f (t))−Q−(t, f (t)), f (0) = f0 ∈ X+, t ≥ 0, (2)

for f defined from R+ := [0,∞) to X+. Here, A is the infinitesimal generator of a C0-group of positive linear
isometries {U t}t∈R on X+ (case A = 0 is not excluded), and Q± are (nonlinear) mappings from R+×D to X+,
for some D ⊂ X+ dense in X+, such that:
• R+ 3 t 7→Q±(t,g(t)) ∈ X+ are (Lebesgue) measurable for every measurable g : R+ 7→ X+ which satisfies

g(t) ∈D almost everywhere (a.e.) on R+.
• For almost all (a.a.) t ≥ 0, the positive mappings D 3 g 7→ Q±(t,u) ∈ X+ are isotone and o-closed, and

their common domain D is p-saturated (see the Appendix for some known definitions and facts).
The existence of solutions to problem (2) was investigated in [4], under additional conditions (and deve-

loping ideas of [5]), in the case of an abstract model generalizing several collisional kinetic equations with
1 For other examples of abstract state spaces, the reader is referred to [1, pp. 30–31].
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common monotonicity properties, and compatible, in some sense [4], with the so-called Povzner inequality [6].
Paper [4] also included applications to examples of the so-called classical kinetic theory (Boltzmann equation,
Smoluchowskis coagulation equation, a Povzner-like model with dissipative collisions).

However, the results of [4] were obtained by assuming that X is an AL-space, and may not be directly
applied to problems involving ordered Banach spaces that are not Banach lattices, as the aforementioned space
of trace class self-adjoint operators, which may be encountered in quantum kinetic modeling.

The present note shows briefly how the main result of [4] can be re-obtained in the more general setting
introduced in the beginning of this section, without imposing that X should be a (Banach) lattice. For a more
detailed exposure, the reader is referred to [7] (where a “Corrigendum” to an easily correctable error in [4])
was also included, independently of the main content of [7]). Differently from [7], the present work is limited
to accounting for the main new ideas behind the aforementioned generalization of the results of [4], and also
contains a simple application that extends a result of [8].

2. MAIN RESULT

To state the main result of this paper, we first complete the setting detailed in the previous section with the
rest of the assumptions that define the model introduced in [4]:

Assumption (A). There exists a linear operator Λ : D(Λ) ⊂ X 7→ X such that (−Λ) is the infinitesimal
generator of a positive C0-semigroup on X , and D+(Λ) ⊂ D , Q±(t,D+(Λ

k)) ⊂ D+(Λ
k−1), t ≥ 0 a.e., k = 2,3

(where we have used the notation D+(Λ
k) := D(Λk)∩X+, k = 1,2...).

Assumption (A0). There is a number λ0 > 0 such that

λ0g≤ Λg, ∀g ∈D+(Λ). (3)

Assumption (A1). There exists a positive, non-decreasing, convex function a : R+ 7→ R+, such that for a.a.
t ≥ 0,

0≤ Q−(t,g)≤ a(‖Λg‖)Λg, ∀g ∈D+(Λ), (4)

and the mapping D+(Λ) 3 g 7→ a(‖Λg‖)Λg−Q−(t,g) ∈ X is isotone.

Assumption (A2). For a.a. t ≥ 0,

∆(t,g) :=
∥∥ΛQ−(t,g)

∥∥−∥∥ΛQ+(t,g)
∥∥≥ 0, ∀g ∈D+(Λ

2), (5)

and the map D+(Λ
2) 3 g 7→ ∆(t,g) ∈ R+ is isotone.

Assumption (A3). There exists a positive non-decreasing function ρ : R+ 7→ R+ such that for a.a. t ≥ 0,∥∥Λ
2Q+(t,g)

∥∥≤ ∥∥Λ
2Q−(t,g)

∥∥+ρ(‖Λg‖)
∥∥Λ

2g
∥∥ , ∀g ∈D+(Λ

3). (6)

The next remark collects useful immediate consequences of the above assumptions:

Remark 1. (a) Function a is locally Lipschitz continuous on every compact sub-interval of R+, its derivative
is a.e. defined, positive and non-decreasing on R+, and a(0) = a(0+);

(b) For each k = 1,2, ..., the linear operator Λk is positive, closed, and densely defined (see the Appendix);
(c) For a.a. t ≥ 0, one has ∆(t,g) ≤ ‖ΛQ−(t,g)‖ ≤ a(‖Λg‖)‖Λ2g‖ and ‖Q±(t,g)‖ ≤ λ

−1
0 ‖ΛQ−(t,g)‖ ≤

a(‖Λg‖)λ−1
0

∥∥Λ2g
∥∥, ∀g ∈D+(Λ

2);
(d) Q±(t,0) = 0 and ∆(t,0) = 0 a.e. on R+.

Inequality (5) is abstracting common conservation/dissipation properties of several collisional kinetic equ-
ations (see [4]). The above model assumptions show some control on Q±(t, f ), in terms of Λk f . Inequality (6)
is an abstract correspondent to the Povzner inequality [5, 6] (see also [4]).
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In this paper, L1(R+;X+) (L1
loc(R+;X+)) denotes the space of equivalent classes of Lebesgue measurable

functions from R+ to X+ which are Bochner integrable (locally Bochner integrable) on R+. Also, C(R+;X+)
stands for the space of continuous functions from R+ to X+. In addition, L1

k,loc(R+;X+) denotes the space of
the measurable mappings g : R+ 7→ D(Λk), with the property Λkg ∈ L1

loc(R+;X+), k = 1,2, .... We also put
L1

0,loc(R+;X+) = L1
loc(R+;X+).

The next theorem shows that the main result of [4] remains valid in our present setting. Let D+(Λ
∞) :=

∩n≥1D+(Λ
k).

THEOREM 1. Suppose that Q+(t,D+(Λ
∞))⊂D+(Λ

∞), t ≥ 0 a.e., and ΛkQ+(·,D+(Λ
∞))⊂ L1

loc(R+;X+),
k = 1,2, .... Let f0 ∈D+(Λ

2), in (2). Then:
(a) If A = 0, then problem (2) has a unique, positive strong solution f on R+, such that f (t) ∈D+(Λ

2) for
all t ≥ 0, and ‖Λ2 f‖ is locally bounded on R+. Moreover, Λ f ∈C(R+;X+). Furthermore, f satisfies

‖Λ f (t)‖+
∫ t

0
∆(s, f (s))ds = ‖Λ f0‖ , ∀t ≥ 0, (7)

and ∥∥Λ
2 f (t)

∥∥≤ ∥∥Λ
2 f0
∥∥exp(ρ(‖Λ f0‖)t), ∀t ≥ 0; (8)

(b) If A 6= 0 and, for each t > 0, U tD(Λ) =D(Λ) and U tΛ = ΛU t on D(Λ), then problem (2) has a unique,
positive mild solution f on R+, with the same properties as in (a).

In applications, equality (7) can be interpreted as a dissipation-conservation relation, while (8) is related
to some so-called “moment” estimates [4]. Expression (7) and inequality (8) are, in some sense, integral
formulations of (5) and (6), respectively.

In the following, we sketch the proof of the above theorem. The proof is close to the central argument
of [4], with two main differences to be briefly pointed out in the next subsection2.

Here we notice that, by means of Remark 1(d) and (7), it can be seen that if f0 = 0 in problem (2), then
f (t)≡ 0 is the only solution of (2) with the properties stated in Theorem 1. Moreover, (A1), (A2), and (7) imply
that f (t)≡ f0 is the unique solution of (2), in the case when 0 6= f0 ∈D+(Λ

2) and a(‖Λ f0‖) = 0.
Therefore, for the rest of this section, we suppose that in problem (2), f0 satisfies f0 6= 0 and a(‖Λ f0‖) 6= 0.

2.1. Sketch of the proof of Theorem 1(a)

In this subsection, we suppose that the conditions of Theorem 1(a) hold.
As in [4], in the case of (2) with A = 0, we introduce the auxiliary problem

d f (t)
dt

+a(‖Λ f0‖)Λ f (t) = B(t, f , f ), f (0) = f0 ∈ X+, t ≥ 0, (9)

where a is given by (A1), and B is formally defined a.e. on t ∈ R+, by

B(t,g,h) := Q+(t,g(t))−Q−(t,g(t))+a
(
‖Λg(t)‖+

∫ t

0
∆(s,h(s))ds

)
Λg(t), (10)

for, say, g, h ∈ L1
2,loc(R+;X+).

Also, consider the integral form of (9) with B replaced by (10)

f (t) = f0 +
∫ t

0
[Q+(s, f (s))−Q−(s, f (s))]ds

+
∫ t

0

[
a
(
‖Λ f (s)‖+

∫ s

0
∆(τ, f (τ))dτ

)
−a(‖Λ f0‖)

]
Λ f (s)ds ∀t ≥ 0,

(11)

2 For more details, the reader is referred to [7].
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Remark 2. Due to the properties of Λ, Q±, ∆ and a, we have that expression (10) defines a mapping
L1

2,loc(R+;X+)× L1
2,loc(R+;X+) 3 (g,h) 7→ B(·,g,h) ∈ L1

1,loc(R+;X+) which is isotone, in the sense that if
(gi,hi)∈ L1

2,loc(R+;X+)×L1
2,loc(R+;X+), i= 1,2, and g1(t)≤ g2(t), h1(t)≤ h2(t) a.e. on R+, then B(t,g1,h1)≤

≤ B(t,g2,h2) a.e. on R+.

The next proposition shows that Theorem 1(a) can be proved by investigating (9) instead of (2).

PROPOSITION 1. Let R+ 3 t 7→ f (t) ∈D+(Λ
2) such that ‖Λ2 f‖ is locally bounded on R+.

(a) If f is a strong solution to (2) with A = 0, then Λ f ∈C(R+;X+), and f satisfies (7);
(b) f is a strong solution to (2) with A = 0 iff it is a strong solution to (9).

Proof. To prove (a), observe that the properties of f , Λ f , ΛQ±(·, f ), as well as Remark 1(b), enable us to
apply Λ to the integral form of (2) with A = 0, and use (31) (see the Appendix) with Γ = Λ. Thus, considering
the resulting expression, it remains to invoke its continuity properties, and to evaluate its norm, by taking into
account assumption (A2), and applying (1) together with (30).

The direct statement in (b) follows by introducing (7) in (9).
To prove the converse statement in (b), put ψ( f )(t) := ‖Λ f0‖−‖Λ f (t)‖−

∫ t
0 ∆(s, f (s))ds. One needs only

show that if f is a solution to (9), then ψ( f )(t) = 0 for all t ≥ 0. To this end, one applies Λ to (11) and makes
use of (31), with Γ = Λ. Then, the resulting expression is handled conveniently, by applying (1), (30), and
using Remark 1(a), the positivity of ∆(t, f (t)), as well as the fact that ‖Λ2 f‖ is locally bounded on R+. One
ultimately obtains a classical Gronwall inequality for |ψ( f )(t)|, with vanishing initial (non-integral) term in the
right hand side (r.h.s.) of the inequality, which concludes the proof.

By virtue of Proposition 1(b), the positive strong solutions of problem (2) can be found among the positive
solutions of the mild form of (9)

f (t) =V t f0 +
∫ t

0
V t−sB(s, f , f )ds, t ≥ 0 (12)

(the integral being in the sense of Bochner), where {V t}t≥0 is the positive C0-semigroup on X with infinitesimal
generator L :=−a(‖Λ f0‖)Λ.

Proceeding as in the proof of [4, Theorem 3.1], we appeal to the isotonicity of B to demonstrate the existence
part of Theorem 1(a) by a monotone iteration scheme. One obtains a norm bounded, increasing sequence in
X+, which is finally shown to converge to a solution of (12). The convergence can be proved by appealing to
the (strong) Levi property of X+ (see the Appendix). Although such a construction was introduced in [4], in the
context of an AL-space, it actually remains valid in the more general setting of our paper, due to the following
result that extends [4, Lemma 2.1] to the case when X is an abstract state space.

LEMMA 1. (see [7, Lemma 1] for a slightly more general formulation and proof)
(a) For each g ∈ X+, one has:

0≤V tg≤ exp(−λ0a(‖Λ f0‖)t)g≤ g, ∀t ≥ 0; (13)

(b) For each g ∈ X+, there exists an increasing sequence {gn} ⊂D+(Λ
∞), such that gn↗ g as n→ ∞;

(c) Let p be a positive integer. If {gn} ⊂ D+(Λ
p) is increasing and {Λpgn} is norm bounded, then there

exists g ∈D+(Λ
p) such that Λkgn↗ Λkg for all k = 0,1, .., p;

(d) D+(Λ
k) is p-saturated, ∀ k = 1,2, ...,∞.

Proof. The proof of the above lemma applies general properties of positive C0-semigroups, the construction
behind the argument of ( [9, Theorem 10.3.4]), adapted to positive C0-semigroups (see (33) in the Appendix),
and the Levi’s property of X+.
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Remark 3. Lemma 1(d) and (4) imply that Q−(t,D+(Λ
k)) ⊂ D+(Λ

k−1), a.e. on R+, k = 1,2, .....∞. In
particular, Q− satisfies the inclusion conditions on Q±(t,D+(Λ

k)) imposed in the beginning of this section.3

Now by Lemma 1(b), we can choose an increasing sequence D+(Λ
∞)3 f0,n↗ f0, as n→∞, where the first

term of the sequence is f0,1 = 0. Then our approximating sequence is formally given by

f1(t) = 0, f2(t) =V t f0,2,

fn(t) =V t f0,n +S(t, fn−1, fn−2), t ≥ 0; n = 3,4, ....
(14)

where
S(t,g,h) :=

∫ t

0
V t−sB(s,g,h)ds, t ≥ 0. (15)

Here it should be emphasized that (14) is a diagonalization, in some sense, of the iteration scheme conside-
red in [4], and leads to a more general, but simpler analysis than in [4]) (see also [7]).

The next lemmas give a rigorous meaning to (14), and show that it defines a norm bounded increasing
sequence of elements in X+, with useful integrability, and regularity properties.

Let M∞ be the family of those g ∈ C(R+;X+) with the property that, ∀ 0 < T < ∞, there is gT ∈ D+(Λ
∞),

which may depend only on g and T , such that g(t) ≤ gT on [0,T ].

LEMMA 2. For each n = 1,2,3, ..., one has:
(a) fn ∈M∞. In particular, fn ∈ L1

k,loc(R+;X+), k = 0,1,2,3;
(b) fn is a.e. differentiable on (0,∞); n = 1,2,3, ...,

Proof. The proof of the lemma relies on rather technical arguments [7, Lemmas 3 - 5].
Basically, to demonstrate (a), the key point is to show that S given in (15) satisfies the key inclusion

S(·,M∞,M∞) ⊂ M∞ which is then used to obtain inductively from (14) that fn ∈ M∞ for all n = 1,2, ....
Finally, it is sufficient to observe that M∞ ⊂ ∈ L1

k,loc(R+;X+), k = 0,1,2, ....
To prove (b), one uses (a), the properties of V t , and (14), to apply a standard argument [10, Ch.4, § 4.2].

Remark 4. Q±(·, fn(·)) ∈ L1
k,loc(R+;X+) for k = 0,1,2.

LEMMA 3. The sequence fn(t) is positive and increasing for all t ≥ 0.

Proof. Te proof is achieved by a straightforward induction that applies the isotonicity of B, the positivity
of V t , as well as the positivity and monotonicity of { f0.n}.

LEMMA 4. For each n = 2,3, ....,

fn(t)+
∫ t

0
Q−(s, fn−1(s))ds≤ f0,n +

∫ t

0
Q+(s, fn−1(s))ds, ∀t ≥ 0, (16)

‖Λ fn(t)‖+
∫ t

0
∆(s, fn−1(s))ds≤ ‖Λ f0,n‖ ≤ ‖Λ f0‖ , ∀t ≥ 0. (17)

Proof. Inequalities (16) and (17) are proved inductively by taking advantage of the properties stated in
Lemmas 3 and 2, and invoking general known facts (see the Appendix).

LEMMA 5. ∥∥Λ
2 fn(t)

∥∥≤ ∥∥Λ
2 f0
∥∥exp(ρ(‖Λ f0‖)t), ∀t ≥ 0, n = 1,2, .... (18)

Proof. To obtain (18), one applies Λ2 to (16), and uses (31) with Γ = Λ2. From the resulting expression,
one estimates ||Λ2 fn(t)||, by applying the monotonicity of the norm, (1), and (30). Finally, by (6) and using
that (17) implies ρ((‖Λ fn−1(s)‖)≤ ρ((‖Λ f0‖), one obtains a Gronwall inequality yielding (18).

3 However, we kept those conditions, in order to have a priori well-defined statements in Assumptions (A2) and (A3).
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The above results enable us to complete the proof of the existence part in Theorem 1(a). Indeed, by Lemmas
3, 5 and 1(c), ∃ f : R+ 7→D+(Λ

2) measurable, such that, ∀t ≥ 0,

Λ
k fn(t)↗ Λ

k f (t), as n→ ∞; k = 0,1,2. (19)

Besides, the monotonicity properties of Q± and ∆ imply that, for a.a. t ≥ 0, the sequences {ΛkQ±(t, fn(t))}n≥1,
k = 0,1, and {∆(t, fn(t))}n≥1 are increasing. Also, they are bounded, because of Remark 1(c) and (19). The-
refore, Levi’s property implies that they are convergent. But Λ is closed and Q±(t, ·) are o-closed a.e. on R+.
Consequently, ΛQ±(t, fn(t))↗ ΛQ±(t, f (t)), k = 0,1, and ∆(t, fn(t))↗ ∆(t, f (t)) as n→ ∞, a.e. on R+. Ta-
king the limit in (18), we find that f satisfies (8), hence ||Λ2 f || is locally bounded on R+. In particular, f ∈
L1

k,loc(R+;X+), k = 0,1,2. Thus by Remark 1(c), we have Q±(·, f (·)), ΛQ±(·, f (·)), ∆(·, f (·)) ∈ L1
loc(R+;X+).

On the other hand, due to Lemma 2(b), one can differentiate (14). Then re-arranging conveniently the terms
of the resulting expression and integrating again, we get for n≥ 3,

fn(t) = f0,n +
∫ t

0
[Q+(s, fn−1(s))−Q−(s, fn−1(s))]ds

+
∫ t

0

[
a
(
‖Λ fn−1(s)‖+

∫ s

0
∆(τ, fn−2(τ))dτ

)
Λ fn−1(s)−

−a(‖Λ f0‖)Λ fn(s)
]

ds,

(20)

The above considerations and the fact that a is non-decreasing and continuous enable us to apply convenien-
tly the dominated convergence theorem in (20). It follows that f is solution to (11). Since f satisfies (8),
Proposition 1(b) concludes the existence part of Theorem 1(a).

To demonstrate the uniqueness of the solution, we follow [4], by adapting an uniqueness argument of [5]. To
put it briefly, if, besides the above constructed solution f , problem (2) with A = 0, has another solution F with
the properties stated in Theorem 1(a), then 0≤ f (t)≤F(t) for all t ≥ 0. Thus, if ∃ t∗> 0 such that F(t∗) 6= f (t∗),
then ‖Λ f (t∗)‖< ‖ΛF(t∗)‖. Since ∆(t, ·) is isotone for a.a. t ≥ 0, we get ‖Λ f0‖= ‖Λ f (t∗)‖+

∫ t∗
0 ∆(s, f (s))ds <

< ‖ΛF(t∗)‖+
∫ t∗

0 ∆(s,F(s))ds, in contradiction with the fact that both f and F satisfy (7) for all t ≥ 0. 2

2.2. Sketch of the proof of Theorem 1(b)

The proof is as for [4, Corollary 3.1]. Indeed, since a mild solution to Eq. (2) is a C(R+;X+) solution to

f (t) =U t f0 +
∫ t

0
U t−s[Q+(s, f (s))−Q−(s, f (s))]ds, t ≥ 0, (21)

then by F(t) := U−t f (t) and Q±U (t,F) := U−tQ±(t,U tF), problem (21) is reduced to (2) with A = 0, and Q±U
instead of Q±. Then we need only check that Theorem 1(a) applies (with Q±U instead of Q±).

3. EXAMPLE: SIMPLE NONLINEAR VON NEUMANN EQUATION

In this section, we show how Theorem 1 can be directly applied to a simple generalization of the model
considered in [8].

Let T = T (H ) be the abstract state space of the trace class self-adjoint operators in some separable
Hilbert space H , endowed with the trace norm ‖F‖tr := Tr(|F |) and the natural order ≤ induced by scalar
product (·, ·) of H (i.e., F ≤ G iff ( f ,F f )≤ ( f ,G f ), ∀ f ∈H ). By T+ we denote the positive cone in T .

Let H be a self-adjoint operator and {U t}t∈R the C0-group of positive isometries on T , defined by
U tF := exp(−iHt)F exp(iHt), where i =

√
−1. The infinitesimal generator A of {U t}t∈R can be written as

AF :=−i[H,F ] = i(FH−HF), F ∈D(A), where [·, ·] is the usual notation for the commutator.
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Consider the problem in T

dF(t)
dt

=−i[H,F(t)]+Q(F(t)), F(0) = F0 ∈T+, (22)

where Q is (possibly) a nonlinear mapping in T .
Equations of the form (22), supplemented with the “conservation” condition

||F(t)||tr = ||F0||tr, t ≥ 0, (23)

are encountered in quantum mechanical problems modeling the evolution of the so-called quantum density
operator, where they are know as nonlinear von Neumann equations (see, e.g., [11, 12].

Here, we suppose that H has a purely discrete spectrum4, and {en}nN is the orthonormal basis associated to
its eigenvectors.

For some strictly increasing sequence 0 < λ0 < λ1 < ... < λn ... ↗ ∞, as n→ ∞, let {V t}t≥0 be the
C0-semigroup on T , defined by

(en,V tFem) := exp[−(1+λnδn,m)t]Fn,m, (24)

where Fn,m := (en,Fem). Thus, denoting by (−Λ) the infinitesimal generator of {V t}t≥0, we have

(en,ΛFem) := (1+λnδn,m)Fn,m, (25)

hence Λ ≥ I (where I is the identity operator in T ). Obviously, U t leaves D+(Λ
k) : = D(Λk)∩X+ invariant,

and U tΛk = ΛkU t on D+(Λ
k), k = 1,2, ...

Further, we make precise Q. To this end, let {q±n }n∈N be a family of o-closed, isotone mappings from
D+(Λ) to R+ such that ∑n∈N(1+λn)

k−1q±n (F) < ∞, ∀ F ∈D+(Λ
k), k = 1,2,3, and ∑n∈N(1+λn)

kq+n (F) < ∞,
k = 1,2, ..., ∀ F ∈ ∩k≥1D+(Λ

k). In addition, we assume:
1◦ ∃ a : R+ 7→ R+ non-decreasing and convex such that, for each n = 0,1,2, ...,

q−n (F)≤ λna(∑
i∈N

(1+λi)Fi,i)Fn,n, ∀F ∈ D+(Λ)

and the mapping D+(Λ) 3 F 7→ λna(∑i∈N(1+λi)Fi,i)Fn,n−q−n (F) ∈ R+ is isotone;
2◦

∆(F) = ∑
n∈N

λn(q−n (F)−q+n (F))≥ 0, ∀F ∈ D+(Λ
2), (26)

and the mapping D+(Λ
2) 3 F 7→ ∆(F) ∈ R+ is isotone;

3◦

∑
n∈N

(1+λn)
2[q+n (F)−q−n (F)]≤ ρ(∑

n∈N
(1+λn)Fn,n)(∑

n∈N
(1+λn)

2Fn,n), ∀F ∈ D+(Λ
3) (27)

for some positive non-decreasing function ρ : R+ 7→ R+.
Motivated by (23), we also suppose
4◦

∑
n∈N

q+n (F) = ∑
n∈N

q−n (F), ∀F ∈ D+(Λ). (28)

Notice that 4◦ formally implies (23).
By the above hypotheses, for each F ∈D+(Λ), we can define the operators Q±(F) ∈T+ as

Q±(F) := ∑
n∈N

q±n (F)(en, ·)en, (29)

4 E.g, H is the Hamiltonian of the one-dimensional, non-relativistic quantum oscillator in L2.
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and put Q = Q+−Q− in (22).
It can be checked that A, Λ and Q±(F) (as defined above) satisfy the assumptions behind Theorem 1(b).

Therefore the theorem can be directly applied to (22). Due to 4◦, the solution of (22) provided by Theorem 1(b)
satisfies (23).

On the other hand, it should be remarked that, expressed in terms of Fn,m, Eq. (22) yields an ODE system,
which can be decoupled into a trivial part, with solutions Fn,m(t) = F0n,m exp[i(λm−λn)t], when n 6= m, and a
nontrivial one, otherwise,

dFn,n

dt
= q+n (F)−q−n (F) Fn,n(0) = F0n,n ≥ 0, n = 0,1,2, ...,

where the mappings q±n satisfy conditions 1◦−4◦.
We finally emphasize that the above model reduces to the caricature of von Neumann - Boltzmann equation

considered in [8] if, for n = 0,1,2, q±n are of the form q±n (F) = ε±n F0,0Tr(ΛF), with ε±n suitable (not all
vanishing) positive constants, while q±n ≡ 0, for n≥ 3.

APPENDIX

In the following, we briefly recap known definitions and facts, needed in previous sections. Although some
of the below statements are valid in larger contexts, here we keep the assumption that X is an abstract state
space, in the sense of Section 1, with norm || · ||, order ≤ and positive cone X+.

First recall that, in our setting (X - abstract state space), the following properties hold: the norm || · || is
monotone, i.e., if 0 ≤ h ≤ g, then ‖h‖ ≤ ‖g‖; X+ satisfies the strong Levi property, i.e., every norm bounded
increasing sequence in X+ is convergent (see [13, Definition 2.44]); if g : S 7→ X+ is Bochner integrable, then∥∥∥∥∫

S
g(s)ds

∥∥∥∥= ∫
S
‖g(s)‖ds, (30)

(the integral in the r.h.s. of (30) being in the sense of Lebesgue). Moreover, if a set S ⊂ R is (Lebesgue)
measurable and g : S 7→ X+ is Bochner integrable, then∫

S
g(s)ds ∈ X+,

where ds is the Lebesgue measure on the real line.
A set /0 6= M ⊂ X is called positively saturated (p-saturated) [4] if for all h ∈M and g ∈ X+,

g≤ h⇒ g ∈M .

Consider a mapping Γ : D(Γ)⊂ X 7→ X , with D(Γ)∩X+ 6= /0. The mapping Γ is called positive if D(Γ)∩
X+ ⊂ X+. One says that Γ is isotone ( monotone) if g,h ∈ D(Γ) and g ≤ h, imply Γ(g) ≤ Γ(h). Γ is called
closed with respect to the order (o-closed) [4] if for every increasing sequence {gn} ⊂ D(Γ) we have that gn

converges to g (in symbols, gn ↗ g) and Γ(gn)→ h imply g ∈ D(Γ) and Γ(g) = h. Similar definitions may
be introduces for mappings between two different abstract state spaces, or more generally, ordered spaces, in
particular between X and R endowed with the usual order.

If Γ : D(Γ)⊂ X 7→ X is a closed linear operator, S⊂R is measurable, g : S 7→D(Γ) is Bochner integrable,
and Γg is also Bochner integrable, then

Γ

∫
S

g(s)ds =
∫
S

Γg(s)ds. (31)

If {St}t≥0 is a one-parameter C0-semigroup of linear operators (on short, C0-semigroup) on X , then its
infinitesimal generator G : D(G)⊂ X 7→ X is a closed linear operator, with the domain D(G) dense in X . The
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same is true for the positive integral powers Gk (defined by G1 := G, D(Gk) := {g : g ∈ D(Gk−1), Gk−1g ∈
D(G)}, Gkg := G(Gk−1g), k = 2,3...).

Let G0 := I, D(G0) := X , where I is the identity operator on X . Then∫ t

0
Ssgds ∈D(Gk+1), ∀g ∈D(Gk), ∀t > 0, k = 0,1,2, ... (32)

Then D(G∞) :=∩n≥1D(Gn) is dense in X . Indeed, following [9, Theorem 10.3.4]), let ϕ :R+ 7→R, indefinitely
differentiable on (0,∞), with compact support, and satisfying,

∫
∞

0 ϕ(t)dt = 1. For g ∈ X , let

D(G∞) 3 gn := n
∫

∞

0
ϕ(nt)Stgdt, n = 1,2, .... (33)

Then gn→ g as n→ ∞.
If the C0-semigroup {St}t≥0 is positive, i.e., StX+ ⊂ X+, ∀ t > 0, then D(G∞)∩X+ is dense in X+, as can

be seen by choosing ϕ ≥ 0 and g ∈ X+ in (33).
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