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1. INTRODUCTION

Let C be the set of complex numbers and let A denote the space of functions analytic in D := {z ∈ C :
|z| < 1} given the usual topology of local uniform convergence. Let H ⊂ A be the class of all functions f
normalized by f (0) = f ′(0)−1 = 0 and such that f ′ 6= 0 in D. Also let S ⊂H be the class of all functions
univalent in D.

The functions of the form D 3 z 7→ 1− ze−it for t ∈ [0;2π) play a central role in the univalent functions
theory. Due to the result of Royster [11] they are used for example as an extremal functions in many articles
(see [2], [3], [10]). Moreover, consider finite products of the form

D 3 z 7→ Fn(z;Tn;Pn) := ζ ·
n

∏
k=1

(1− ze−itk)pk , (1)

where ζ ∈C\{0}, n ∈N, Tn := (t1, t2, . . . , tn) is an increasing sequence of values from [0;2π) such that t1 := 0
and Pn := (p1, p2, . . . , pn) is a sequence of real numbers. We note that all the zeros of the function Fn(·;Tn;Pn)
lie on the unit circle T := {z ∈ C : |z|= 1}. Denote s := ∑

n
k=1 pk. Now suppose that λ ∈ R, where R is the set

of all real numbers. We define the class Πλ of all k ∈A such that k 6= 0 in D satisfying the following condition
for every z ∈ D,

Re
(

zk′(z)
k(z)

)
< λ

2 , if λ > 0
> λ

2 , if λ < 0
= 0, if λ = 0 .

Finite products of the form (1), where s = λ and pk have the same sign (i.e. that of λ ) are dense in Πλ (see
Sheil-Small [13]).

We define the class of analytic functions, namely K(α,β ). Class K(α,β ) together with two intertwined
classes, T (α,β ) and its dual, are the means used as universal tools to investigate many well-known subclasses
of S (see Jahangiri [6–8], Ruscheweyh [12], Sheil-Small [13–16]). For α,β ≥ 0, Sheil-Small [13] defined the
Kaplan class K(α,β ) as the set of all functions f ∈A that can be written in the form f (z) = k(z)H(z) where
k ∈Πα−β and H ∈A is non-zero and satisfies the following condition for z ∈ D,

|argH(z)| ≤ π

2
min{α,β} .

The class K(α,β ) is called Kaplan class because using the Kaplan method [9], one can show that a function
f ∈H is close-to-convex of order α ≥ 0 if and only if f ′ ∈ K(α,α + 2). The following characterization of
Kalplan classes K(α,β ) is due to Sheil-Small [13, Theorem 2.2].

Theorem A. Let f ∈A such that f 6= 0 in D and α,β ≥ 0. Then f ∈ K(α,β ) if and only if, for 0 < r < 1 and
θ1 < θ2 < θ1 +2π ,

arg f (reiθ2)− arg f (reiθ1)≥−απ− 1
2
(α−β )(θ1−θ2) ; (2)

arg f (reiθ2)− arg f (reiθ1)≤ βπ− 1
2
(α−β )(θ1−θ2) . (3)

The two inequalities are equivalent, i.e. each implies the other.

As in the case of the class Πλ , we assume further that numbers pk in definition (1) have the same sign,
namely positive and without loss of generality we assume a normalization ζ := 1. We deduce from [4, Theorem
1.1] that fk ∈ K(1,0) for any k ∈ Nn. For the set of natural numbers N and for Nm := N∩ [1;m], the following
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theorem is a modified version of a result given by Sheil-Small [16, p. 248].

Theorem B (Sheil-Small). For any polynomial Q∈Hd of degree n∈N\{1} with all zeros in T, if λ is minimal
arclength between two consecutives zeros of Q, then Q ∈ K(1,2π/λ −n+1).

Theorem B can also be deduced from [6], where Jahangiri obtained a certain gap condition for polynomials
with all zeros in T. In [4] we extended the Jahangiri’s result for all α,β ≥ 0 and effectively determined
complete membership to Kaplan classes of polynomials with all zeros in T. In [5] we carried out complete
membership to Kaplan classes of finite products of the form similar to (1), but with zeros simetrically situated
in T. In this article we determine a gap condition for zeros of function Fn(·;Tn;Pn) in Kaplan classes, that
is with zeros arbitrarily situated on the circle and any positive powers. This aim was achieved in Theorem
1. Corollary 1 gives a description of the set Π containing all (α,β ) such that Fn(·;Tn;Pn) ∈ K(α,β ) as a
conjunction of linear inequalities. Example 1 shows the differences in membership to Kaplan classes between
functions Fn(·;Tn;Pn) ∈ K(α,β ) depending on the sequences Tn and Pn. Moreover, we give an interpretation of
the obtained gap condition in terms of mass and density.

2. MAIN THEOREMS

Assume that tk+n := tk +2π and pk+n := pk for all k,n ∈ N. Denote by τa,b the arclength of every arc of T
that contains zeros eita+1 ,eita+2 , . . . ,eita+b of function Fn(·;Tn;Pn) for any a,b ∈ {0}∪N. In particular for b := 0
the arc does not contain any zeros of Fn(·;Tn;Pn). Denote by τc the arclength of every arc of T that contains at
least the mass c > 0, i.e. arc contains zeros of function Fn(·;Tn;Pn) such that the sum of theirs powers is grater
or equal to c.

Lemma 1. For every ρ > 0 and α ≥ 0 such that 2πρ− s+α ≥ 0, the following equivalence holds

∀
m>0

τm ≥
m−α

ρ
⇐⇒ ∀

l∈Nn
∀

k∈{0}∪Nn−1

τl,k(s−α)−2π
l+k
∑

j=l+1
p j

2π− τl,k
≤ 2πρ− s+α .

Proof. Fix ρ > 0 and α ≥ 0 such that 2πρ− s+α ≥ 0. First we prove

∀
m>0

τm ≥
m−α

ρ
⇐⇒ ∀

l∈Nn
∀

k∈Nn
τl,k ≥

1
ρ

(
l+k

∑
j=l+1

p j−α

)
. (4)

The implication (4) in direction (⇒) follows from setting m := ∑
l+k
j=l+1 p j and τm := τl,k. Now we prove

implication (4) in direction (⇐). Fix m > 0 and arc of length τm. The arc contains at least the mass m, it means
that there exist l,k ∈ Nn such that τm = τl,k and ∑

l+k
j=l+1 p j ≥ m. Since ρ > 0, so

τm = τl,k ≥
1
ρ

(
l+k

∑
j=l+1

p j−α

)
≥ m−α

ρ
.

Now taking arbitrary arclength 2π− τl,k instead of any τl,k, we get s−∑
l+k
j=l+1 p j instead of ∑

l+k
j=l+1 p j. Hence

∀
l∈Nn

∀
k∈Nn

τl,k ≥
1
ρ

(
l+k

∑
j=l+1

p j−α

)
⇐⇒ ∀

l∈Nn
∀

k∈{0}∪Nn−1

τl,k(s−α)−2π
l+k
∑

j=l+1
p j

2π− τl,k
≤ 2πρ− s+α .
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Now we obtain the following gap condition for the zeros of Fn(·;Tn;Pn).

Theorem 1. If n ∈ N\{1}, then for all α ≥ 0 and ρ > 0 such that 2πρ− s+α ≥ 0,

Fn(·;Tn;Pn) ∈ K (α,2πρ− s+α)

if and only if for every m ∈ [0;s] the arclength τm of every arc of T has to satisfy

τm ≥
m−α

ρ
. (5)

Proof. Fix k ∈ {0}∪Nn−1. For every l ∈ Nn let θ1 ∈ Il and θ2 ∈ Il+k. By (3) for every r ∈ [0;1) we obtain

argFn(reiθ2 ;Tn;Pn)− argFn(reiθ1 ;Tn;Pn) =

=
n

∑
j=1

p j

(
arctan

(
−r sin(θ2− t j)

1− r cos(θ2− t j)

)
− arctan

(
−r sin(θ1− t j)

1− r cos(θ1− t j)

))
.

Consider the above equality with r→ 1−, θ1 6= tl and θ2 6= tl+k for every l ∈ Nn. Hence

lim
r→1−

(argFn(reiθ2 ;Tn;Pn)− argFn(reiθ1 ;Tn;Pn)) =

=
n

∑
j=1

p j

(
arctan

(
−sin(θ2− t j)

1− cos(θ2− t j)

)
− arctan

(
−sin(θ1− t j)

1− cos(θ1− t j)

))
=

=
n

∑
j=1

p j

(
arctan

(
tan
(

θ2− t j

2
− π

2

))
− arctan

(
tan
(

θ1− t j

2
− π

2

)))
=

=
n

∑
j=1

p j

(
θ2− t j−π

2
−π Ent

(
θ2− t j

2π

)
−

θ1− t j−π

2
+π Ent

(
θ1− t j

2π

))
=

=
θ2−θ1

2
s−π

n

∑
j=1

p j

(
Ent
(

θ2− t j

2π

)
−Ent

(
θ1− t j

2π

))
.

For every l ∈ Nn,

n

∑
j=1

p j Ent
(

θ1− t j

2π

)
=

l

∑
j=1

p j Ent
(

θ1− t j

2π

)
+

n

∑
j=l+1

p j Ent
(

θ1− t j

2π

)
=

=
l

∑
j=1

0+
n

∑
j=l+1

(−p j) =−
n

∑
j=l+1

p j .

Now we have two cases:
1. If l + k ≤ n, then

n

∑
j=1

p j Ent
(

θ2− t j

2π

)
=

l+k

∑
j=1

p j Ent
(

θ2− t j

2π

)
+

n

∑
j=l+k+1

p j Ent
(

θ2− t j

2π

)
=

=
l+k

∑
j=1

0+
n

∑
j=l+k+1

(−p j) =−
n

∑
j=l+k+1

p j ,

and as a consequence

n

∑
j=1

p j

(
Ent
(

θ2− t j

2π

)
−Ent

(
θ1− t j

2π

))
=

l+k

∑
j=l+1

p j .
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2. If l + k > n, then

n

∑
j=1

p j Ent
(

θ2− t j

2π

)
=

l+k−n

∑
j=1

p j Ent
(

θ2− t j

2π

)
+

n

∑
j=l+k−n+1

p j Ent
(

θ2− t j

2π

)
=

=
l+k−n

∑
j=1

p j +
n

∑
j=l+k−n+1

0 =
l+k−n

∑
j=1

p j =
l+k

∑
j=n+1

p j ,

and as a consequence

n

∑
j=1

p j

(
Ent
(

θ2− t j

2π

)
−Ent

(
θ1− t j

2π

))
=

l+k

∑
j=l+1

p j .

Hence

lim
r→1−

(argFn(reiθ2 ;Tn;Pn)− argFn(reiθ1 ;Tn;Pn)) =
θ2−θ1

2
s−π

l+k

∑
j=l+1

p j .

Assume that
Ω := {(x,y,z) ∈ R3 : x≤ y≤ 2π + x and z ∈ [0;1]}

and

Ξ :=
{
(x,y,z) ∈ R3 : ∃

j∈N
(x = t j or y = t j) and z = 1

}
.

For all α,β ≥ 0 the function

Ω\Ξ 3 (θ1,θ2,r) 7→ ϕ(θ1,θ2,r) := argFn(reiθ2 ;Tn;Pn)− argFn(reiθ1 ;Tn;Pn)+
α−β

2
(θ1−θ2)

is harmonic on int(Ω). Since

liminf
(θ1,r)→(tl ,1−)

arctan
(
−r sin(θ1− tl)

1− r cos(θ1− tl)

)
=−π

2
= lim

θ1→t+l
arctan

(
−sin(θ1− tl)

1− cos(θ1− tl)

)
and

limsup
(θ2,r)→(tl+n−k,1−)

arctan
(
−r sin(θ2− tl+n−k)

1− r cos(θ2− tl+n−k)

)
=

π

2
= lim

θ2→t−l+n−k

arctan
(
−sin(θ2− tl+n−k)

1− cos(θ2− tl+n−k)

)
for l ∈ Nn, so

sup
ζ

(
limsup
n→+∞

ϕ(ζn)

)
= sup

(θ1,θ2,r)∈fr(Ω)\Ξ
ϕ(θ1,θ2,r) , (6)

where ζ : N→ int(Ω) is a sequence such that lim
n→+∞

ζn ∈ fr(Ω). Therefore by [1, p. 8, Corollary 1.10] and (6)

we obtain
sup

(θ1,θ2,r)∈int(Ω)

ϕ(θ1,θ2,r)≤ sup
(θ1,θ2,r)∈fr(Ω)\Ξ

ϕ(θ1,θ2,r) .

On the other hand by continouity of ϕ we get

sup
(θ1,θ2,r)∈int(Ω)

ϕ(θ1,θ2,r) = sup
(θ1,θ2,r)∈Ω\Ξ

ϕ(θ1,θ2,r)≥ sup
(θ1,θ2,r)∈fr(Ω)\Ξ

ϕ(θ1,θ2,r) .

Therefore
sup

(θ1,θ2,r)∈int(Ω)

ϕ(θ1,θ2,r) = sup
(θ1,θ2,r)∈fr(Ω)\Ξ

ϕ(θ1,θ2,r) .
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Consider the inequality (3) replacing f := Fn(·;Tn;Pn) for θ1 < θ2 < 2π +θ1 and r ∈ [0;1),

argFn(reiθ2 ;Tn;Pn)− argFn(reiθ1 ;Tn;Pn)≤ βπ− α−β

2
(θ1−θ2)

or equivalently

β ≥ 2argFn(reiθ2 ;Tn;Pn)−2argFn(reiθ1 ;Tn;Pn)−α(θ2−θ1)

2π−θ2 +θ1
. (7)

Since k ∈ {0}∪Nn−1 is arbitrary chosen, so for all α ≥ 0, θ1 ∈ Il and θ2 ∈ Il+k there exists arc of arclength τl,k
such that

(θ2−θ1)(s−α)−2π
l+k
∑

j=l+1
p j

2π− (θ2−θ1)
=

τl,k(s−α)−2π
l+k
∑

j=l+1
p j

2π− τl,k
.

Therefore, for α,β ≥ 0, Fn(·;Tn;Pn) ∈ K(α,β ) if and only if

∀
l∈Nn

∀
k∈{0}∪Nn−1

β ≥
τl,k(s−α)−2π

l+k
∑

j=l+1
p j

2π− τl,k
.

Setting β := 2πρ− s+α , by Lemma 1 we obtain the thesis of the theorem.

Corollary 1. If n ∈ N\{1}, then for all α ≥max{p1, p2, . . . , pn} and β ≥ 0,

Fn(·;Tn;Pn) ∈ K (α,β )

if and only if

(α,β ) ∈
n−2⋂
k=0

(x,y) ∈ R2 : y≥max
l∈Nn


(tl+k+1− tl)(s− x)−2π

l+k
∑

j=l+1
p j

2π− tl+k+1 + tl


 (8)

From Corollary 1 we see that the set of all classes K(α,β ) for the function Fn(·;Tn;Pn) is an intersection of
a finite number of closed half-planes. Formula (8) is convenient to determine the full membership to Kaplan
classes of function Fn(·;Tn;Pn).

Remark 1. Let us notice that α occurring in Theorem 1 can be interpretated as a change in mass of arc, such
that ρ is the minimal density of mass m−α on arc of arclength τm for all m ∈ [0;s].

Example 1. Consider functions:

f1 := F3

(
·;(0,1/2π,7/6π);(1,

√
2,e)

)
,

f2 := F3

(
·;(0,1/2π,7/6π);(1,e,

√
2)
)
,

f3 := F3

(
·;(0,1/2π,7/6π);(

√
2,1,e)

)
,

f4 := F3

(
·;(0,1/2π,7/6π);(e,1,

√
2)
)
,

f5 := F3

(
·;(0,1/2π,7/6π);(

√
2,e,1)

)
,

f6 := F3

(
·;(0,1/2π,7/6π);(e,

√
2,1)

)
.

The following figures show complete membership to Kaplan classes of f1, f2, f3, f4, f5 and f6.
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Kaplan classes of f1 and f2 Kaplan classes of f3 and f4 Kaplan classes of f5 and f6
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