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Abstract. In this paper, we consider the multiplicity of the odd parts in all the partitions of n and provide a new
formula for the number of the overpartitions of n, i.e.,

p(n) = ∑
t1+2t2+···+ntn=n

(1+ t1)(1+ t3) · · ·(1+ t2dn/2e−1).

Similar results for the number of the overpartitions of n into odd parts are introduce in this context.
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1. INTRODUCTION

Recall [1] that a composition of a positive integer n is a sequence of natural numbers (λ1,λ2, . . . ,λk) whose
sum is n, i.e.,

n = λ1 +λ2 + · · ·+λk. (1)

When the order of integers λi does not matter, the representation (1) is known as an integer partition and can be
rewritten as

n = t1 +2t2 + · · ·+ntn,

where each positive integer i appears ti times in the partition. The number of parts of this partition is given by

t1 + t2 + · · ·+ tn = k.

For consistency, we consider a partition of n a non-increasing sequence of natural numbers whose sum is n. For
example, the partitions of 4 are given as:

(4), (3,1), (2,2), (2,1,1), (1,1,1,1).

The fastest algorithms for enumerating all the partitions of an integer have recently been presented by Merca
[7, 8]. As usual, we denote by p(n) the number of integer partitions of n and we have the generating function

∞

∑
n=0

p(n)qn =
1

(q;q)∞

.



326 Mircea MERCA 2

Here and throughout this paper, we use the following customary q-series notation:

(a;q)n =

{
1, for n = 0,
(1−a)(1−aq) · · ·(1−aqn−1), for n > 0;

(a;q)∞ = lim
n→∞

(a;q)n.

An overpartition of n is a non-increasing sequence of natural numbers whose sum is n in which the first
occurrence of a number may be overlined [4]. Let p(n) denote the number of overpartitions of an integer n. For
example, p(4) = 14 because there are 14 possible overpartitions of 4:

(4), (4), (3,1), (3,1), (3,1), (3,1), (2,2), (2,2), (2,1,1), (2,1,1), (2,1,1), (2,1,1), (1,1,1,1), (1,1,1,1).

Since the overlined parts form a partition into distinct parts and the non-overlined parts form an ordinary
partition, we have the following generating function for overpartitions,

∞

∑
n=0

p(n)qn =
(−q;q)∞

(q;q)∞

.

In this paper, we consider all the partitions of n in order to introduce a new formula for p(n). This formula
considers only the multiplicity of the odd parts.

THEOREM 1. Let n be a non-negative integer. Then

p(n) = ∑
t1+2t2+···+ntn=n

(1+ t1)(1+ t3) · · ·(1+ t2dn/2e−1).

Taking into account that

4 = 0 ·1+0 ·2+0 ·3+1 ·4 =

= 1 ·1+0 ·2+1 ·3+0 ·4 =

= 0 ·1+2 ·2+0 ·3+0 ·4 =

= 2 ·1+1 ·2+0 ·3+0 ·4 =

= 4 ·1+0 ·2+0 ·3+0 ·4,

the case n = 4 of Theorem 1 reads as follows

p(4) = (1+0)(1+0)+(1+1)(1+1)+(1+0)(1+0)+(1+2)(1+0)+(1+4)(1+0) =

= 1+4+1+3+5 = 14.

Let po(n) be the number of overpartitions of n into odd parts. Then its generating function is

∞

∑
n=0

po(n)qn =
(−q;q2)∞

(q;q2)∞

. (2)

This expression first appeared in the following series-product identity

∞

∑
n=0

(−1;q)nqn(n+1)/2

(q;q)n
=

(−q;q2)∞

(q;q2)∞

,

which was given by Lebesgue [6] in 1840. More recently, the generating function of po(n) appeared in the
works of Bessenrodt [2], Merca [9], Merca, Wang and Yee [10], Santos and Sills [11]. Various arithmetic
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properties of po(n) have been investigated by Chen [3], Hirschhorn and Sellers [5].
In analogy with Theorem 1, we have the following result.

THEOREM 2. Let n be a non-negative integer. Then

po(n) = ∑
t1+2t2+···+ntn=n

(−1)t2+t4+···+t2bn/2c(1+ t1)(1+ t3) · · ·(1+ t2dn/2e−1).

The case n = 4 of this theorem reads as

po(4) = (−1)0+1(1+0)(1+0)+(−1)0+0(1+1)(1+1)+(−1)2+0(1+0)(1+0)+

+(−1)1+0(1+2)(1+0)+(−1)0+0(1+4)(1+0) =

=−1+4+1−3+5 = 6

and the six overpartitions in question are:

(3,1), (3,1), (3,1), (3,1), (1,1,1,1), (1,1,1,1).

In the following result, we consider only the partitions of n in which the odd parts have the multiplicity at
most 2 and the even parts have the multiplicity at most 1.

THEOREM 3. Let n be a non-negative integer. Then

po(n) = ∑
t1+2t2+···+ntn=n

t2k−162, t2k61

(1+ t1 mod 2)(1+ t3 mod 2) · · ·(1+ t2dn/2e−1 mod 2).

For example, the partitions of 4 in which the odd parts have the multiplicity at most 2 and the even parts
have the multiplicity at most 1 are:

(4), (3,1), (2,1,1).

According to Theorem 3, we can write

po(n) = (1+0)(1+0)+(1+1)(1+1)+(1+0)(1+0) = 1+4+1 = 6.

Inspired by Theorem 2, we remark the following connection between the Jacoby theta function

ϑ3(q) =
∞

∑
n=−∞

qn2

and the partitions in which the odd parts have the multiplicity at most 2 and the even parts have the multiplicity
at most 1.

THEOREM 4. Let n be a non-negative integer. The coefficient of qn in the Jacobi theta function ϑ3(q) can
be expressed as

∑
t1+2t2+···+ntn=n

t2k−162, t2k61

(−1)t2+t4+···+t2bn/2c(1+ t1 mod 2)(1+ t3 mod 2) · · ·(1+ t2dn/2e−1 mod 2).

For example, the case n = 4 of Theorem 4 reads as follows

(−1)0+1(1+0)(1+0)+(−1)0+0(1+1)(1+1)+(−1)1+0(1+0)(1+0) =−1+4−1 = 2.

The rest of the paper continues with the proofs of our theorems.



328 Mircea MERCA 4

2. PROOF OF THEOREM 1

Considering Euler’s identity

(−q;q)∞ =
1

(q;q2)∞

,

we can write the generating function of p(n) as follows

∞

∑
n=0

p(n)qn =
1

(q;q)∞(q;q2)∞

=
∞

∏
n=1

1
(1−qn)1+n mod 2 .

In order to prove our theorem, we consider the following identity.

LEMMA 1. Let n be a positive integer. For |z|< 1,

n

∏
k=1

1
(1−qk−1z)1+k mod 2 =

∞

∑
k=0

(
∑

t1+t2+···+tn=k

n

∏
i=1

(
1+(i mod 2) ti

)
q(i−1)ti

)
zk.

Proof. We are to prove this identity by induction on n. For n = 1, we have

1
(1− z)2 =

∞

∑
k=0

(1+ k)zk

and the base case of induction is finished. We suppose that the relation

m

∏
k=1

1
(1−qk−1z)1+k mod 2 =

∞

∑
k=0

(
∑

t1+t2+···+tm=k

m

∏
i=1

(
1+(i mod 2) ti

)
q(i−1)ti

)
zk.

is true for any integer m, 1 6 m < n. On the one hand, when n is odd, we can write

n

∏
k=1

1
(1−qk−1z)1+k mod 2 =

1
(1−qn−1z)2

n−1

∏
k=1

1
(1−qk−1z)1+k mod 2 =

=

(
∞

∑
k=0

(1+ k)q(n−1)kzk

)(
∞

∑
k=0

(
∑

t1+t2+···+tn−1=k

n−1

∏
i=1

(
1+(i mod 2) ti

)
q(i−1)ti

)
zk

)
=

=
∞

∑
k=0

(
∑

t1+t2+···+tn=k

n

∏
i=1

(
1+(i mod 2) ti

)
q(i−1)ti

)
zk,

where we have invoked the well-known Cauchy multiplications of two power series. On the other hand, when
n is even, we have

n

∏
k=1

1
(1−qk−1z)1+k mod 2 =

1
1−qn−1z

n−1

∏
k=1

1
(1−qk−1z)1+k mod 2 =

=

(
∞

∑
k=0

q(n−1)kzk

)(
∞

∑
k=0

(
∑

t1+t2+···+tn−1=k

n−1

∏
i=1

(
1+(i mod 2) ti

)
q(i−1)ti

)
zk

)
=

=
∞

∑
k=0

(
∑

t1+t2+···+tn=k

n

∏
i=1

(
1+(i mod 2) ti

)
q(i−1)ti

)
zk.

This concludes the proof.
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By this lemma, with z replaced by q, we obtain

n

∏
k=1

1
(1−qk)1+k mod 2 =

∞

∑
k=0

(
∑

t1+t2+···+tn=k

n

∏
i=1

(
1+(i mod 2)ti

)
qiti

)
.

The limiting case n→ ∞ of this relation reads as follows

∞

∏
k=1

1
(1−qk)1+k mod 2 =

∞

∑
k=0

(
∑

t1+2t2+···+ktk=k

k

∏
i=1

(
1+(i mod 2) ti

))
qk.

The proof is finished.

3. PROOF OF THEOREM 2

The proof of this theorem is quite similar to the proof of Theorem 1. Considering the generating function
of po(n), we can write

∞

∑
n=0

(−1)n po(n)qn =
1

(−q;q)∞(−q;q2)∞

=
∞

∏
n=1

1
(1+qn)1+n mod 2 .

By Lemma 1, with z replaced by −q, we obtain

n

∏
k=1

1
(1+qk)1+k mod 2 =

∞

∑
k=0

(
∑

t1+t2+···+tn=k
(−1)k

n

∏
i=1

(
1+(i mod 2) ti

)
qiti

)
.

The limiting case n→ ∞ of this relation reads as follows

∞

∏
k=1

1
(1+qk)1+k mod 2 =

∞

∑
k=0

(
∑

t1+2t2+···+ktk=k

k

∏
i=1

(−1)ti
(

1+(i mod 2) ti
))

qk.

Thus we deduce that

(−1)n po(n) = ∑
t1+2t2+···+ntn=n

(−1)t1+t2+···+tn(1+ t1)(1+ t3) · · ·(1+ t2dn/2e−1)

and the proof is finished.

3. PROOF OF THEOREM 3

The proof of this theorem is quite similar to the proof of Theorem 1. The generating function of po(n) can
be written as

∞

∑
n=0

po(n)qn = (−q;q)∞(−q;q2)∞ =
∞

∏
n=1

(1+qn)1+n mod 2.

We consider the following identity.

LEMMA 2. Let n be a positive integer. For |z|< 1,

n

∏
k=1

(1+qk−1z)1+k mod 2 =
n+dn/2e

∑
k=0

(
∑

t1+t2+···+tn=k

n

∏
i=1

(
1+ i mod 2

ti

)
q(i−1)ti

)
zk.
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Proof. We are to prove this identity by induction on n. For n = 1, we have

(1+ z)2 =

(
2
0

)
+

(
2
1

)
z+
(

2
2

)
z2

and the base case of induction is finished. We suppose that the relation

m

∏
k=1

(1+qk−1z)1+k mod 2 =
m+dm/2e

∑
k=0

(
∑

t1+t2+···+tm=k

m

∏
i=1

(
1+ i mod 2

ti

)
q(i−1)ti

)
zk

is true for any integer m, 1 6 m < n. We can write

n

∏
k=1

(1+qk−1z)1+k mod 2 = (1+qn−1z)1+n mod 2
n−1

∏
k=1

(1+qk−1z)1+k mod 2 =

=

(
1+n mod 2

∑
k=0

(
1+n mod 2

k

)
q(n−1)kzk

)(
n−1+d(n−1)/2e

∑
k=0

(
∑

t1+t2+···+tn−1=k

n−1

∏
i=1

(
1+ i mod 2

ti

)
q(i−1)ti

)
zk

)
=

=
∞

∑
k=0

(
∑

t1+t2+···+tn=k

n

∏
i=1

(
1+ i mod 2

ti

)
q(i−1)ti

)
zk,

where we have invoked the well-known Cauchy multiplications of two power series.

By this lemma, with z replaced by q, we obtain

n

∏
k=1

(1+qk)1+k mod 2 =
n+dn/2e

∑
k=0

∑
t1+t2+···+tn=k

n

∏
i=1

(
1+ i mod 2

ti

)
qt1+2t2+···+ntn .

The limiting case n→ ∞ of this relation read as

∞

∏
k=1

(1+qk)1+k mod 2 =
∞

∑
k=0

∑
t1+2t2+···+ktk=k

n

∏
i=1

(
1+ i mod 2

ti

)
qk.

The proof follows easily considering that 1+ i mod 2 ∈ {1,2}.

3. PROOF OF THEOREM 4

Recall that the reciprocal of the generating function of the overpartitions functions p(n) appears in a clas-
sical theta identity (often attributed to Gauss and sometimes Jacobi) [1, p. 23, eq (2.2.12)]:

(q;q)∞

(−q;q)∞

=
∞

∑
n=−∞

(−1)nqn2
. (3)

The reciprocal of the generating function of the overpartitions functions p(n) can be written as

(q;q)∞

(−q;q)∞

= (q;q)∞(q;q2)∞ =
∞

∏
n=1

(1−qn)1+n mod 2.

By Lemma 2, with z replaced by −q, we obtain

n

∏
k=1

(1−qk)1+k mod 2 =
n+dn/2e

∑
k=0

(
∑

t1+t2+···+tn=k
(−1)k

n

∏
i=1

(
1+ i mod 2

ti

)
qi ti

)
.
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The limiting case n→ ∞ of this relation reads as follows

∞

∏
k=1

(1−qk)1+k mod 2 =
∞

∑
k=0

(
∑

t1+2t2+···+ktk=k

n

∏
i=1

(−1)ti

(
1+ i mod 2

ti

))
qk.

Thus we deduce that the coefficient of qn in (3) is given by

∑
t1+2t2+···+ntn=n

(−1)t1+t2+···+tn(1+ t1 mod 2)(1+ t3 mod 2) · · ·(1+ t2dn/2e−1 mod 2).

The proof follows easily multiplying this expression by (−1)n.
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