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Abstract: We carry out complete membership to Kaplan classes of certain class of finite products with all zeros on unit
circle. In this way we extend Sheil-Small’s, Jahangiri’s and our previous results. An interpretation of the obtained gap
condition in terms of mass and density is given.
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1. INTRODUCTION

Let C be the set of complex numbers and let <7 denote the space of functions analytic in D := {z € C:
|z| < 1} given the usual topology of local uniform convergence. Let 7 C 7 be the class of all functions f
normalized by f(0) = f'(0) — 1 = 0 and such that f' # 0 in D. Also let . C J# be the class of all functions
univalent in .

The functions of the form D > z — 1 —ze™ for t € [0;27) play a central role in the univalent functions
theory. Due to the result of Royster [11] they are used for example as an extremal functions in many articles
(see [12], [3[I, [10]). Moreover, consider finite products of the form

D3z Fy(s T k) = ¢ [[(1—ze )P, (1)
k=1

where { € C\{0},n €N, T,, := (11,12, ...,1,) is an increasing sequence of values from [0;27) such that#, := 0
and P, := (p1,p2,-..,Pn) is a sequence of real numbers. We note that all the zeros of the function F;,(-;7,,; P,)
lie on the unit circle T := {z € C: |z] = 1}. Denote s := Y'}_, px. Now suppose that 1 € R, where R is the set
of all real numbers. We define the class I, of all k € .o/ such that k # 0 in D satisfying the following condition
for every z € D,

)' .
<Z ifA>0

k/, 27
Re<Z (Z)> >4 ifA <0

k(z) .
=0,ifA=0.

Finite products of the form (I]), where s = A and p; have the same sign (i.e. that of 1) are dense in IT) (see
Sheil-Small [[13]]).

We define the class of analytic functions, namely K (e, ). Class K(a, ) together with two intertwined
classes, T(a, B) and its dual, are the means used as universal tools to investigate many well-known subclasses
of . (see Jahangiri [6-8]], Ruscheweyh [12], Sheil-Small [[13-16]]). For o, B > 0, Sheil-Small [13] defined the
Kaplan class K (o, ) as the set of all functions f € < that can be written in the form f(z) = k(z)H(z) where
k €Il,_p and H € o/ is non-zero and satisfies the following condition for z € I,

largH(z)] < gmin{a,[i} .

The class K (e, ) is called Kaplan class because using the Kaplan method [9], one can show that a function
f € A is close-to-convex of order o > 0 if and only if f' € K(ct, ¢ +2). The following characterization of
Kalplan classes K (¢, ) is due to Sheil-Small [[13, Theorem 2.2].

Theorem A. Let f € o such that f #0inD and o, > 0. Then f € K(ct, B) if and only if, for 0 < r < 1 and
0, < 6, < 0) +2m,

arg f(re®) —arg f(re%) > —am— 2 (a— B) (61~ ) @
arg f(re®) —arg f(r%) < B~ 3 (e~ ) (01~ 62) @
The two inequalities are equivalent, i.e. each implies the other.
As in the case of the class IT;, we assume further that numbers py in definition (I)) have the same sign,

namely positive and without loss of generality we assume a normalization § := 1. We deduce from [4, Theorem
1.1] that f; € K(1,0) for any k € N,,. For the set of natural numbers N and for N,, := NN[1;m], the following
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theorem is a modified version of a result given by Sheil-Small [16] p. 248].

Theorem B (Sheil-Small). For any polynomial Q € 5 of degree n € N\ {1} with all zeros in'T, if A is minimal
arclength between two consecutives zeros of Q, then Q € K(1,2n/A —n+1).

Theorem B can also be deduced from [|6], where Jahangiri obtained a certain gap condition for polynomials
with all zeros in T. In [4] we extended the Jahangiri’s result for all a, > 0 and effectively determined
complete membership to Kaplan classes of polynomials with all zeros in T. In [5] we carried out complete
membership to Kaplan classes of finite products of the form similar to (I]), but with zeros simetrically situated
in T. In this article we determine a gap condition for zeros of function F,(-;7,;P,) in Kaplan classes, that
is with zeros arbitrarily situated on the circle and any positive powers. This aim was achieved in Theorem
Corollary |1| gives a description of the set IT containing all (o,) such that F,(-;7,;P,) € K(c,B) as a
conjunction of linear inequalities. Example [I|shows the differences in membership to Kaplan classes between
functions F,(-;T,;P,) € K(o, ) depending on the sequences 7, and B,. Moreover, we give an interpretation of
the obtained gap condition in terms of mass and density.

2. MAIN THEOREMS

Assume that t; ., := t; + 27 and py, := pi for all k,n € N. Denote by 7, the arclength of every arc of T
that contains zeros e'«+! eler2 . elats of function Fy(-;T,; P,) for any a,b € {0} UN. In particular for b := 0
the arc does not contain any zeros of F,(-;7,;P,). Denote by 7, the arclength of every arc of T that contains at
least the mass ¢ > 0, i.e. arc contains zeros of function F,(+; T,,; P,) such that the sum of theirs powers is grater
or equal to c.

Lemma 1. For every p > 0 and o > 0 such that 2np — s+ o > 0, the following equivalence holds

I+k
. Tk(s—o) —2m %‘,lp]
YV T, > Y \% s <2mp—s+a.
m>0 p 1€N,ke{0}UN,,_ 2T — Tk
Proof. Fix p > 0 and o > 0 such that 2zp — s+ o > 0. First we prove
I+k
m—o

VT,>— <— V T > — . 4

m>0 P = p leN, keNn bk = <J§1p1 ) @)

The implication @) in direction (=) follows from setting m := Ziﬁ; L1 pj and T, := T ;. Now we prove
implication () in direction (< ). Fix m > 0 and arc of length 7,,. The arc contains at least the mass m, it means
that there exist /,k € N, such that 7,, = 7,4 and Zi.jﬂ pj = m. Since p > 0, so

I+k
L m—a
Tm—flk>* ij > .
Jj=I+1 P

Now taking arbitrary arclength 27 — 7; ; instead of any 7;;, we get s — )| J+ /1 Pj Instead of Zl+ 141 Pj- Hence

I+k
Itk le(S—OC)—QTL'.;lp]

v ‘ck>* Y pi—a) = V N4 e <omp-s+ta.

leN,keN, it IeN,ke{0}UN,,_; 2T — Tk
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Now we obtain the following gap condition for the zeros of F,(-;T,; P,).
Theorem 1. Ifn € N\ {1}, then for all o« > 0 and p > 0 such that 2np —s+ ot > 0,
F.( Ty Py) € K (a,2mp —s+ )
if and only if for every m € [0;s] the arclength T, of every arc of T has to satisfy

0, > =% (5)

Proof. Fix k € {0}UN,,_;. Forevery l € N, let 0; € I; and 6, € I;,. By (3) for every r € [0; 1) we obtain
aran(reiez;Tn;Pn) — aran(reiel;Tn;Pn) =
! —rsin(6, —¢; —rsin(0) —1¢;
=Y pj|arctan rsin(62 — ;) — arctan rsin(01 — 1)) .
1 —rcos(6, —t)) 1 —rcos(6; —1t))

J=1

Consider the above equality with r — 17, 0; # t; and 6, # 1, for every [ € N,,. Hence

rlg}lﬁ(argF( 2. Ty Py) — arg Fy (rel® 7,5 Py)) =

Zi: <arctan (1_8222(6292_62)) — arctan (W)) =
Zi: <arctan (tan <92 2_ b 72T>> — arctan (tan (91 2_tj — 72T> )>
i (ﬂ—n’Ent<622;tj> — el_éj_n—kﬂEnt(elz;tj)) =
- 92;91s—7ri’1pj (Ent (922;tj> —Ent <012;tj>> .

J

For every [ € N,

1 91—1‘]‘ ! Gl—lj 1 Gl—tj
ijEnt< 7 >:Z’p.,-Ent< o +.Z p;Ent T =

Jj=l+1

Now we have two cases:
1. If I+ k <n, then

ZpJEnt< ) lf;;,}«:m( ) Z pJEnt<62 )

Jj=l4k+1
I+k n
“Yor ¥ w=- % on
Jj=l4k+1 Jj=l4k+1

and as a consequence

n 92—tj el_tj I+k
p-(Ent()—Ent( ~ Y g
jzzl ! 2n 2n j:zl;rl !
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2. If I +k > n, then

n 6, — tj I+k—n 6, — tj s 6, — l‘j
ijEnt( ) = Z p;Ent + Z p;Ent( — | =
=1 2n =1 2 j=lk—nt1 2

I+k—n n I+k—n I+k

=Y pi+ )Y 0=Y pi=Y »p;,

j=1 Jj=l+k—n+1 j=1 Jj=n+1

and as a consequence

" 92—l‘j Gl—tj Itk
p.<Em<>_Em( ~ Y i
j:Z:l / 21 21 FZI:’FI /

Hence
: i0 i6 6, — 61 v
111{1 (arg F,(re'™; T3 By) — arg Fy (re'; T3 Py)) = s—T z Dj
r—1- .
Jj=I+1

Assume that
Q= {(x’y7z) ER3 x<y<2m+xandz€ [0,1]}

and
Ei= {(x,y,z) eR3: _HN(x:tj ory=t;)and z = 1} .
je

For all o, B > 0 the function
- i6, i0 a—pf
Q\E>(61,05,r) — @©(0y,6,,r) := arg F,(re'™;T,; P,) —arg F, (re'"; T, P,) + T(el —6)

is harmonic on int(Q). Since

liminf arctan (

—rsin(6; —1;) > _Sm(el_”)>

T .
— —— = lim arctan (

(61,r)—(17,17) 1—rcos(6; —1) 2 g 1 —cos(6; —17)
and
—rsin(6y —11n— —sin(6 — 14,
lim sup arctan( rsin(6> = fr4n ) >— T_ lim arctan( sin(62 — i-n—k) >
(82,1) = (tr4nics 1) 1-— I’COS(92 — tl+n7k) 2 Ot 4 1— COS(92 _tl+nfk)
forl € N,, so
sup <limsup (p(Cn)> = sup ©(601,6,,r) , (6)
g\ nofee (61,6,7)efr(Q)\E

where ¢ : N — int(Q) is a sequence such that lirJrrl n € fr(Q). Therefore by [1} p. 8, Corollary 1.10] and (6)
n—y oo

we obtain

sup (p(917927r) < sup @(917627r) .
(917927r)€int(£2) (91,92,;’)6&(9)\3

On the other hand by continouity of ¢ we get

sup (P(617627r)_ sup (P(917027r) > sup (p(@l,Gz,r) .
(61,62,r)€int(Q) (61,6,,r)EQ\E (61,62,r)Efr(Q)\E
Therefore
sup ©(61,65,r) = sup ©(61,0,,r) .

(91,92,r)€int(£2) (el,ez,r)Efr(Q)\E
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Consider the inequality (3) replacing f := F,(-;T,; P,) for 6; < 6, <2m+6; and r € [0;1),
io i0 a—p
arg F, (re'”; T,; P,) — arg F, (re'”"; T, B,) < B — T(el —-6)

or equivalently

B> 2arg F,(re'%; T, B,) — 2arg F, (re'%; T, P,) — (6, — 6))
- 27— 6, + 6, .

Since k € {0} UN,,_; is arbitrary chosen, so for all & > 0, 6; € I; and 6, € I there exists arc of arclength 7; x
such that

(N

Itk Itk
(G—0)(s—a)-2r ¥ p; Tu(s—a)—=2w ¥ p;
=i+t j=IF1
2 — (6, — 6) - 2T — T i

Therefore, for a, 8 > 0, F,(-;T,,;P,) € K(a, ) if and only if

I+k
Ti(s—a)—2m le ]pj
=i+
v > !
leN,,ke{O}UNn,lﬁ - 2T — T i
Setting 8 :=27p — s+ o, by Lemma l] we obtain the thesis of the theorem. O

Corollary 1. Ifn € N\ {1}, then for all a > max{pi,p2,...,pn} and B >0,

Fn(‘;Tn;Pn) € K(OC,B)

if and only if
I+k
n—2 (k1 — 1) (s —x) =21 ; P
a,p)e x,y) € R? : y > max = 8
(a.B) ]DO (x,y) y > max TP ®)

From Corollary [1] we see that the set of all classes K (¢, ) for the function F;,(+; T,,; P,) is an intersection of
a finite number of closed half-planes. Formula (8) is convenient to determine the full membership to Kaplan
classes of function F,(+; T,,; P,).

Remark 1. Let us notice that & occurring in Theorem [1|can be interpretated as a change in mass of arc, such
that p is the minimal density of mass m — o on arc of arclength 1, for all m € [0;s].

Example 1. Consider functions:

fii=F5 (5(0,1/27,7/6m); (1,v2,0) ) |
fri=F (.;(0,1/2n,7/6n);(1,e,\/5)> :
fr=F (.;(0, 1/2n,7/67r);(ﬁ,1,e)) :
f1:=F (-;(0, 1/27,7/67); (e, 1,\@)) ,
fs = Fs (.;(0, 1/2m,7/67);(V/2,e, 1)) 7
foi=F5 (5(0,1/27,7/6m); (e,V2,1) ) -

The following figures show complete membership to Kaplan classes of fi, f2, f3, f4, f5 and fe.
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(e,?\/if]) (e (0,3\/5—1)
(e+\f—§,:—2) (e+f—%.§)
(1+\/§+e,0) (1+\/§+e,0) (1+\/5+e.0)
Kaplan classes of fi and f> Kaplan classes of f3 and fy Kaplan classes of f5 and fg
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