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Abstract. In this study, the differential equation system with a mathematical model of parasites is 

examined in cases where infection does not depend on transmission and defense, but on the level of 

infectivity and defense of the parasite and host. When discretization is applied to the differential 

equation, a two-dimensional discrete system is obtained in the range of   [ ,   1] t n n +  then the stability 

of the Neimark-Sacker bifurcation of the positive equilibrium point of this discrete system is 

investigated. Finally, MAPLE and MATLAB package program are used to show the accuracy of the 

results obtained. 
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1. INTRODUCTION 

Great attention has been given to difference equations used in discrete dynamical systems. There are 

many studies in mathematical biology which is one of the domains of applications of difference equations 

obtained from continuous models the differential equation system. In Mathematical Biology, the host-

parasite model has been attracting a lot of attention in recent years [1-6]. There are two basic theories for 

modeling the dynamics of host-parasite systems. Gene for gene and matching allele model describe how 

host-parasite interaction takes place and how host genetics and gene follows the frequency domain parasites. 
Parasites with certain alleles may or may not infect host-carried genes [11]. This model, which is 

evolutionary, suggests that only some parasites can infect certain hosts, and the basis of contagion is 

controlled by only a few genes. Evolutionary ecology models therefore provide more transfer of certain 

parasite species against any host type than other species. In response to this, the success of infection of 

different parasite species is significantly linked to the defensive characteristics of the common host type [12]. 
Discrete-time equations are suitable for describing nonlinear dynamics and chaotic behaviors and are used to 

obtain dynamic results [13]. Fractional order differential equations have been gaining attention in the recent 

years. Mathematical models created with fractional order ordinary differential equations give better results 

than integer order Ordinary Differential Equations [14]. Fractional integral and derivative have many 

definitions, such as Riemann-Liouville fractional integration and Caputo fractional derivative. According to 

these definitions, the Riemann-Liouville fractional derivative of order α∈(0,1] is defined as [32–33] 
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and the Caputo fractional derivative is derived in order to obtain possible solutions 
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In 2014, Khalil et al. introduced a new fractional derivative called conformable fractional derivative 

[16]. In 2015, it was named as the left and right conformable fractional derivatives [17]. According to this 

definition, the left conformable fractional derivative of order (     0,1  with  ): ,f IR  →  is given as 
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and right conformable fractional derivative is defined as 
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To obtain the discretized version of the fractional ordered Lotka-Volterra host-parasite model [18] 
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the greatest integer function is added to equation (3), which has the Caputo fractional order derivative 

2( ) ( ) ( )

( ) ( ) .

t t t t t
D x t a b x h q x h y h y h qx h

h h h h h

t t t
D y t x h y h c b y h

h h h





                   
= − − +  +  −                                     


           =  − + +                      

 (4) 

Here a system of difference equations is obtained from the solution for 0t   in the sub-interval 
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In addition, it is biologically important to ensure the continuity of some terms by adding piecewise constant 

arguments to differential equations. The aim of this study is to examine the dynamic behavior of 

conformable fractional order host parasites with the greatest integer function. The model (3) with 

conformable fractional order is therefore considered as follows: 
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Here  )0,t   denotes the integer part and 0h   is a discretization parameter. This model combines the 

properties of both continuous and discrete-time equations for parasites [19–21]. In Model (6), uninfected 

hosts reproduce at a rate of a , which is reduced by a factor q  modeling traffic due to crowding, and have a 

natural mortality rate of b . The transmission coefficient of infection is   , and  c is an additional death rate 

due to infection of the infected host. Also,    with improvement potential is included, but for analytical 

results presented for mathematical reasons, 0 =  is used [24]. The paper is organized as follows: the process 

of discretization of the model is performed and the system of difference equations is obtained in section 2. 

The stability of the equilibrium points of the model is given in section 3. The Neimark-Sacker bifurcation 

around the positive equilibrium point of the model was shown in section 4 and also the numerical 

simulations of the stability of the Neimark-sacker bifurcation and theoretical results were obtained using the 

central manifold bifurcation theory. 
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2. THE DISCRETIZATION PROCESS 

In this section,(6) we will discretize equation [26]. Let  )    , (   1) ,  0,1,2,...t nh n h n + =  and using the left 

conformable fractional derivative, the first equation in system (6) is obtained as: 
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Bernoulli differential equation is obtained 
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The integral of both sides of the  equation(9) in the interval  ),nh t  is taken with respect to t , 
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While ( 1)t n h→ +  in (10), replacing ( )x nh  with ( )x n : 
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Similarly, we obtain the second equation of system (6): 
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when the integral of both sides of (13) in the interval  ),nh t  is taken with respect to  t , 
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As a result, a two-dimensional discrete system was obtained by discretizing the (6) model 
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3. STABILITY OF EQUILIBRIUM POINTS 

The system (16) has three equilibrium points ( )0 0,0  E = , 1 , 0  
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THEOREM 1. The equilibrium point ( )0 0,0E =  is a saddle point. 
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THEOREM 3. The positive equilibrium point of the system (16), which is 
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From here, the proof is complete. Let 3,  0.5,  1.5,  0.5,  0.5a b c q= = =  = = , and   and h  parameters can 

vary. Figure 1 and Figure 2 below, respectively, show the stability dynamic behaviors at equilibrium point 

2E  for the fractional order   and the h  parameter in equation system (16) with increasing discretization. 

4. NEIMARK-SACKER BIFURCATION ANALYSIS 

Neimark-Sacker bifurcation analysis is a very important issue in discrete-time systems. Here, the 

positive equilibrium point ( ),x y   of the system (16) yields the Neimark-Sacker bifurcation and as it is 

chosen as the bifurcation parameter [30]. 
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. 

Also, from the Nonresonance condition *( ) 0,1p   , 
*

1,2 1, 1,2,3,4( )n n   =  is found. From here the 

Neimark-Sacker bifurcation occurs under the conditions obtained from the system (16). 
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Fig. 1 – Behavior of the system (16) for initial conditions ( )(0), (0) (0.25, 0.5)x y =  with parameters 

3,  0.5,  1.5,  0.5,  0.5,  0.95,  0.75a b c q h= = =  = =  = = . 

 

Let andx x x y y y = − = −  transform the fixed point ( ),x y   of the system (16) 

 

 

 

 
1

2

( ) 1

,

( ,

(

1

)

)

c b h
q

c b h
q

q e

f x yx xe
q

f x yy y
a b

a c
h





 +
−  

  

 +
−  

  



  
  +  − +
  
  

     → +     
      

− 
 

+ + 
 

 (20) 

Here ,  ,  ( )( )A c b B a c uv a b c b
h h 

    
= + + = + + = − +   
   
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
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
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 
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

+

  
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  +
  
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   
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+


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2 2 2 2 2 2
43 2

2 2 26 2

A h q A h
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(21)

 

and for ( ),
T

X x y=  

( )

2

1
1 1 1

, 1 0

1 2 2 12

2 1,
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               2 1  
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( )
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A A
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qe B
h uv e A x y x y

u v

 





   
− −   

    
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 
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  

 
 − − +  

= =  
   

 
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 
   
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 
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  +  + + 
   

   
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Hence, where 
1

2

 
(

)

,
( , )

,

)

(

B x y
B x y

B x y

 
=  
 

and 
1 2

2

,
( , ) ,   ,  

( ,

( )

)

C x y
C x y x y

C x y

 
=  
 

, are symmetrical to linear vector 

functions. The simple eigenvalue of ( )2J E  is 1 1 = , and the corresponding eigenspace 
cE  is one-dimensional. 

( )2J E q q= −  is produced by an eigenvector 2q . Let 2p  be the combined eigenvector, i.e. 

( )2J E p p= − . It is obtained by direct calculation as 

( )

( )
 

 

( ) ( )  
~ 2,  

 

1
~ 2,  

( )

T

T
c b h

q
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 +
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 
 
 

 

Normalizing p  according to q  gives 
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1

1
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T
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q e
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 +
−  
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 
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 
 
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and from here 

( )( )
1

1

1 ( ) ( )
4

e a b c b q h

q


 =

− −  − +
−



 

it is seen , 1p q = , where .,. is 2
1 1 2 2: ,p q p q p q= + , which stands for standard scalar product. 
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The critical normal form coefficient, which determines the direction of flip bifurcation, is obtained by the 

following formula [9] 

( )( )11 1
  , ( , , ) , ( , )

6 2
D p C q q q p B q A I B q q

−
= − − . 

Numerical Simulations. In this section, the above theoretical results are verified. Suppose that the 

parameters 3,  0.5,  1.5,  0.5,  0,  0.95,     0.75a b c q h= = = =  =  = =  are constant. The Neimark-Sacker 

bifurcation point is * 1.6497 = . In this case, ( )2  J E  at the equilibrium point is 

( )2

0.2915 1.6291

0.4349 1.0000
J E

− 
=  
 

 

and the eigenvalues are 
*

1,2 0.6457   0.7635 1( ) i  =  = . 

Also, 

*

1,2d
0.3108 0

)

d

(

=

 
= − 


,  *

1,2  1,   1,2,3,4( )n n   =  is obtained. 

Now ( )1 ,F x y  and ( )2   ,F x y  in equation (20) are 

( ) ( )42 2 3 2 2 3
1 ,   0.0671  0.0401 1.1717 0.1760  0.0634 0.0153 0.0428F x y x xy y x x y xy y O X=− − + + + − + +  

( ) ( )42 3 2
2 , 1.0011 0.6839 0.0347 0.1354F x y x xy x x y O X= + + + + . 
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Fig. 2 – Two trajectories for x  coordinates are drawn according to the number of iterations, for straight ( ) ( ) ( )0 0, ,   0.25, 0.5x y− = ; 

for dashed line ( )( )0 0,   0.5,x y− − + . 
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Fig. 3 – Two trajectories for the y  coordinates are plotted according to the number of iterations, for straight 

( ) ( ) ( )0 0, ,   0.25, 0.5x y− = ; for dashed line ( )( )0 0,   0.5,x y− − + . 
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5. CONCLUSION 

In this study, the host-parasite model with conformable fractional order and greatest integer function 

was discussed and the stability of equilibrium points was investigated by discretizing this model. The system 

(16) of difference equations  was obtained from the solution of the model in the sub-interval  ), ( 1) nh n h+ . It 

was found that ( )( )
( )

q
h c b

a b

 
   + + 

− 
 ensures that the 2E  equilibrium point is locally asymptotically 

stable. For  0.95,  0.75h = = , the local asymptotic stability range from this condition was determined as 

0.6497  . The transcript, flip, and Neimark-Sacker bifurcation point at the positive equilibrium point of 

the discrete systems is  . From here our discrete system (16) forms the Neimark-Sacker bifurcation. 

Stability analysis was performed by applying the Jury criterion to the system (16). From Figure 1, when   is 

selected to remain within this interval ( )0.5 = , it can be seen that the positive equilibrium point of the 

system is locally asymptotic stable. By Neimark-Sacker bifurcation analysis, it was shown that the critical 

bifurcation value is ( )( )*

( )

q
h c b

a b

 
 =  + + 

− 
. In Figures 2–3, the parameter values 

3,  0.5,  1.5,  0.5,  0,  0.95,    0.75a b c q h= = = =  =  = =  were calculated as * 0.6497 = . The effect of the 

fractional order derivative parameter ( )  and the discrete parameter ( ) h on the dynamic structure of the 

system can be seen. 
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