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Abstract. When the maglev train levitation system runs for a long time, the components of the system 

will age and the control performance of the system will decline. Moreover, the suspension system of 

maglev train is a complex nonlinear system, and the system has unmodeled dynamics, so it is 

impossible to ensure the performance of the control system through the accurate identification of the 

suspension system model. In this paper, a data-driven control design framework of the maglev train 

suspension system based on Koopman operator is proposed. According to the measured data of the 

suspension system, the nonlinear maglev train suspension system is reconstructed in the linear 

framework by using Koopman characteristic function, and the optimal control of the suspension 

system is realized. Simulation and experiments verify the effectiveness of the method. 
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1. INTRODUCTION 

As a new type of rail transit, maglev train has been applied on a large scale. For example, Maglev 

Operation lines have been built in Beijing, Changsha, Qingyuan, Fenghuang. However, after the long-term 

operation of maglev train, there will inevitably be problems such as line track settlement, wear of structural 

parts and aging of electronic components, which will change the model parameters of maglev train levitation 

system, and then lead to the degradation of the performance of the levitation control system designed at the 

factory. In order to make the maglev train always maintain the set gap value during operation, the suspension 

system is required to maintain good control performance. 

Aiming at the control problem of maglev train suspension system, a complex nonlinear system, a 

variety of nonlinear control methods have been developed, including sliding mode control [1], model 

predictive control [2], adaptive control [3], robust control [4], reinforcement learning based control [5], etc. 

Although these nonlinear control algorithms have made some progress in the control of the suspension 

system [6], these methods usually require a lot of computational resources, or are not easy to be extended to 

new application scenarios of model degradation. And these nonlinear control methods do not have an overall 

framework. With the rise of new technologies such as big data and machine learning, these challenges are 

expected to be solved. Recently, Koopman operator theory has become a popular method to obtain the linear 

representation of nonlinear systems from data. Koopman proved in 1931 that nonlinear dynamical systems 

can be represented by infinite dimensional linear operators acting on Hilbert space of system state 

measurement function [7]. The spectral decomposition of this linear Koopman operator can fully 

characterize the nonlinear system. 

Koopman theory has been widely used in system identification [8], estimation [9] and control [10] of 

nonlinear systems. However, the space of all possible measurement functions describing the state needs to be 

infinite dimensional, and the control law is usually based on finite dimensional approximation, so dynamic 

mode decomposition (DMD) [11] is often used to approximate the Koopman operator. However, DMD is 

based on linear measurement. For most nonlinear systems, DMD is no longer applicable [12]. Therefore, 

extended dynamic mode decomposition (EDMD) is needed to approximate Koopman operator [13]. Linear 

systems are rich in optimal estimation theory and control algorithms, while Koopman operator can provide a 
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way to express nonlinear dynamics in a linear framework. The latest research challenge is to obtain the 

coordinate transformation of approximate Koopman characteristic function in nonlinear system based on 

data-driven method. In this paper, EDMD technology is used to re describe the suspension system in the 

coordinate system based on Koopman characteristic function, and then study the suspension control problem. 

Therefore, the main work of this paper is to propose a data-driven Koopman characteristic function 

identification method for suspension system, and realize the research on the data-driven control method of 

suspension system based on Koopman characteristic function. 

2. MODEL RECONSTRUCTION MAGLEV TRAIN LEVITATION SYSTEM 

2.1. Maglev system model analysis 

The research object of this paper is the suspension system of normal medium- and low- speed maglev 

train, which takes Fenghuang maglev train as an example. The levitation force of single section train body of 

a maglev train is usually provided by 20 suspension systems. These suspension systems are mechanically 

decoupled by means of 5 bogies. Therefore, the model analysis of maglev train levitation system can be 

implemented into the analysis of single suspension system model. In this section, two previous works on 

suspension control of maglev train are cited to establish and analyze the single suspension system model 

[3−4]. The simplified structure diagram of the single suspension system is shown in Fig. 1. 

 

    

Fig. 1 – The structural diagram of the single suspension system of the normal medium- and low- speed maglev train. 

Let m represent the equivalent mass of the suspension magnet and the vehicle body in the single 

suspension system, z(t) is the suspension gap, N is the number of turns of the electromagnet coil, A is the 

cross-sectional area of the electromagnet, u(t) and i(t) are the voltage and current at both ends of the 

electromagnet coil respectively, R is the resistance of the electromagnet coil, L is the electrical inductance of 

the electromagnet coil,  is the vacuum permeability, fd is the external interference force. The single 

suspension system model can be obtained by quoting the previous suspension control research [3]: 
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Taking the state variable as    1 2 3

T
x x x z z i= , 2 4H AN=  , the state space model of the 

single suspension system is obtained as follows: 

   2 2
1 2 3 2 3 1 2 3 1 1 3 1( ) (2 ) 0 0 (2 ) ( ) ( )

TT T
x x x x Hx mx g x x x Rx x H x H u f x g x u = − + − + = +  . (2) 

The model is applicable to the case that the initial state of the system is near the equilibrium position. 

When the initial suspension position is far away from the suspension equilibrium position, the controller 

designed based on this model may not guarantee the stability of the suspension system. 

2.2. Koopman analysis 

According to formula (2), the suspension system is a third-order complex nonlinear system. In 

addition, the suspension system of the on-orbit maglev train still has unmodeled dynamics, which makes the 

nonlinear model of the suspension system unable to be established accurately. Therefore, this section uses 
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Koopman operator theory to obtain the data-driven mathematical model of the suspension system. Koopman 

operator theory studies the system according to the evolution of the state measurement function. Koopman's 

research shows that the infinite dimensional linear operator on the Hilbert space acting on the state 

measurement function of the system can be used to represent the nonlinear dynamic system. Consider the 

state measurement function g( ) in infinite dimensional Hilbert space. The infinite dimensional linear 

Koopman operator is defined as tK , and the discrete-time dynamic system is considered: 

1 ( ),  k t kx F x x M+ =  . (3) 

Then we can get that the effect of tK  on the measurement function is: 

( ) ( ( ))t k t kK g x g F x = . (4) 

Therefore, the state observation value 1( )kg x +  at the next time can be obtained according to the 

Koopman operator: 

1( ) ( ),  ( )k t kg x K g x g x+ = ℝ. (5) 

Assuming that the Koopman eigenfunction is ( )x  and the corresponding eigenvalue is  , then: 

1( ) ( ) ( )k t k kx K x x+  =  =  . (6) 

The Koopman operator is infinite dimensional, so it is complex to calculate Koopman operator directly. 

Koopman analysis is not to obtain the evolution process of all measurement functions, but only to identify 

the evolution process of key measurement functions of dynamic system in Hilbert space. With the help of the 

characteristic function of Koopman operator, such a set of linear measurement functions can be obtained. 

Furthermore, the linear representation of the suspension system in the coordinates composed of this set of 

measurement functions can be obtained, which is global. 

According to the chain rule, the derivative of Koopman characteristic function ( , )x u  with control 

input u  with respect to time is: 

d ( , ) d ( , ) ( , ) ( , ) ( , )x u ux u t x u x x u u x u x u u =  +  =  +  . (7) 

where u  can be regarded as the input of linear system based on Koopman characteristic function. 

2.3. Linear reconstruction analysis of Maglev nonlinear system 

The suspension system can realize the global linear representation in the coordinates composed of 

Koopman characteristic function. Therefore, this section applies Koopman analysis to realize the linear 

reconstruction of suspension system. The linear reconstruction does not need to obtain the evolution of all 

the measurement functions that can be used to represent the suspension system in Hilbert space, but to obtain 

the approximate evolution of the suspension system on a set of invariant subspaces expanded by finite 

measurement functions. Namely, we want to get the finite dimensional matrix representation of Koopman 

operator. Finally, the finite dimensional linear reconstruction system of the suspension system is obtained. 

This solves the local linearity limitation caused by the design of suspension controller based on the 

linearization for a long time, and realizes the linearization representation of the whole working range of 

suspension system. According to Koopman mode decomposition introduced by Mezic in 2005 [14], the 

measurement vector g can be expressed as: 

( ) ( )1 2 1 1
( ) ( ) ( ) ,   ( ) ( )

T

p j j j ij jj j
g x g x g x g x x v g x v x

 

= =
 = =  =     ,  

where ( )x  is the characteristic function, jv  is the j-th Koopman mode associated with j , and the 

measurement function ( )ig x  is represented by a basis in Hilbert Space. 

The finite dimensional matrix representation of Koopman operator can be obtained from the Koopman 

invariant subspace expanded by the measurement function  1 2, , , pg g g , which is expanded by the finite 
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characteristic function set of Koopman operator. The calculation method of Koopman operator based on 

finite dimensional approximation can realize the finite dimensional linear reconstruction of suspension 

system to a certain extent. Suppose that the snapshot pair of system state collected is: 

( )  1

1
( ), ( ) ,  ,

m n
k k k

x t x t x 

=
  (8) 

where, k kt t t = +  , assuming uniform sampling in time, 1k kt t +
 = , two data matrices and the driving input 

data matrix are constructed as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 3 1 1 2

| | | | | | | | |

,   ,   

| | | | | | | | |

m m mX x t x t x t X x t x t x t R u t u t u t+

     
     = = =
     
          

 (9) 

Then, the best fitting linear operator A and driving matrix B can be obtained by DMD algorithm. And 

the dynamics is: 

,   X AX BR A  + ℝ
nn

,  Bℝ
n1

,  X ℝ
nm

,  U ℝ
1m

. (10) 

Rewrite the above formula as: 

   †,   
T

X A B X R GP G X P  =  . (11) 

Do SVD for X and P respectively [15]: 

  ,* * 1 * * 1 *
2 2 2 1 1 11 2 2 1 1 12  ,   

T
G U G U I A U X V U U B U X V U− − = =  =  . (12) 

However, DMD based on linear measurement is not enough for linear model reconstruction of 

suspension system. Therefore, EDMD is applied to realize linear model reconstruction of suspension system 

in this paper. EDMD includes not only the regression of the direct measurement value of the state, but also 

the regression of the nonlinear measurement value of the state. In EDMD, the state of structural 

augmentation [16]: 

1 2( ) ( ) ( ) ( ) ,   
TT

py x x x x p n =  =      . (13) 

Similarly, two data matrices are constructed as follows: 

1 2 2 3 1

| | | | | |

,   

| | | | | |

m mY y y y Y y y y +

   
   = =
   
      

. (14) 

Finally, the data matrix of the suspension system can be expressed as: 

  
T

Y AY BR A B Y R GP  + = = . (15) 

The best fitting linear operator A and driving matrix B are obtained by dimensionality reduction and 

regression according to kernel method, respectively: 

* 1 * * 1 *
2 1 1 11 2 2 1 1 12,   A U Y V U U B U Y V U− − =  =  . (16) 

The candidate library   of nonlinear functions provides a rich basis ( )j x  to approximate the 

Koopman operator. The Koopman characteristic function can be approximated as: 

1
( ) ( ) ( )

p

k kk
x x x

=
    =   . (17) 

As shown in Figure 2, the suspension gap of the suspension system is designed to transition from the 

initial 15 mm to 8 mm in normal operation. Based on the measured data of the suspension system, the best 



5 Study on data-driven control of maglev train levitation system based on koopman linear reconstruction 169 

fitting linear operator A and driving matrix B are obtained by EDMD. And then the linear model 

reconstruction of the suspension system is realized, and the response curve with driving input is obtained 

according to the linear reconstruction model. As shown in the right figure of Fig. 2, the linear reconstruction 

model can better restore the response characteristics of the original suspension system. 
 

 
Fig. 2 – The closed loop response curve of the suspension system (left), the response curve with drive input of linear 

reconstruction model of the suspension system (right). 

3. DESIGN OF DATA DRIVEN CONTROL SYSTEM BASED  

ON KOOPMAN CHARACTERISTIC FUNCTION 

3.1. Sparse identification of Koopman characteristic function 

In this section, the sparse identification is used to identify the dominant Koopman characteristic 

function, so as to construct the low dimensional approximate model of the suspension system. This method 

can avoid complex model structure search and calculation. 

Firstly, the suspension system with driving input is constructed as follows: 

d d ( )x t f x Bu= + . (18) 

The dynamics of Koopman characteristic function with driving input is still linear. Then, according to 

the chain rule, the derivative of Koopman characteristic function ( )x  with respect to time is [16]: 

( )d ( ) d ( ) ( ) ( ) ( )x t x f x Bu x x Bu =  + =  +  . (19) 

Then, the approximate characteristic function can be obtained by solving equation (19) using linear 

control theory based on Riccati. Next, the dominant Koopman characteristic function is obtained by sparse 

identification. The system data matrix and its derivative matrix are constructed as follows: 

     1 2 1 2 1 2( ) ( ) ( ) ,   ( ) ( ) ( ) ,   ( ) ( ) ( )
T T T

m m mX x t x t x t X x t x t x t R u t u t u t= = = . (20) 

The candidate library   of the designed nonlinear function is the polynomial of all possible time series 

of state x and driving input u. 

 ( ) 2 21X R X R X X R R  =   . (21) 

Let the model of the suspension system be: 

 ( )X X R=   , (22) 
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where each column k  of   is a coefficient vector. Then, the k  of the above model is identified by the 

sparse regression method [16] 

 ( )
12

arg min
k

k k k kX X R


  = −  +   . (23) 

kX  is the k-th column of X , and   is used to adjust the sparsity. 

 

 

Fig. 3 – Characteristic function identification steps of the magnetic levitation system based on sparse identification. 

 

Algorithm 1: Characteristic function identification based on sparse identification 

Input: data matrix X  and its derivative matrix X , candidate library  ( )X R  of 

nonlinear function, threshold   

Output: coefficient vector k  

1  ( )X X R =    %Initialize 

2 while Non convergence do 

3   ( )abs      %Find small coefficients 

4   for each state dimension in system do 

5       ( )
12

arg min
k

k k k kX X R


  = −  +    %Regress dynamics to find sparse 

6   end for 

7 end while 
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3.2. Optimal control design based on Koopman characteristic function 

Combined with the Koopman operator theory, the optimal control loop structure based on Koopman 

characteristic function is designed in this section. As shown in Fig. 4. The optimal suspension control is 

realized based on the linear reconstruction model of the suspension system. Firstly, the optimal control 

problem is established for a set of simplified Koopman characteristic functions. 
 

 

Fig. 4 – The optimal control loop structure based on Koopman characteristic function. 

( )
0

1
( , ) ( ( )) ( ( )) ( ) ( ) d

2

T TJ u x t Q x t t R t t



 = + φ φ u u , (24) 

where  1 2 r

T
=   φ  contains r characteristic functions. Selecting a specific set of characteristic 

functions to build the model and formulate the cost function. Then, the relevant target value can be 

determined by evaluating the cost function of the system state. 

Use the control input to increase the state and take the derivative of the control input as the new input. 

0d

0 0d q

B
u

Iu ut

         
= +       

       
. (25) 

By transforming the nonlinearity in the control term into state dynamics, the formula (24) changes to: 

0

01 ˆ d
02

T T TQ
J u u Ru t

R u



    
 =  +     

    
 . (26) 

Therefore, the dynamic system in the coordinate system based on Koopman characteristic function is: 

d
( ) ( ) ( )

d
xx x x Bu

t
 =  +  Λ , (27) 

where 1 2diag( , , , )r=   Λ . Then the feedback controller based on Koopman operator is: 

( ) refu C x
 = − −  . (28) 

The feedback control gain C  determined by solving the algebraic Riccati equation to minimize J. 

4. EXPERIMENTS 

This paper aims to verify the effectiveness of the linear reconstruction model of the suspension system 

based on Koopman eigenfunction coordinate system. The error E based on the characteristic function is used 

to evaluate the suspension gap of the experimental test track. Then, according to the evaluation results, a set 

of characteristic functions for linear reconstruction of suspension system model are selected. 

( ) ( )
2

( ) (0)tE x t e x=  −  , (29) 
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Fig. 5 – The response data of simulated excitation of the single suspension closed-loop feedback control system (left), the 

simulation response curve of the single suspension system (right). 

where 74 10− =  H/m, the coil current and suspension gap during stable suspension are 0 22.0i = A and 

0 8.0Z = mm respectively, N = 360 turns, A = 0.038 m2, R = 0.92 Ω, and m = 535 kg. Therefore, the system 

matrix described in the state space of the suspension system is 
0 1

5467.52 0
A

 
=  
 

, control matrix 

 0 1.99
T

B = −  and output matrix  1 0C = . A state feedback controller is designed to stabilize the closed-

loop single suspension model. The purpose is to obtain the response data of the closed-loop feedback control 

of the single suspension system by designing the simulated excitation. As shown in the Fig. 5. 

Then, according to the collected response data of the suspension system, a set of Koopman 

characteristic functions are obtained by using EDMD and sparse identification introduced in the paper. 

Finally, the fourth-order Runge Kutta method is used to solve the differential equation of the system, and the 

linear reconstruction model of the single suspension system based on Koopman characteristic function can 

be obtained. Then, combined with the LQR controller, the simulation response curve of the single point 

suspension system can be obtained, as shown in the right figure of Fig. 5. The system can reach a stable state 

after a limited time. 

Then, the single electromagnet suspension experiment is carried out on the suspension control 

experimental platform of the single electromagnet suspension system. The experimental platform is shown in 

the Fig. 6. Where m = 6.9 kg, 0 =4.0Z mm, 0 =9.5i A, A = 13.5 cm2, N = 300 turns, and R = 4.8 Ω. 

 

   

Fig. 6 – The suspension control experimental platform of the single electromagnet suspension system. 

Collect the experimental data of suspension control response of single iron suspension system. And 

then, according to the method introduced in the paper, a data-driven linear reconstruction model of single 

electromagnet suspension system based on Koopman characteristic function is obtained, as shown in the 

left of Fig. 7. According to the linear reconstruction model of the single electromagnet suspension system 
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based on the data drive, the single electromagnet suspension system controller based on the model is 

designed and applied to the suspension control experimental platform of the single electromagnet 

suspension system, so as to obtain the suspension experimental response curve as shown in the right figure 

of Fig. 7. 
 

 
Fig. 7 – The data-driven linear reconstruction model based on Koopman characteristic function (left), the response curve of 

suspension control experiment of the single electromagnet suspension system (right). 

It can be seen from the right figure of Fig. 7 that the linear reconstruction model of single 

electromagnet suspension system based on data-driven identification can well reflect the characteristics of 

the original system. The experimental results prove the effectiveness of the data-driven control design 

framework of maglev train suspension system based on Koopman characteristic function. 

5. CONCLUSION 

Combined with the Koopman characteristic function obtained through sparse identification, the paper 

designs the data-driven control design framework of maglev train suspension system based on Koopman 

characteristic function, and verifies the effectiveness of the linear reconstruction system of suspension 

control system based on the Koopman characteristic function. At the same time, according to the 

experimental measurement data of the single electromagnet suspension system, the Koopman characteristic 

function of the linear reconstruction system which can describe the suspension control system is identified by 

using the methods of EDMD and sparse identification. The nonlinear suspension system is re expressed in 

the linear framework, and the effectiveness of the linear reconstruction model applied to the actual 

suspension control is verified. 
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