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Abstract. We report the deformation of the needle during its insertion into the human liver in the 

context of surgery simulation of the high- robotic-assisted intraoperative treatment of liver tumors 

based on the integrated imaging-molecular diagnosis. The bee needle is modeled as a flexible thread 

within the framework of the nonlinear elasticity theory.  The motion equations of the needle are 

similar to Tzitzeica equations of surfaces which are invariant under the group of centro-affine 

transformations. That means the surfaces tend to minimize their area and have a minimal Dirichlet 

energy of how variable a function is. The closed form solutions are obtained for deformation of the 

needle. In addition, the collision between the needle and the tissues is modeled as a minimization 

problem. 
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1. INTRODUCTION 

Understanding the surgical needle response during the insertion into the liver is a problem of 

longstanding interest for the realistic surgical simulators of the cutting procedures for malignant hepatic 

tumours [1-3]. The treatment of non-resecable hepatic tumors is achieved by delivery into the tumor of an 

active chemotherapeutic agent with the help of a surgical needle. The needle trajectories are optimized in 

order to not collide with other organs or tissues, blood vessels or nerves. Fig.1 presents the tumor position 

and possible collision-free trajectories of the surgical needle. 

Current analysis in laparoscopy has stimulated an awareness that the deformations and topological 

changes of the needle during its passage towards the tumor can have significant effects and repercussions on 

the surgical act [4]. The needle insertion can cause deformation and even damage of the liver if its 

deformations are significant [5].  

In this paper a surgical robot consisted of a revolute joint and a flexible needle is considered (Fig.1). 

The Lagrange reference system of coordinates ( , , )X Y Z  of unit vectors 1 2 3( , , )e e e with the origin O  located 

in the entry point of the skin is attached to the needle. A local Euler system of coordinate with the unit 

vectors 1 2 3( , , )d d d  is attached to the flexible needle to describe the position and orientation of the needle 

who must carry drugs to the tumor. The angle between the needle and the axis 1x  is 1 , which represents the 

generalized coordinate of the rigid system. The serial robot has f degrees of freedom r ef f f= + , where 

rf = 1 is the rigid body degree of freedom, and 3ef =  are the elastic degrees of freedom representing the 

deformations of the needle at bending 1 2,u u  and torsion 3u . The generalized coordinates vector is  

1 1 2 3[ , , , ]Tq u u u=  . 

The environment containing the organs, ribs, blood vessels and the tumor and possible collision-free 

trajectories of the surgical needle are represented in Fig.2.  

 Different types of needles were analyzed before choosing the surgical needle [7, 8]. The flexible bee 

barbed needle proposed by Sahlabadi [6] is chosen for some of its advantages such as: it decreases the most 

the insertion force, that is with 24%, and therefore it decreases the tissue deformation by 17% because of the 
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tip deflection. The characteristics of this needle are: the front angle has 157 deg, the back angle, 110 deg, the 

height is 0.5mm, and the tip thickness 0.15mm. The honeybee barbed needle model is presented in Fig. 3 [6]. 

 
Fig.1 – Surgical robot consisted of a revolute joint and a flexible needle. The Lagrange coordinate system OXY  and the local Euler 

coordinate systems are attached to flexible needle. 

 

 
Fig.2 – Tumor position and possible collision-free trajectories of the surgical needle. 

 

 
Fig. 3 – Honeybee barbed needle model inspired from [6]. 
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2. MODELING THE FLEXIBLE NEEDLE INSERTION INTO THE HUMAN LIVER 

The flexible needle is modeled as an elastic thread within the framework of the elastic theory of the 

thin elastic thread [9, 10]. The limitation of the current methods existing in the literature consists in applying 

only 1D linear elasticity theories to a 3D problem with significant nonlinear properties [10, 11]. 

In what follows, we present some results which fill a gap in the simulation of the surgical needle 

deformation because, despite the current methods in the modeling of the needle response during its insertion 

into the tumor, no realistic methods  and results have been  identified.  

Let us consider the case of a tumor located in a difficult place to be reached in the vicinity of the portal 

tree in the vascular territory of the liver. Location of the tumor, the vascular territory and the vessel branches 

in the vicinity of the tumor are displayed in Fig.4.  

Fig.4a represents location of the tumor and Fig 4b, the vascular territory and the vessel branches in the 

vicinity of the tumor. It is assumed that the collision-free needle trajectory towards the tumor can take any 

form even if physically they cannot be realized.  

The medical robot is designed for interventions that are difficult to perform in the classic way. In this 

sense, the restrictions refer to the minimal destruction of healthy tissues (no wrong cuts, no sectioning of 

blood vessels or nerves). The simplest and most natural shape of the needle trajectory is the straight line 

which connects the point of entry into the skin to the tumor. But in the most cases, the trajectory can take 

different forms due to the restriction of avoiding collisions with organs and tissues. Possible such trajectories 

are displayed in Fig.5, but the optimal shape of  the trajectories is obtained from an optimization problem. 

 

   

 
Fig. 4 – a) Location of the tumor; b) Vascular territory (1) and the vessel branches in the vicinity of tumor (2). 

 

 

 
Fig.5 – Different shapes for a trajectory. 
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The optimization problem of determining the free-collision trajectories of the surgical needle must take 

into account all difficulties which occur in such operation: (1) the needle must solve its task of transporting 

drugs into the tumor, (2) the insertion trajectory of the needle should avoid the ribs, blood vessels, and other 

tissues and organs in the abdominal cavity.  

The minimum distance problem can be modeled as a minimization problem that checks the minimum 

distance between the needle and the tissue [10] 

1 2 1 2

1
min ( ) ( )

2

Tr r r r
 

− − 
 

,                                                   (1) 

with 1 2,r r   the position vectors of two points belonging to the needle and the tissue. The interference distance 

or penetration is expressed as 

1 1 2 2min( ),  g ( ) ,   g ( )
2 2

d d
d r r−  −  − ,                                     (2) 

where d  is the penetration and 1g , 2g are the surfaces to the needle and the tissue, respectively (Fig.6).   

 

 
 

Fig.6 –Minimum distance problem. 
 

Let s be the coordinate along the central line of the natural state of the needle. The simulation is 

performed for a bee needle made from shape memory alloys with 55% Nickel and 45% titanium, with 

density ρ = 6.5 
3kg/m , the modulus of elasticity E =  32.3 GPa at bending,  and the Poisson’s ratio  =  

0.48. 

 The Lagrange technique is used to obtain the motion equations of the needle with the ends fixed by the 

force F f= − with 1 2 3( , , )f f f f= . This force describes the contact between the needle and the tissue cf p n= . 

The prime means the partial differentiation with respect to s. The motion equations of the surgical needle are 

obtained as [9] 

                           0r f − − = ,                                                                                (3) 
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2 ( cos ) ( cos ) 0k C
t s

 
 − +  +  +  =

 
.                                                 (6) 

where ,   and   are the Euler angles, ( , )r s t is the position vector which can be interpreted as the image of 

the central axis in the Euler configuration, 1 2 3( , , )f f f f= is the force applied to the needle, ρ  is the mass 
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density per unit volume,  A and C are the bending stiffness and respectively the torsional stiffness of the 

needle, related to the Lamé constants  ,   by 4 41 1
, ,

4 2
A a E C a=  =   where E   is the  flexural Young's 

modulus, and a  is the radius of the cross section of the needle.  The dot means the differentiation with 

respect to time.  

The unknowns in the motion equations (3-6) are the Euler angles ,   and  . The system of equations 

(3-6) are solved by the cnoidal method [9]. The method is reducible to a generalization of the Fourier series 

with the cnoidal functions as the fundamental basis function. This is because the cnoidal functions are much 

richer than the trigonometric or hyperbolic functions, that is, the modulus m  of the cnoidal function, 

0 1m  , can be varied to obtain a sine or cosine function ( 0)m  , a Stokes function ( 0.5)m   or a 

solitonic function, sech or tanh ( 1)m  .  

The relationship between the Euler angles and the needle deformation is given by 

1 sin sin cosu  =   −   , 

                              2 cos sin sinu  =   +     ,                                                        (7) 

3 cosu  =  +   . 

The functions  1 2 3( , , )u u u  measure the bending and torsion of the needle. 

 

3. RESULTS 

 

The minimization problem (1, 2) is solved by using a genetic algorithm [10]. The objective function is 

minimized 

2

1 2 1 2

1

1
( ) ( )

2

N
T

i i i i

i

r r r r
=

  
= − −  

  
 ,                                            (8) 

subjected to restrictions 

1 1 2 2min( ),  g ( ) ,   g ( )
2 2

d d
d r r−  −  − .                                       (9) 

Three locally 2D optimal collision-free trajectories for the surgical needle corresponding to three 

different entry points into the skin A, B and C are displayed in Fig.7. 
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Fig.7 – Three 2D optimal collision-free trajectories for the needle robot. 

 
The motion equations (3-6) possess a special type of solutions. These solutions known as solitons are 

localized functions that conserve their properties even after interaction among them, and then act somewhat 

like particles [9].  

The system of equations has interesting properties: an infinite number of local conserved quantities, an 

infinite number of exact solutions expressed in terms of the Jacobi elliptic functions (cnoidal solutions) or 

the hyperbolic functions (soliton solutions), and the simple formulae for nonlinear superposition of explicit 

solutions.  

In addition, these equations are invariants under the group of centro-affine transformations, being 

similar to the partial differential equations which arise in the Tzitzeica surfaces theory [9]. Tzitzeica surfaces 

that have the essential property to be invariant under the group of centro-affine transformations [9, 13]. That 

means that the surfaces locally tend to minimize their area and to have a minimal Dirichlet energy that 

measures of how variable a function is.  

With other words, the surfaces have only local optima, not global optima and the functions are stable 

with no tendency towards the chaos. 

The closed form solutions of the Euler angles ,   and   are given by [9] 
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where   2 3

1 3

m
 − 
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 is the normal elliptic integral of 

the third kind. Functions 1 2 3, ,    are solutions of the Weierstrass equation 

 2 3 21

2
a b a c =  +  −  + ,                                          (13) 
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which admits the soliton solutions [9]. 

The deformation of the needle during navigation into the liver towards the tumor is represented in Fig. 

8. The bending deformation 1u and 2u are shown in Fig.8a and the torsion deformation 3u  of the needle in 

Fig.8b, respectively. While the deformation of the surgical needle has been extensively studied [1-8] many 

features of the needle behavior remain to be investigated.  

Important characteristics of the needle deformation are obtained by intersection of the surfaces 

1 2 3, ,u u u with constz = . The 2D hyperbolic manifolds ( , )x y  with the curvature 4const / a are obtained. We 

recognize here the Tzitzeica surfaces which have only local optima not global optima [9, 13]. That means 

that the deformation of the needle has periodicity properties. These properties derived not only from the 

properties of the needle but also from the liver properties. Microscopic investigation of the human liver 

offers details of its microanatomy with emphases to the granular, fibrillar components and irregular solid-

fluid interfaces. The mechanical properties of the human liver are investigated in [14] by using a basic 

functional unit of the liver which comprises a hexagonal and a portal triad -portal vein, hepatic artery, bile 

duct. The sonification technique for hardly detectable details in the medical images is also applied for the 

microscopic investigation of the human liver [15]. The 3D manifold of the Tzitzeica variety includes a solid 

torus and three thickened deformation surfaces, as shown in Fig.9.  

 

Fig.8 –  a) The bending deformation 1u and 2u ; b)  the torsion deformation 3u  of the needle. 
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Fig. 9 – The 3D manifold of a Tzitzeica surface. 

4. CONCLUSIONS 

The surgical bee needle deformation during the insertion into the human liver is considered difficult 

because of the complexity and variability of the liver. Based on the thin elastic thread theory, the 

deformation of the bee needle during insertion into the human liver is analyzed.  

The motion equations of the needle are similar to equations which arise in the Tzitzeica surfaces and 

therefore, these equations reveal their invariant properties under the group of centro-affine transformations.  

This trend is to minimize the surface area and the Dirichlet energy that measures the stability of the 

needle deformations. The closed form solutions are obtained for bending and torsion of the needle. The 

modeling of the collision between the needle and the tissues as a minimization problem that checks the 

minimum distance between the needle and the tissue is also developed. 
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