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Abstract. In this paper we find some results of harmonicity and stability criteria on LP Sasakian manifolds.
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1. INTRODUCTION

The theory of harmonic maps combines both global and local aspects and borrow both from Riemannian
geometry and analysis. There are a lot of interesting results about harmonic maps on complex manifolds
(see [8, 15]).

In the analogy to the complex case, in the last decade harmonic maps on almost contact metric manifolds
were studied [1, 2, 4, 5, 7]. The identity map of a compact Riemannian manifold is a trivial example of a har-
monic map but in this case, the theory of the second variation is much more complicated and interesting. For
instance, the stability of the identity map on Einstein manifolds is related with the first eigenvalue of the Lapla-
cian acting on functions [13]. In [14] and [11] we find classifications of compact simply connected irreducible
Riemannian symmetric spaces for which the identity map is unstable.

By a well known result, the identity map on the euclidean sphere S2n+1 is unstable [13]. More generally,
Gherghe, Ianus and Pastore have studied the stability of the identity map on compact Sasakian manifolds with
constant ϕ−sectional curvature [7].

After recalling in section 2 the necessary facts about harmonic maps between general Riemannian mani-
folds, we give some definitions on Lorentz para Khaler manifolds and Lorentz para Sasakian manifolds. Finally
in section 3, we give some results of harmonicity and stability of the identity map on Lorentz para Sasakian
manifolds.

2. PRELIMINARIES

In this section, we recall some well known facts concerning harmonic maps (see [3] for more details). Let
φ : (M,g)−→ (N,h) be a smooth map between two Riemannian manifolds of dimensions m and n respectively.
The energy density of φ is a smooth function e(φ) : M −→ [0,∞) given by

e(φ)p =
1
2

Trg(φ
∗h)(p) =

1
2

m

∑
i=1

h(φ∗pui,φ∗pui),
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for p ∈M and any orthonormal basis {u1, . . . ,um} of TpM. If M is a compact Riemannian manifold, the energy
E(φ) of φ is the integral of its energy density:

E(φ) =
∫

M
e(φ)υg ,

where υg is the volume measure associated with the metric g on M. A map φ ∈C∞(M,N) is said to be harmonic
if it is a critical point of E in the set of all smooth maps between (M,g) and (N,h) i.e. for any smooth variation
φt ∈C∞(M,N) of φ (t ∈ (−ε,ε)) with φ0 = φ , we have

d
dt

E(φt)
∣∣
t=0 = 0.

Now, let (M,g) be a compact Riemannian manifold and φ : (M,g) −→ (N,h) be a harmonic map. We take
a smooth variation φs,t with parameters s, t ∈ (−ε,ε) such that φ0,0 = φ . The corresponding variation vector
fields are denoted by V and W . The Hessian Hφ of a harmonic map φ is defined by

Hφ (V,W ) =
∂ 2

∂ s∂ t
(E(φs,t))

∣∣
(s,t)=(0,0).

The second variation formula of E is ( [9], [13]):

Hφ (V,W ) =
∫

M
h(Jφ (V ),W )υg,

where Jφ is a second order self-adjoint elliptic operator acting on the space of variation vector fields along φ

(which can be identified with Γ(φ−1(T N))) and is defined by

Jφ (V ) =−
m

∑
i=1

(∇̃ui∇̃ui− ∇̃∇ui ui)V −
m

∑
i=1

RN(V,dφ(ui))dφ(ui),

for any V ∈ Γ(φ−1(T N)) and any local orthonormal frame {u1, . . . ,um} on M. Here RN is the curvature tensor
of (N,h) and 5̃ is the pull-back connection by φ of the Levi-Civita connection of N.

The index of a harmonic map φ : (M,g) −→ (N,h) is defined as the dimension of the largest subspace of
Γ(φ−1(T N)) on which the Hessian Hφ is negative definite. A harmonic map φ is said to be stable if the index
of φ is zero and otherwise is said to be unstable.

The operator4φ defined by

4φV =−
m

∑
i=1

(∇̃ui∇̃ui− ∇̃∇ui ui)V, V ∈ Γ(φ−1(T N))

is called the rough Laplacian.
Due to the Hodge de Rham Kodaira theory, the spectrum of Jφ consists of a discrete set of an infinite num-

ber of eigenvalues with finite muiltiplicities and without accumulation points.
Libermann introduced an almost para-Hermitian manifold M(J,h), as a smooth manifold of dimension

2m endowed with an almost para-complex structure J such that J2 = I and a pseudo-Riemannian metric
h(JX ,Y ) = −h(X ,JY ), The fundamental 2-form of almost para-Hermitian manifold is defined by φ(X ,Y ) =
h(JX ,Y ), ∀X ,Y ∈ Γ(T M). An almost para-Hermitian manifold is called para-Kahler if ∇J = 0, see detail [12].

A differentiable manifold Mm with structure ϕ , a (1,1)-tensor field , a vector field ξ and a 1-form η is LP
Sasakian manifold such that

ϕ
2 = I +η⊗ξ and η(ξ ) =−1.

We also have ϕ(ξ ) = 0, ηoϕ = 0 and Rankφ = m−1.
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On any LP Sasakian manifold, we can define a compatible metric that is a metric g such that

g(ϕX ,ϕY ) = g(X ,Y )+η(X)η(Y ).

And

g(X ,ξ ) = η(X), ∇X ξ = φX , (∇X φ)Y = [g(X ,Y )+η(X)η(Y )]ξ +[X +η(X)ξ ]η(Y )

for any vector fields X , Y on M. In this case the manifold will be called LP Sasakian manifold. Further the
following relations hold on LP Sasakian manifolds [10];

R(ξ ,X)Y = g(X ,Y )ξ −η(Y )X ,

R(X ,Y )ξ = η(Y )X−η(X)Y,

R(ξ ,Y )ξ = X +η(X)ξ ,

for any vector fields X , Y on M. R(X ,Y )Z is the Riemannian curvature tensor.

3. MAIN RESULTS

THEOREM 1. Let M1 and M2 be two LP Sasakian manifolds. Suppose that F : M1 → M2 is a (φ1,φ2)-
holomorphic map such that ξ2 ∈ (imdF)⊥. Then τ(F) ∈ D.

Proof. Let {e1,e2, . . . ,en−1,ξ1} be orthonormal basis on T M1. Then {φ1e1,φ1e2, . . . ,φ1en−1,ξ1} are also
orthonormal basis on T M1. We can write

τ(F) =
n−1

∑
i=1

∇dF(φ1ei,φ1ei)+∇dF(ξ1,ξ1)

since ∇dF(ξ1,ξ1) = 0

τ(F) =
n−1

∑
i=1

∇dF(φ1ei,φ1ei)

=
n−1

∑
i=1

φ2[(∇dFeiφ2)dFei]+φ
2
2 (∇dFeidFei)−φ2[dF(∇eiφ1)ei]−φ

2
2 (dF∇eiei)

=
n−1

∑
i=1

φ
2
2 ∇dF(ei,ei)+φ2[(∇dFeiφ2)dFei]−φ2dF [(∇eiφ1)ei]

=
n−1

∑
i=1

φ
2
2 ∇dF(ei,ei)+φ2 [g(dFei,dFei)ξ2 +η2(dFei)dFei +2η2(dFei)η2(dFei)ξ2]

+φ2 dF [g(ei,ei)ξ1 +η1(ei)ei +2η1(ei)η1(ei)ξ1] ,

since dFξ1 = 0 and η1(dFei) = 0,∀i.

τ(F) =
n−1

∑
i=1

φ
2
2 ∇dF(ei,ei)

τ(F) = φ
2
2 τ(F)

τ(F) = τ(F)+η2(τ(F))ξ2

η2(τ(F))ξ2 = 0.

This shows that τ(F) ∈ D.
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THEOREM 2. Any (φ ,J)-holomorphic map from LP Sasakian manifold M( f ,ξ ,η ,g) to a para Kähler
manifold N(J,h) is a harmonic map.

Proof. For such a map we extend formula in [6] for Lorentz para Sasakian and para Kähler manifolds as:

J(τ(F)) = F∗(divφ)− trgβ , (1)

where β (X ,Y ) = (∇̃X J)F∗Y , ∇̃ being the connection induced in the pull-back bundle F∗T N.
Let {e1, ...,em−1,ξ} be a local orthonormal basis on T M, Then we have

divφ =
m

∑
i=1

(∇eiφ)ei

=
m−1

∑
i=1

(∇eiφ)ei +(∇ξ φ)ξ

=
m−1

∑
i=1

[g(ei,ei)ξ +η(ei)ei +2η(ei)η(ei)ξ ]+g(ξ ,ξ )ξ +η(ξ )ξ +2η(ξ )η(ξ )ξ

= (m−1)ξ .

But, as F is (φ ,J)-holomorphic, then F∗(ξ ) = 0 and we get F∗(divφ) = 0. Finally, as N is para Kähler manifold
we have ∇J = 0, and thus the second term of the formula 1 vanishes. Therefore τ(F) = 0 and thus F is
harmonic.

THEOREM 3. Let N(J,h) be a para Kähler manifold, M(φ ,ξ ,η ,g) be a LP Sasakian manifold and F :
N −→M be a (J,φ)-holomorphic map. Then F is harmonic if and only if F is constant.

Proof. For such a map we extend formula in [6] for Lorentz para Sasakian and para Kähler manifolds as:

φ(τ(F)) = F∗(divJ)− trhβ ,

where β (X ,Y ) = (∇̃X φ)(F∗Y ).
Suppose that M is a Kähler manifold of real dimension 2n. Then we have:

divJ =
2n

∑
i=1

(∇eiJ)ei = 0,

where {ei}i=1...2n is an orthonormal local basis on TN. Now, using the formula (??) we obtain

Trhβ =
2n

∑
i=1

(∇̃eiφ)(F∗ei) =
2n

∑
i=1

(∇dFeiφ)(dFei)

=
2n

∑
i=1
{g(dFei,dFei)ξ +η(dFei)dFei +2η(dFei)η(dFei)ξ} .

As F is a (J, f )-holomorphic map, we have η(F∗ei) = η(F∗J2ei) = η( f F∗Jei) = 0 and thus

φ(τ(F)) = −
2n

∑
i=1

g(F∗ei,F∗ei)ξ .

φ
2(τ(F)) = 0.



5 Harmonic maps and stability on Lorentzian para Sasakian manifolds 105

τ(F) = −η(τ(F))ξ

= −g(τ(F),ξ )ξ

= −g(∇dFeidFei−dF∇eiei,ξ )ξ

= −g(∇dFeidFei,ξ )+g(dF∇eiei,ξ )ξ

= −g(∇dFeidFJ2ei,ξ )+g(dFJ2(∇eiei),ξ )ξ

= −g(∇dFeiφdFJei,ξ )+g(φdFJ(∇eiei),ξ )ξ

= −g((∇dFeiφ)dFJei,ξ )−g(φ(∇dFeidFJei),ξ )ξ

= −(g(dFei,dFJei)ξ ,ξ )ξ = g(dFei,φdFei).ξ

τ(F) = 0 implies F is a constant map.

THEOREM 4. Let M be a compact Lorentzian para Sasakian manifold. If m≤ 3, then the identity map 1M

is weakly stable.

Proof. Let M be a compact Lorentzian para Sasakian manifold M(ϕ , ξ , η , g). We consider the identity map
on such a manifold (F = 1M). In this case see [15], the second variation formula is

H1M(V,V ) =
∫

M
h(4V,V )υg−

m

∑
i=1

∫
M

h(R(V,ui)ui,V )υg,

where V ∈ Γ(T M) and {e1, ...,em−1,ξ} is a local orthonormal frame on T M.
Let {e1, ...,em−1,ξ} be an orthonormal local frame. Then we have

R(ei,V )ei = g(V,ei)ei−g(ei,ei)V, (2)

R(ξ ,V )ξ =V +η(V )ξ . (3)

From the above relations, we get

m

∑
i=1

R(ei,V )ei =−(m−3)V

and thus

m

∑
i=1

g(R(ei,V )ei,V ) =−(m−3)g(V,V ).

It is not very difficult to prove that∫
M

h(4V,V )υg =
∫

M
h(∇̃V, ∇̃V )υg, V ∈ Γ(T M),

Now the second varition formula becomes

H1M(V,V ) =
∫

M
h(∇̃V, ∇̃V )−

∫
M
(m−3)g(V,V )υg

and thus the identity map 1M is weakly stable if m≤ 3.
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